organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Epoxycytochalasin H methanol solvate

Li-mei Li,^a Yang Liu,^a Tai Yang,^a Kai-bei Yu^b and Qiang Zou^a*

^aScientific Research Center, Chengdu Medical College, Chengdu 610083, People's Republic of China, and ^bChengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China Correspondence e-mail: qiangzou99@gmail.com

Received 8 June 2010; accepted 26 July 2010

Key indicators: single-crystal X-ray study; T = 93 K; mean σ (C–C) = 0.003 Å; R factor = 0.030; wR factor = 0.070; data-to-parameter ratio = 8.8.

In the title solvate, $C_{30}H_{39}NO_5$ ·CH₄O {systematic name: 21-acetoxy-18,21-dihydroxy-5,6,16,18-tetramethyl-10-phenyl-6,7-epoxy-[11]cytochalasa-13,19-dien-1-one methanol solvate}, the organic molecule exhibits the tetracyclic terpenoid skeleton of cytochalasin, consisting of fused five-, six-, three-and 11-membered rings. The five-membered ring adopts an envelope conformation, while the six-membered ring is in a boat conformation. The epoxy O atom on the six-membered ring is pointing away from the five-membered ring. An interstitial methanol solvent molecule is hydrogen bonded to the cytochalasin molecules and intermolecular $O-H\cdots O$ and $N-H\cdots O$ hydrogen bonds connect the molecules into infinite chains along the ($\overline{110}$) direction.

Related literature

For the isolation and structure elucidation of the title compound, see: Cole *et al.* (1982). For related structures, see: Buchi *et al.* (1973); Beno *et al.* (1977); Capasso *et al.* (1988); Edwards & Maitland *et al.* (1989); Chen *et al.* (1993); Feng *et al.* (2002); Evidente *et al.* (2002, 2003); Rochfort *et al.* (2008); Herath *et al.* (2005); Ding *et al.* (2006). For total syntheses of related compounds, see: Haidle & Myers *et al.* (2004). For the biological activity of related compounds, see: Hirose *et al.* (1990); Lingham *et al.* (1992); Burres *et al.* (1992); Meurer-Grimes *et al.* (2005)

 $\gamma = 68.150 \ (8)^{\circ}$

Z = 1

V = 703.4 (3) Å³

Mo $K\alpha$ radiation

 $0.50 \times 0.50 \times 0.28 \text{ mm}$

3015 reflections with $I > 2\sigma(I)$

 $\mu = 0.09 \text{ mm}^{-1}$

 $T = 93 \, {\rm K}$

 $R_{\rm int} = 0.022$

Experimental

Crystal data

 $C_{30}H_{39}NO_5 \cdot CH_4O$ $M_r = 525.66$ Triclinic, P1 a = 8.367 (2) Å b = 8.5937 (18) Å c = 10.917 (3) Å $\alpha = 75.312 (9)^{\circ}$ $\beta = 87.779 (10)^{\circ}$

Data collection

Rigaku SPIDER diffractometer 7075 measured reflections 3175 independent reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.030$	H atoms treated by a mixture of
$wR(F^2) = 0.070$	independent and constrained
S = 1.00	refinement
3175 reflections	$\Delta \rho_{\rm max} = 0.23 \text{ e } \text{\AA}^{-3}$
361 parameters	$\Delta \rho_{\rm min} = -0.16 \text{ e } \text{\AA}^{-3}$
3 restraints	

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$03 - H3O \cdots O6$ $N2 - H2N \cdots O3^{i}$ $O6 - H6O \cdots O2^{ii}$	0.83 (3)	1.94 (3)	2.722 (2)	157 (3)
	0.90 (3)	1.97 (3)	2.867 (2)	175 (2)
	0.84 (3)	1.90 (3)	2.736 (2)	176 (3)

Symmetry codes: (i) x - 1, y + 1, z; (ii) x + 1, y - 1, z.

Data collection: *RAPID-AUTO* (Rigaku, 2004); cell refinement: *RAPID-AUTO*; data reduction: *RAPID-AUTO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97*.

