organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Ethyl 4-(4-bromophenyl)-6-*r*-phenyl-2oxocyclohex-3-ene-1-*t*-carboxylate

N. Anuradha,^a A. Thiruvalluvar,^a* C. Yuvaraj,^b K. Pandiarajan^b and R. J. Butcher^c

^aPG Research Department of Physics, Rajah Serfoji Government College (Autonomous), Thanjavur 613 005, Tamil Nadu, India, ^bDepartment of Chemistry, Annamalai University, Annamalai Nagar 608 002, Tamil Nadu, India, and ^cDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA

Correspondence e-mail: athiru@vsnl.net

Received 24 June 2010; accepted 28 June 2010

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.004 Å; R factor = 0.050; wR factor = 0.150; data-to-parameter ratio = 17.0.

In the title compound, $C_{21}H_{19}BrO_3$, the cyclohexene ring adopts an envelope conformation, with all substituents equatorial. The plane through its five coplanar atoms makes dihedral angles of 28.88 (10) and 71.94 (10)° with the bromobenzene and phenyl rings, respectively. The dihedral angle between the latter two rings is 51.49 (15)°. Intermolecular C– $H \cdots O$ hydrogen bonds are found in the crystal structure; a $C-H \cdots \pi$ interaction is also present.

Related literature

For the synthesis of cyclohexenone derivatives, see: Chong *et al.* (1997); Inokuchi *et al.* (2001). For their applications and for related structures, see: Anuradha *et al.* (2009); Fun *et al.* (2010).

Experimental

Crystal data

Crystai aata	
$C_{21}H_{19}BrO_3$	a = 11.0138 (2) Å
$M_r = 399.26$	b = 13.8197 (4) Å
Monoclinic, $P2_1/c$	c = 12.1477 (3) Å

 $\beta = 95.180 \ (2)^{\circ}$ $V = 1841.42 \ (8) \text{ Å}^3$ Z = 4Cu $K\alpha$ radiation

Data collection

Oxford Diffraction Xcalibur Ruby Gemini diffractometer Absorption correction: multi-scan (*CrysAlis PRO*; Oxford Diffraction, 2010) $T_{min} = 0.444, T_{max} = 1.000$

Refinement

ŀ

S

3

$R[F^2 > 2\sigma(F^2)] = 0.050$	227 parameters
$vR(F^2) = 0.150$	H-atom parameters constrained
C = 1.08	$\Delta \rho_{\rm max} = 0.32 \text{ e} \text{ Å}^{-3}$
851 reflections	$\Delta \rho_{\rm min} = -0.61 \text{ e } \text{\AA}^{-3}$

 $\mu = 3.17 \text{ mm}^{-1}$

 $0.44 \times 0.36 \times 0.12 \text{ mm}$

8385 measured reflections

3851 independent reflections

3210 reflections with $I > 2\sigma(I)$

T = 295 K

 $R_{\rm int} = 0.021$

Table 1

Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C41-C46 ring.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C42 - H42 \cdots O2^{i}$ $C45 - H45 \cdots O11^{ii}$ $C1 - H1 \cdots Cg^{iii}$	0.93 0.93 0.98	2.58 2.54 2.77	3.276 (3) 3.288 (4) 3.648 (2)	132 138 150

Symmetry codes: (i) -x, -y, -z; (ii) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$; (iii) $x, -y + \frac{1}{2}, z + \frac{1}{2}$.

Data collection: *CrysAlis PRO* (Oxford Diffraction, 2010); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SIR2004* (Burla *et al.*, 2005); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *PLATON* (Spek, 2009).

RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2685).

References

- Anuradha, N., Thiruvalluvar, A., Pandiarajan, K. & Yuvaraj, C. (2009). Acta Cryst. E65, o191.
- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
- Chong, B.-D., Ji, Y.-I., Oh, S.-S., Yang, J.-D., Baik, W. & Koo, S. (1997). J. Org. Chem. 62, 9323–9325.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Fun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, 0864–0865.
- Inokuchi, T., Okano, M. & Miyamoto, T. (2001). J. Org. Chem. 66, 8059–8063. Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Spek, A. L. (2009). Acta Cryst. D65, 148–155.

