Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3,4,6-Trimethyl-1-phenyl-1*H*-pyrazolo-[3,4-b]pyridine

Salha Hamri,^a Abderrafia Hafid,^a Hafid Zouihri,^b Saïd Lazar^{c*} and Mostafa Khouili^a

^aLaboratoire de Chimie Organique et Analytique, Equipe COOA, Faculté des Sciences et Techniques, Université Sultan Moulav Slimane, BP 523, 23000 Beni-Mellal, Morocco, ^bLaboratoires de Diffraction des Rayons X, Centre Nationale pour la Recherche Scientifique et Technique, Rabat, Morocco, and ^cLaboratoire de Biochimie, Environnement et Agroalimentaire (URAC 36), Faculté des Sciences et Techniques Mohammedia, Université Hassan II Mohammedia-Casablana, BP 146, 20800 Mohammedia, Morocco

Correspondence e-mail: lazar_said@yahoo.fr

Received 1 July 2010; accepted 5 July 2010

Key indicators: single-crystal X-ray study; T = 296 K, P = 0.0 kPa; mean σ (C–C) = 0.003 Å; R factor = 0.068; wR factor = 0.198; data-to-parameter ratio = 13.6.

In the title compound, $C_{15}H_{15}N_3$, the 1*H*-pyrazolo[3,4-*b*]pyridine system and the phenyl ring are each individually planar, with r.m.s. deviations of 0.017(2) and 0.011(2) Å, respectively; the dihedral angle between the two aromatic systems is 9.33 $(10)^{\circ}$. The crystal packing is stabilized by offset $\pi - \pi$ stacking between parallel pyrazolo[3,4-b]pyridine ring systems [face-to-face distance = 3.449 (6) Å].

Related literature

For a general review of pyrazolopyridines, see: Hardy (1984). For related compounds displaying biological activity, see: Chu & Lynchj (1975). For bond-length data, see: Allen et al. (1987).

Experimental

Crystal data

C15H15N3	V = 1235.05 (7) Å ³
$M_r = 237.30$	Z = 4
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation
a = 7.1714 (2) Å	$\mu = 0.08 \text{ mm}^{-1}$
b = 12.0690 (4) Å	T = 296 K
c = 14.5491 (5) Å	$0.32 \times 0.29 \times 0.12 \text{ mm}$
$\beta = 101.251 \ (1)^{\circ}$	

Data collection

Refinement

2252 reflections

S = 1.09

 $R[F^2 > 2\sigma(F^2)] = 0.068$ wR(F²) = 0.198

Bruker X8 APEXII CCD areadetector diffractometer 10642 measured reflections

2252 independent reflections 1841 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.029$

166 parameters H-atom parameters constrained $\Delta \rho_{\text{max}} = 0.74 \text{ e} \text{ Å}^ \Delta \rho_{\rm min} = -0.26$ e Å⁻³

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

The authors thank the CNRST of Morocco for making this work possible.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2793).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammmer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Chu, I. & Lynchj, B. M. (1975). J. Med. Chem. 18, 161-165.

Hardy, C. R. (1984). Heterocycl. Chem. 36, 343-409.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2010). E66, o1966 [https://doi.org/10.1107/S1600536810026474]

3,4,6-Trimethyl-1-phenyl-1*H*-pyrazolo[3,4-*b*]pyridine

Salha Hamri, Abderrafia Hafid, Hafid Zouihri, Saïd Lazar and Mostafa Khouili

S1. Comment

Many polysubstituted derivatives of 1 *H*-pyrazolo[3,4-*b*]pyridine have been synthesized as potentially biologically active materials (Hardy, 1984; Chu & Lynchj, 1975).

The dihedral angle between the two aromatic ring systems in the title compound, $C_{15}H_{15}N_3$, is 9.33 (10)°. The 1*H*-pyrazolo[3,4-*b*]pyridine and the phenyl rings are planarswith r.m.s. deviation of 0.017 (2) and 0.011 (2) Å, respectively.

The Bond lengths and angles in title compound (Fig. 1) are found to have normal values [Allen *et al.*, 1987]. The crystal packing is stabilized by offset π - π stacking between parallel pyrazolo[3,4-b]pyridine ring sestems related by an inversion center at 1.0, 0.5, 0.0, the face-to-face distance is 3.449 (6) Å.

S2. Experimental

To a solution of 4-hydroxy-6-methylpyran-2-one (291 mg, 2.309 mmol) and 5-amino-3-methyl-1-phenylpyrazole (200 mg, 1.154 mmol) in 10 ml of *n*-butanol was added *p*-toluenesulfonic acid (0.12 mg).

The reaction mixture was refluxed for 42 h. After evaporation of solvent, the residue was then purified over silica gel column chromatography using a (98:2) mixture of hexane and ethyl acetate as eluent. Under these conditions the compound was obtained as colourless crystals.

S3. Refinement

All H atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl) and C—H = 0.93 Å (aromatic), $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl and $U_{iso}(H) = 1.2U_{eq}(C)$ for the others.

Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.

3,4,6-Trimethyl-1-phenyl-1*H*-pyrazolo[3,4-b]pyridine

Crystal data

$C_{15}H_{15}N_3$
$M_r = 237.30$
Monoclinic, $P2_1/n$
Hall symbol: -P 2yn
a = 7.1714 (2) Å
<i>b</i> = 12.0690 (4) Å
<i>c</i> = 14.5491 (5) Å
$\beta = 101.251 \ (1)^{\circ}$
$V = 1235.05 (7) \text{ Å}^3$
Z = 4

Data collection

Bruker X8 APEXII CCD area-detector
diffractometer1841 reflection
 $R_{int} = 0.029$ Radiation source: fine-focus sealed tube $\theta_{max} = 25.3^\circ, \theta_n$ Graphite monochromator $h = -7 \rightarrow 8$ φ and ω scans $k = -14 \rightarrow 14$ 10642 measured reflections $l = -17 \rightarrow 17$ 2252 independent reflectionsz = 0.029

F(000) = 504 $D_x = 1.276 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1348 reflections $\theta = 2.6-25.5^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 296 KPrism, colourless $0.32 \times 0.29 \times 0.12 \text{ mm}$

1841 reflections with $I > 2\sigma(I)$ $R_{int} = 0.029$ $\theta_{max} = 25.3^{\circ}, \ \theta_{min} = 2.9^{\circ}$ $h = -7 \rightarrow 8$ $k = -14 \rightarrow 14$ $l = -17 \rightarrow 17$ Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.068$	Hydrogen site location: inferred from
$wR(F^2) = 0.198$	neighbouring sites
S = 1.09	H-atom parameters constrained
2252 reflections	$w = 1/[\sigma^2(F_o^2) + (0.104P)^2 + 1.0638P]$
166 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.74$ e Å ⁻³
direct methods	$\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.8454 (3)	0.7445 (2)	-0.04712 (18)	0.0367 (6)
C2	0.7992 (4)	0.6928 (2)	-0.13595 (19)	0.0421 (7)
C3	0.7465 (3)	0.5818 (2)	-0.14607 (17)	0.0332 (6)
C4	0.7468 (3)	0.5266 (2)	-0.06073 (18)	0.0351 (6)
C5	0.7917 (3)	0.5850(2)	0.02285 (17)	0.0316 (6)
C6	0.9021 (4)	0.8635 (2)	-0.0425 (2)	0.0472 (7)
C7	0.6952 (4)	0.5279 (3)	-0.23948 (19)	0.0492 (8)
C8	0.7099 (3)	0.4171 (2)	-0.0326 (2)	0.0380 (7)
С9	0.6593 (4)	0.3137 (3)	-0.0909 (2)	0.0481 (8)
C10	0.8125 (3)	0.5303 (2)	0.19304 (17)	0.0317 (6)
C11	0.8164 (3)	0.4380 (2)	0.24944 (19)	0.0378 (6)
C12	0.8416 (4)	0.4501 (2)	0.3447 (2)	0.0404 (7)
C13	0.8649 (4)	0.5527 (2)	0.38535 (18)	0.0362 (6)
C14	0.8657 (4)	0.6457 (2)	0.33032 (18)	0.0356 (6)
C15	0.8396 (3)	0.6356 (2)	0.23326 (18)	0.0355 (6)
N1	0.8420 (3)	0.69504 (17)	0.03365 (15)	0.0339 (5)
N2	0.7298 (3)	0.41044 (18)	0.05772 (16)	0.0380 (6)
N3	0.7801 (3)	0.51439 (17)	0.09427 (15)	0.0332 (5)
H11	0.8019	0.3677	0.2228	0.045*
H12	0.8428	0.3877	0.3823	0.048*
H13	0.8802	0.5597	0.4501	0.043*
H14	0.8838	0.7153	0.3581	0.043*
H15	0.8401	0.6980	0.1958	0.043*
H2	0.8042	0.7343	-0.1893	0.051*
H6A	0.7931	0.9085	-0.0665	0.071*