Acta Cryst. (2010). E66, o1896 [https://doi.org/10.1107/S1600536810025353]

Ethyl 4-(4-bromophenyl)-6-r-phenyl-2-oxocyclohex-3-ene-1-t-carboxylate

N. Anuradha, A. Thiruvalluvar, C. Yuvaraj, K. Pandiarajan and R. J. Butcher

S1. Comment

Chong *et al.* (1997) have reported highly efficient synthesis of methyl-substituted conjugate cyclohexenones. Inokuchi *et al.* (2001) have reported selective synthesis of *cis* 4,5-dimethyl-2-cyclohexenone derivatives. Anuradha *et al.* (2009) have reported a crystal structure of ethyl 6- r-(2-chlorophenyl)-2-oxo-4-phenylcyclohex-3-ene-1- t-carboxylate. Fun *et al.* (2010) have reported a crystal structure of methyl 4,6-bis(4-fluorophenyl)-2-oxocyclohex-3-ene-1-carboxylate. In the above two structures the cyclohexene rings adopt envelope conformations.

The present X-ray diffraction study was undertaken to determine how the conformation of the system is affected by the substitution of a ethoxycarbonyl group at position 1, a bromophenyl group at position 4 and a phenyl group at position 6 of the cyclohexenone ring.

In the title compound, $C_{21}H_{19}BrO_3$, (Fig. 1), the cyclohexene ring adopts an envelope conformation with all substituents equatorial. The plane through the five coplanar atoms C1/C2/C3/C4/C5 makes dihedral angles of 28.88 (10) and 71.94 (10)° with the bromophenyl and benzene rings, respectively. The dihedral angle between the benzene and bromophenyl rings is 51.49 (15)°. C42—H42···O2(-*x*,-*y*,-*z*) and C45—H45···O11(-*x*, 1/2 + *y*, 1/2 - *z*) intermolecular hydrogen bonds are found in the crystal structure. Further, a C1—H1··· $\pi(x, 1/2 - y, 1/2 + z)$ interaction involving the benzene (C41—C46) ring is also found (Fig. 2, Table 1).

S2. Experimental

A mixture of benzylidene *p*-bromoacetophenone (3.03 g, 0.0125 mol), ethyl acetoacetate (2 ml, 0.0125 mol) and sodium ethoxide (1 g, 0.0125 mol) in absolute alcohol (50 ml) was refluxed for 14 h. After cooling, the reaction mixture was neutralized with 0.1 N HCl. It was then extracted with diethyl ether (3x20 ml). The organic layer was dried over anhydrous sodium sulfate, filtered and the solvents removed by rotary vacuum evaporation. A solid mass was obtained which was recrystallized from ethanol. Yield 2 g (55%).

S3. Refinement

H atoms were positioned geometrically and allowed to ride on their parent atoms, with Csp^2 —H = 0.93, C(methyl)—H = 0.96, C(methylene)—H = 0.97 and C(methine)—H = 0.98 Å; $U_{iso}(H) = kU_{eq}(C)$, where k = 1.5 for methyl and 1.2 for all other H atoms.

Figure 1

The molecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 30% probability level. H atoms are shown as small spheres of arbitrary radius.

Figure 2

The packing of the title compound, viewed down the *a* axis. Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted.

Ethyl 4-(4-bromophenyl)-6-r-phenyl-2-oxocyclohex-3-ene-1-t- carboxylate

Crystal data

$C_{21}H_{19}BrO_3$	F(000) = 816
$M_r = 399.26$	$D_{\rm x} = 1.440 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Melting point: 359 K
Hall symbol: -P 2ybc	Cu <i>Ka</i> radiation, $\lambda = 1.54184$ Å
a = 11.0138 (2) Å	Cell parameters from 4868 reflections
b = 13.8197 (4) Å	$\theta = 4.9 - 77.3^{\circ}$
c = 12.1477 (3) Å	$\mu = 3.17 \text{ mm}^{-1}$
$\beta = 95.180 \ (2)^{\circ}$	T = 295 K
V = 1841.42 (8) Å ³	Prism, colourless
Z = 4	$0.44 \times 0.36 \times 0.12 \text{ mm}$