supporting information

H6B	0.9975	0.8750	-0.0796	0.071*	
H6C	0.9523	0.8835	0.0214	0.071*	
H7A	0.7068	0.5806	-0.2874	0.074*	
H7B	0.5666	0.5016	-0.2488	0.074*	
H7C	0.7792	0.4666	-0.2425	0.074*	
H9A	0.7662	0.2913	-0.1173	0.072*	
H9B	0.5529	0.3288	-0.1405	0.072*	
H9C	0.6268	0.2554	-0.0520	0.072*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0326 (13)	0.0418 (15)	0.0371 (14)	0.0062 (11)	0.0100 (11)	-0.0020 (11)
C2	0.0459 (15)	0.0491 (17)	0.0334 (15)	0.0081 (12)	0.0129 (12)	0.0066 (12)
C3	0.0279 (12)	0.0443 (15)	0.0284 (13)	0.0109 (10)	0.0075 (10)	0.0000 (11)
C4	0.0274 (12)	0.0418 (15)	0.0358 (14)	0.0058 (10)	0.0055 (10)	-0.0037 (11)
C5	0.0251 (11)	0.0406 (14)	0.0302 (13)	0.0069 (10)	0.0082 (9)	0.0044 (10)
C6	0.0545 (17)	0.0469 (17)	0.0440 (17)	0.0002 (13)	0.0191 (13)	0.0156 (13)
C7	0.0453 (16)	0.068 (2)	0.0342 (15)	0.0045 (14)	0.0065 (12)	-0.0091 (14)
C8	0.0257 (12)	0.0334 (14)	0.0554 (18)	0.0045 (10)	0.0092 (11)	0.0069 (12)
C9	0.0431 (15)	0.0554 (19)	0.0420 (17)	0.0041 (13)	-0.0011 (12)	-0.0138 (13)
C10	0.0224 (11)	0.0444 (15)	0.0279 (12)	0.0048 (10)	0.0041 (9)	-0.0043 (11)
C11	0.0367 (13)	0.0302 (13)	0.0470 (16)	-0.0026 (10)	0.0096 (11)	-0.0034 (11)
C12	0.0430 (14)	0.0353 (15)	0.0445 (16)	0.0020 (11)	0.0127 (12)	0.0116 (12)
C13	0.0400 (14)	0.0445 (15)	0.0238 (12)	0.0081 (11)	0.0050 (10)	0.0046 (11)
C14	0.0422 (14)	0.0296 (13)	0.0338 (14)	0.0040 (11)	0.0044 (11)	-0.0049 (10)
C15	0.0394 (13)	0.0338 (13)	0.0333 (14)	0.0079 (11)	0.0072 (10)	0.0114 (11)
N1	0.0322 (11)	0.0275 (11)	0.0444 (13)	0.0041 (8)	0.0134 (9)	0.0057 (9)
N2	0.0374 (12)	0.0295 (12)	0.0460 (14)	-0.0025 (9)	0.0053 (10)	-0.0084 (10)
N3	0.0373 (11)	0.0284 (11)	0.0339 (12)	-0.0010 (9)	0.0068 (9)	-0.0026 (9)