Data collection

Oxford Diffraction Xcalibur Ruby Gemini diffractometer Radiation source: Enhance (Cu) X-ray Source Graphite monochromator Detector resolution: 10.5081 pixels mm ⁻¹ ω scans Absorption correction: multi-scan (<i>CrysAlis PRO</i> ; Oxford Diffraction, 2010) $T_{\min} = 0.444, T_{\max} = 1.000$	8385 measured reflections 3851 independent reflections 3210 reflections with $I > 2\sigma(I)$ $R_{int} = 0.021$ $\theta_{max} = 77.5^{\circ}, \theta_{min} = 4.9^{\circ}$ $h = -13 \rightarrow 13$ $k = -17 \rightarrow 12$ $l = -14 \rightarrow 15$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.050$ $wR(F^2) = 0.150$ S = 1.08 3851 reflections 227 parameters 0 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0892P)^2 + 0.401P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.32$ e Å ⁻³ $\Delta\rho_{min} = -0.61$ e Å ⁻³

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Br4	-0.27481 (3)	0.39721 (4)	-0.28199 (3)	0.1008 (2)
O2	0.0731 (2)	-0.01378 (13)	0.24548 (16)	0.0754 (7)
O11	0.2865 (2)	0.06999 (16)	0.46249 (16)	0.0814 (7)
O12	0.3423 (2)	0.03049 (16)	0.29591 (17)	0.0801 (8)
C1	0.1736 (2)	0.13392 (17)	0.30076 (18)	0.0551 (7)
C2	0.0916 (3)	0.07028 (17)	0.22341 (19)	0.0585 (7)
C3	0.0292 (2)	0.11697 (16)	0.12766 (19)	0.0557 (7)
C4	0.0424 (2)	0.21111 (16)	0.10325 (16)	0.0493 (6)
C5	0.1310 (2)	0.27481 (16)	0.17181 (18)	0.0547 (7)
C6	0.2304 (2)	0.21756 (17)	0.23886 (19)	0.0555 (7)
C11	0.2729 (3)	0.07369 (18)	0.3645 (2)	0.0625 (8)
C12	0.4481 (3)	-0.0246 (3)	0.3446 (3)	0.0906 (14)
C13	0.4140 (4)	-0.1191 (3)	0.3858 (4)	0.1036 (16)
C41	-0.0332 (2)	0.25631 (16)	0.01031 (17)	0.0507 (6)
C42	-0.0759 (2)	0.20198 (18)	-0.08178 (19)	0.0563 (7)
C43	-0.1466 (2)	0.2436 (2)	-0.1692 (2)	0.0652 (8)
C44	-0.1767 (2)	0.3402 (2)	-0.1636 (2)	0.0660 (8)