Geometric parameters (Å, °)

C1—C6	1.491 (4)	C10—C11	1.380 (4)
С2—Н2	0.9300	C11—H11	0.9300
C2—C1	1.415 (4)	C11—C12	1.370 (4)
С3—С7	1.487 (4)	C12—H12	0.9300
C3—C4	1.408 (4)	C13—H13	0.9300
C3—C2	1.392 (4)	C13—C14	1.379 (4)
C4—C8	1.424 (4)	C13—C12	1.368 (4)
C4—C5	1.388 (4)	C14—H14	0.9300
С6—Н6С	0.9600	C15—H15	0.9300
С6—Н6В	0.9600	C15—C10	1.397 (4)
С6—Н6А	0.9600	C15—C14	1.393 (4)
С7—Н7С	0.9600	N1—C5	1.377 (3)
С7—Н7В	0.9600	N1—C1	1.322 (3)
C7—H7A	0.9600	N2—N3	1.383 (3)
С8—С9	1.512 (4)	N2—C8	1.296 (4)

supporting information

С9—Н9С С9—Н9В С9—Н9А	0.9600 0.9600 0.9600	N3—C10 N3—C5	1.423 (3) 1.359 (3)
C1—C6—H6C C1—C6—H6B C1—C6—H6A C1—C2—H2 C1—N1—C5 C2—C1—C6 C2—C3—C7 C2—C3—C4 C3—C7—H7C C3—C7—H7B C3—C7—H7A C3—C2—H2 C3—C2—C1	109.5 109.5 109.5 118.9 112.6 (2) 118.6 (2) 122.1 (2) 114.1 (2) 109.5 109.5 109.5 118.9 122.1 (2)	C12—C13—C14 C12—C11—H11 C12—C11—C10 C13—C12—H12 C13—C12—C11 C13—C14—H14 C13—C14—C15 C14—C15—H13 C14—C15—H15 C14—C15—H15 C14—C15—C10 C15—C14—H14 C15—C10—N3 H6A—C6—H6C	119.9 (2) 120.0 119.9 (2) 119.5 121.0 (2) 119.9 120.2 (2) 120.0 120.5 119.0 (2) 119.9 121.8 (2) 109.5
C3-C4-C8 C4-C8-C9 C4-C3-C7 C5-C4-C8 C5-C4-C3 C5-N3-C10 C5-N3-N2 C8-C9-H9C C8-C9-H9B C8-C9-H9A C8-N2-N3 C10-C11-H11 C10-C15-H15 C11-C12-H12 C11-C10-N3 C11-C10-C15	136.4 (3) 130.0 (3) 123.8 (3) 104.1 (2) 119.5 (3) 131.7 (2) 109.0 (2) 109.5 109.5 109.5 107.6 (2) 120.0 120.5 119.5 118.2 (2) 120.0 (2)	$\begin{array}{l} \text{H6A}\text{C6}\text{H6B} \\ \text{H6B}\text{C6}\text{H6C} \\ \text{H7A}\text{C7}\text{H7C} \\ \text{H7A}\text{C7}\text{H7C} \\ \text{H7B}\text{C7}\text{H7C} \\ \text{H9A}\text{C9}\text{H9C} \\ \text{H9A}\text{C9}\text{H9C} \\ \text{H9B}\text{C9}\text{H9C} \\ \text{N1}\text{C1}\text{C6} \\ \text{N1}\text{C1}\text{C6} \\ \text{N1}\text{C1}\text{C2} \\ \text{N1}\text{C5}\text{C4} \\ \text{N2}\text{C8}\text{C9} \\ \text{N2}\text{C8}\text{C4} \\ \text{N2}\text{N3}\text{C10} \\ \text{N3}\text{C5}\text{C4} \\ \text{N3}\text{C5}\text{N1} \\ \end{array}$	109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 116.6 (2) 124.8 (3) 126.9 (2) 119.0 (2) 111.0 (2) 119.3 (2) 108.2 (2) 124.8 (2)