C45	-0.1361 (3)	0.3956 (2)	-0.0745 (2)	0.0679 (9)
C46	-0.0639 (3)	0.35454 (18)	0.0122 (2)	0.0606 (8)
C61	0.3109 (2)	0.27847 (18)	0.3204 (2)	0.0591 (7)
C62	0.2639 (3)	0.3446 (2)	0.3907 (2)	0.0695 (9)
C63	0.3395 (4)	0.3930 (2)	0.4700 (3)	0.0869 (13)
C64	0.4603 (4)	0.3765 (3)	0.4805 (3)	0.1013 (14)
C65	0.5093 (4)	0.3114 (3)	0.4118 (4)	0.1105 (18)
C66	0.4355 (3)	0.2627 (3)	0.3320 (3)	0.0862 (11)
H1	0.12304	0.16247	0.35470	0.0661*
H3	-0.02300	0.07976	0.08038	0.0668*
H5A	0.08663	0.31299	0.22186	0.0657*
H5B	0.16886	0.31918	0.12331	0.0657*
H6	0.28296	0.18886	0.18667	0.0666*
H12A	0.50529	-0.03357	0.28925	0.1087*
H12B	0.48887	0.01232	0.40502	0.1087*
H13A	0.36252	-0.11051	0.44476	0.1555*
H13B	0.48618	-0.15375	0.41285	0.1555*
H13C	0.37100	-0.15507	0.32702	0.1555*
H42	-0.05654	0.13658	-0.08455	0.0676*
H43	-0.17342	0.20688	-0.23080	0.0782*
H45	-0.15706	0.46075	-0.07220	0.0815*
H46	-0.03540	0.39252	0.07225	0.0727*
H62	0.18046	0.35672	0.38471	0.0834*
H63	0.30635	0.43742	0.51638	0.1042*
H64	0.51027	0.40899	0.53407	0.1213*
H65	0.59279	0.29993	0.41900	0.1324*
H66	0.46998	0.21897	0.28568	0.1035*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br4	0.0719 (3)	0.1319 (4)	0.0941 (3)	0.0257 (2)	-0.0167 (2)	0.0314 (2)
O2	0.1103 (15)	0.0451 (9)	0.0678 (11)	-0.0123 (9)	-0.0079 (10)	0.0056 (8)
O11	0.1096 (16)	0.0750 (12)	0.0560 (10)	-0.0024 (11)	-0.0120 (10)	0.0079 (9)
012	0.0890 (14)	0.0775 (13)	0.0723 (12)	0.0158 (10)	-0.0011 (10)	0.0013 (10)
C1	0.0685 (14)	0.0503 (12)	0.0456 (10)	-0.0019 (10)	0.0009 (9)	0.0000 (9)
C2	0.0775 (15)	0.0471 (12)	0.0503 (11)	-0.0053 (10)	0.0027 (10)	-0.0011 (9)
C3	0.0682 (14)	0.0496 (12)	0.0475 (11)	-0.0090 (9)	-0.0043 (9)	-0.0053 (9)
C4	0.0591 (12)	0.0482 (11)	0.0402 (9)	-0.0027 (9)	0.0030 (8)	-0.0034 (8)
C5	0.0703 (14)	0.0475 (11)	0.0451 (10)	-0.0086 (10)	-0.0021 (9)	0.0012 (8)
C6	0.0626 (13)	0.0533 (12)	0.0498 (11)	-0.0047 (10)	0.0007 (9)	0.0007 (9)
C11	0.0781 (16)	0.0532 (12)	0.0545 (13)	-0.0045 (11)	-0.0037 (11)	0.0041 (10)
C12	0.078 (2)	0.084 (2)	0.106 (3)	0.0031 (16)	-0.0120 (17)	0.0005 (18)
C13	0.095 (3)	0.083 (2)	0.129 (3)	0.0085 (19)	-0.010 (2)	0.007 (2)
C41	0.0544 (11)	0.0529 (11)	0.0445 (10)	-0.0013 (9)	0.0026 (8)	-0.0026 (8)
C42	0.0595 (12)	0.0544 (12)	0.0531 (11)	-0.0012 (9)	-0.0052 (9)	-0.0029 (9)
C43	0.0588 (13)	0.0758 (16)	0.0582 (13)	-0.0011 (11)	-0.0094 (10)	-0.0044 (11)
C44	0.0493 (12)	0.0841 (18)	0.0631 (13)	0.0084 (11)	-0.0031 (10)	0.0144 (12)

C45	0.0711 (16)	0.0611 (14)	0.0717 (16)	0.0136 (11)	0.0071 (13)	0.0066 (12)
C46	0.0731 (15)	0.0542 (12)	0.0539 (12)	0.0043 (11)	0.0021 (10)	-0.0038 (10)
C61	0.0628 (13)	0.0575 (13)	0.0550 (12)	-0.0112 (10)	-0.0059 (10)	0.0093 (10)
C62	0.0751 (16)	0.0719 (16)	0.0597 (13)	-0.0180 (13)	-0.0038 (12)	-0.0048 (12)
C63	0.124 (3)	0.0730 (19)	0.0598 (15)	-0.0308 (17)	-0.0129 (16)	0.0008 (13)
C64	0.111 (3)	0.086 (2)	0.096 (2)	-0.036 (2)	-0.051 (2)	0.0200 (19)
C65	0.076 (2)	0.104 (3)	0.143 (4)	-0.020 (2)	-0.036 (2)	0.022 (3)
C66	0.0666 (17)	0.084 (2)	0.105 (2)	-0.0064 (14)	-0.0087 (16)	0.0123 (18)

Geometric parameters (Å, °)

Br4—C44	1.891 (2)	C62—C63	1.387 (5)	
O2—C2	1.214 (3)	C63—C64	1.345 (6)	
011—C11	1.187 (3)	C64—C65	1.371 (6)	
O12—C11	1.323 (4)	C65—C66	1.382 (6)	
O12—C12	1.471 (4)	C1—H1	0.9800	
C1—C2	1.523 (3)	С3—Н3	0.9300	
C1—C6	1.542 (3)	С5—Н5А	0.9700	
C1C11	1.528 (4)	С5—Н5В	0.9700	
С2—С3	1.448 (3)	С6—Н6	0.9800	
C3—C4	1.345 (3)	C12—H12A	0.9700	
C4—C5	1.508 (3)	C12—H12B	0.9700	
C4—C41	1.479 (3)	C13—H13A	0.9600	
C5—C6	1.525 (3)	C13—H13B	0.9600	
C6—C61	1.522 (3)	C13—H13C	0.9600	
C12—C13	1.460 (6)	C42—H42	0.9300	
C41—C42	1.393 (3)	C43—H43	0.9300	
C41—C46	1.400 (3)	C45—H45	0.9300	
C42—C43	1.384 (3)	C46—H46	0.9300	
C43—C44	1.379 (4)	С62—Н62	0.9300	
C44—C45	1.368 (4)	С63—Н63	0.9300	
C45—C46	1.383 (4)	C64—H64	0.9300	
C61—C62	1.383 (4)	С65—Н65	0.9300	
C61—C66	1.384 (4)	С66—Н66	0.9300	
Br4…C63 ⁱ	3.720 (3)	C62…H1	2.9700	
Br4…C3 ⁱⁱ	3.622 (2)	C63····H6 ^{vii}	2.9800	
Br4…H64 ⁱⁱⁱ	3.1100	C64····H64 ^{ix}	2.9900	
Br4…H12A ^{iv}	3.2500	C65····H13B ^x	3.0400	
O2…O12	3.035 (3)	H1…C62	2.9700	
O2···C42 ^v	3.276 (3)	H1···C41 ^{vii}	2.9000	
O11…C61	3.382 (3)	H1····C42 ^{vii}	3.0300	
O11…C13	3.147 (5)	H1···C46 ^{vii}	2.9400	
O11····C45 ^{vi}	3.288 (4)	H3…C42	2.6200	
O12…C66	3.386 (5)	H3…H42	2.1500	
012…02	3.035 (3)	H5A…C46	2.9700	
O2…H46 ^{vi}	2.6300	H5A…C62	2.7400	
O2…H43 ^v	2.9000	H5A…H46	2.4200	

O2…H42 ^v	2.5800	H5A…H62	2.2300
O11…H13A	2.6500	H5A····C43 ^{vii}	3.0900
O11…H12B	2.5200	H5B…C46	2.8300
O11····H5B ^{vii}	2.8800	H5B…H46	2.4900
O11…H45 ^{vi}	2.5400	H5B…O11 ⁱⁱ	2.8800
012…Н6	2.6100	H6…O12	2.6100
C2···C44 ^{vii}	3.589 (4)	H6…C3	2.9900
C3…Br4 ^{vii}	3.622 (2)	H6…H66	2.3300
C11C66	3.212 (5)	H6…C63 ⁱⁱ	2.9800
C13…O11	3 147 (5)	H12A…Br4 ^{xi}	3 2500
$C42\cdots O2^{v}$	3 276 (3)	H12B…011	2 5200
$C44\cdots C2^{ii}$	3.589(4)	H12B····C12 ^x	3 0600
$C45\cdots O11^{\text{viii}}$	3.389(4)	H12B···C12 ^x	3.0500
C61011	3 382 (3)	H12BH12B ^x	2 3200
$C63 \dots \mathbf{Pr}^{4}$	3.302(3)		2.5200
	3.720 (3)		2.0500
C66C11	3.343(0)		2.8700
	3.212(3)	H13AC45*	2.0400
C2 UC	5.580 (5) 2.0000		3.0400
C3H0	2.9900	H13C····H43*	2.4800
C3H42	2.6800	H42····C3	2.6800
C5H62	2.8300	H42····H3	2.1500
C5…H46	2.6600	H42····O2 ^v	2.5800
СП…НІЗА	2.8/00	H43····O2 ^v	2.9000
C12···H12B ^x	3.0600	H43…H13C ^v	2.4800
$C13\cdots H12B^{x}$	3.0500	H45…O11 ^{vm}	2.5400
C41···H1 ⁱⁱ	2.9000	H46…C5	2.6600
C42…H62 ⁱⁱ	3.0000	H46…H5A	2.4200
C42···H1 ⁱⁱ	3.0300	H46…H5B	2.4900
С42…Н3	2.6200	H46…O2 ^{viii}	2.6300
C43···H5A ⁱⁱ	3.0900	H62···C5	2.8300
C45····H13A ^{viii}	3.0700	H62…H5A	2.2300
C46····H1 ⁱⁱ	2.9400	H62····C42 ^{vii}	3.0000
C46…H5A	2.9700	H64…Br4 ^{xii}	3.1100
C46…H5B	2.8300	H64···C64 ^{ix}	2.9900
С62…Н5А	2.7400	Н66…Н6	2.3300
C11—O12—C12	117.5 (2)	C2—C3—H3	118.00
C2—C1—C6	112.10 (18)	С4—С3—Н3	118.00
C2—C1—C11	110.8 (2)	C4—C5—H5A	109.00
C6—C1—C11	110.61 (19)	C4—C5—H5B	109.00
O2—C2—C1	121.2 (2)	C6—C5—H5A	109.00
O2—C2—C3	121.8 (2)	C6—C5—H5B	109.00
C1—C2—C3	116.8 (2)	H5A—C5—H5B	108.00
C2—C3—C4	123.7 (2)	C1—C6—H6	108.00
C3—C4—C5	121.35 (19)	С5—С6—Н6	108.00
C3—C4—C41	120.8 (2)	С61—С6—Н6	108.00
C5—C4—C41	117.81 (19)	O12—C12—H12A	109.00
C4—C5—C6	112.93 (18)	O12—C12—H12B	109.00

G1 G(G5	110 04 (10)		100.00
C1C6C5	110.24 (18)	C13—C12—H12A	109.00
C1—C6—C61	109.59 (19)	С13—С12—Н12В	109.00
C5—C6—C61	114.11 (19)	H12A—C12—H12B	108.00
011-012	125.8 (3)	С12—С13—Н13А	109.00
011—C11—C1	123.4 (3)	С12—С13—Н13В	109.00
O12—C11—C1	110.8 (2)	C12—C13—H13C	109.00
O12—C12—C13	112.5 (3)	H13A—C13—H13B	109.00
C4—C41—C42	120.7 (2)	H13A—C13—H13C	110.00
C4—C41—C46	121.1 (2)	H13B—C13—H13C	110.00
C42—C41—C46	118.1 (2)	C41—C42—H42	119.00
C41—C42—C43	121.2 (2)	C43—C42—H42	119.00
C42—C43—C44	119.1 (2)	C42—C43—H43	120.00
Br4—C44—C43	119.30 (18)	C44—C43—H43	121.00
Br4—C44—C45	119.5 (2)	C44—C45—H45	120.00
C43—C44—C45	121.2 (2)	C46—C45—H45	120.00
C44—C45—C46	119.8 (3)	C41—C46—H46	120.00
C41—C46—C45	120.6 (2)	C45—C46—H46	120.00
C6—C61—C62	122.6 (2)	С61—С62—Н62	120.00
C6—C61—C66	119.5 (2)	С63—С62—Н62	120.00
C62—C61—C66	117.7 (3)	С62—С63—Н63	120.00
C61—C62—C63	120.9 (3)	С64—С63—Н63	120.00
C62—C63—C64	120.7 (3)	C63—C64—H64	120.00
C63 - C64 - C65	1196(4)	C65—C64—H64	120.00
C64 - C65 - C66	120 5 (4)	C64 - C65 - H65	120.00
C61 - C66 - C65	120.5(4) 120.6(3)	C66_C65_H65	120.00
C_{2} C_{1} H_{1}	120.0 (3)	C61 C66 H66	120.00
	108.00	C65 C66 H66	120.00
	108.00	С05—С00—Н00	120.00
сп—ст—ні	108.00		
C12 O12 C11 O11	-21(4)	C4 C5 C6 C1	-48.4(2)
$C_{12} = 0_{12} = C_{11} = 0_{11}$	-2.1(4)	C4 - C5 - C6 - C1	-46.4(2)
C12 - 012 - C11 - C1	1/3.3(2)	C4 - C5 - C6 - C61	-172.20(18)
$C_{11} = 012 = C_{12} = C_{13}$	/8.0 (4)	C1 = C6 = C61 = C62	-77.1(3)
C_{6} C_{1} C_{2} C_{2} C_{2}	154.3 (3)	C1 - C6 - C61 - C66	97.7 (3)
C6-C1-C2-C3	-30.8(3)	C5—C6—C61—C62	4/.1 (3)
C11 - C1 - C2 - O2	30.2 (4)	C5—C6—C61—C66	-138.2 (3)
C11—C1—C2—C3	-154.9 (2)	C4—C41—C42—C43	-180.0(2)
C2-C1-C6-C5	53.5 (3)	C46—C41—C42—C43	0.1 (3)
C2—C1—C6—C61	179.9 (2)	C4—C41—C46—C45	-179.1 (3)
C11—C1—C6—C5	177.74 (18)	C42—C41—C46—C45	0.9 (4)
C11—C1—C6—C61	-55.9 (2)	C41—C42—C43—C44	-1.1 (3)
C2-C1-C11-O11	-121.9 (3)	C42—C43—C44—Br4	-179.29 (17)
C2-C1-C11-O12	60.5 (3)	C42—C43—C44—C45	1.3 (4)
C6-C1-C11-O11	113.2 (3)	Br4—C44—C45—C46	-179.7 (2)
C6-C1-C11-O12	-64.5 (3)	C43—C44—C45—C46	-0.3 (4)
O2—C2—C3—C4	176.6 (3)	C44—C45—C46—C41	-0.8 (4)
C1—C2—C3—C4	1.6 (4)	C6—C61—C62—C63	174.7 (3)
C2—C3—C4—C5	3.8 (4)	C66—C61—C62—C63	-0.1 (4)
C2—C3—C4—C41	-173.9 (2)	C6—C61—C66—C65	-174.6 (3)
	× /		

C3—C4—C5—C6	20.8 (3)	C62—C61—C66—C65	0.4 (5)
C41—C4—C5—C6	-161.42 (19)	C61—C62—C63—C64	-0.2 (5)
C3—C4—C41—C42	-29.7 (3)	C62—C63—C64—C65	0.3 (6)
C3—C4—C41—C46	150.3 (2)	C63—C64—C65—C66	0.0 (6)
C5-C4-C41-C42	152.5 (2)	C64—C65—C66—C61	-0.3 (6)
C5—C4—C41—C46	-27.5 (3)		

Symmetry codes: (i) -x, -y+1, -z; (ii) x, -y+1/2, z-1/2; (iii) x-1, y, z-1; (iv) x-1, -y+1/2, z-1/2; (v) -x, -y, -z; (vi) -x, y-1/2, -z+1/2; (vii) x, -y+1/2, z+1/2; (viii) -x, y+1/2, -z+1/2; (vii) x-1, -y+1/2, z+1/2; (viii) x+1, y+1/2, -z+1/2; (viii) x-1, -y+1/2, -z+1/2; (viii) x+1, -z+1/2; (vii) x+1, -

Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C41–C46 ring.

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
C42—H42····O2 ^v	0.93	2.58	3.276 (3)	132
C45—H45…O11 ^{viii}	0.93	2.54	3.288 (4)	138
C1—H1···· Cg^{vii}	0.98	2.77	3.648 (2)	150

Symmetry codes: (v) –*x*, –*y*, –*z*; (vii) *x*, –*y*+1/2, *z*+1/2; (viii) –*x*, *y*+1/2, –*z*+1/2.