This work was supported by the National Natural Science Foundation of China (No. 30972869 to L-ML and No. 30772771 to QZ), the Key Project of the Chinese Ministry of Education (No. 209104 to QZ) and the Scientific Research Fund of Sichuan Provincial Education Department (No. 07ZA179 to L-ML).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2284).

o2176 Li et al.

References

- Beno, M. A., Cox, R. H., Wells, J. M., Cole, R. J., Kirksey, J. W. & Christoph, G. G. (1977). J. Am. Chem. Soc. 99, 4123–4130.
- Buchi, G., Kitaura, Y., Yuan, S., Wright, H. E., Clardy, J., Demain, A. L., Glinsukon, T., Hunt, N. & Wogan, G. N. (1973). J. Am. Chem. Soc. 95, 5423– 5425.
- Burres, N. S., Premachandran, U., Humphrey, P. E., Jackson, M. & Chen, R. H. (1992). J. Antibiot. 45, 1367–1369.
- Capasso, R., Evidente, A. & Ritieni, A. (1988). J. Nat. Prod. 51, 567-571.
- Chen, T. S., Doss, G. A., Hsu, A., Lingham, R. B., White, R. F. & Monaghan, R. L. (1993). J. Nat. Prod. 56, 755–761.
- Cole, R. J., Wilson, D. M., Harper, J. L., Cox, R. H., Cochran, T. W., Cutler, H. G. & Bell, D. K. (1982). J. Agric. Food Chem. 30, 301–304.
- Ding, G., Song, Y. C., Chen, J. R., Xu, C., Ge, H. M., Wang, X. T. & Tan, R. X. (2006). J. Nat. Prod. 69, 302–304.
- Edwards, R. L. & Maitland, D. J. (1989). J. Chem. Soc. Perkin Trans. 1, pp. 57–65.
- Evidente, A., Andolfi, A., Vurro, M., Zonno, M. C. & Motta, A. (2002). *Phytochemistry*, **60**, 45–53.
- Evidente, A., Andolfi, A., Vurro, M., Zonno, M. C. & Motta, A. (2003). J. Nat. Prod. 66, 1540–1544.

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Feng, Y., Blunt, J. W., Cole, A. L. J. & Munro, M. H. G. (2002). J. Nat. Prod. 65, 1274–1277.
- Haidle, A. M. & Myers, A. G. (2004). Proc. Natl. Acad. Sci. USA, 101, 12048–12053.
- Herath, K. B., Jayasuriya, H., Ondeyka, J. G., Polishook, J. D., Bills, G. F., Dombrowski, A. W., Cabelo, A., Vicario, P. P., Zweerink, H., Guan, Z. & Singh, S. B. (2005). J. Antibiot. 58, 689–694.
- Hirose, T., Izawa, Y., Koyama, K., Natori, S., Iida, K., Yahara, I., Shimaoka, S. & Maruyama, K. (1990). *Chem. Pharm. Bull.* **38**, 971–974.
- Lingham, R. B., Hsu, A., Silverman, K. C., Bills, G. F., Dombrowski, A., Goldman, M. E., Darke, P. L., Huang, L., Koch, G., Ondeyka, J. G. & Goetz, M. A. (1992). J. Antibiot. 45, 686–691.
- Meurer-Grimes, B., Cox, S., Coates, J. & Rhodes, D. (2005). J. Antibiot. 58, 279–283.
- Rigaku (2004). RAPID-AUTO. Version 3.0. Rigaku Corporation, Tokyo, Japan.
- Rochfort, S., Ford, J., Ovenden, S., Wan, S. S., George, S., Wildman, H., Tait, R. M., Zhang, Y., Tian, R., Liu, S., Chen, X., Liu, X. & Che, Y. (2008). *Bioorg. Med. Chem.* 16, 2627–2634.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2010). E66, o2176-o2177 [https://doi.org/10.1107/S1600536810029600]

Epoxycytochalasin H methanol solvate

Li-mei Li, Yang Liu, Tai Yang, Kai-bei Yu and Qiang Zou

S1. Comment

The fungus *Phomopsis sp.108* is a plant pathogen. Cytochalasins from this fungus inhibit a variety of cellular movements, including cell division and motility, and cause changes in cell shape. In our study on the chemical constituents of the secondary metabolites from this fungus, the title compound was isolated. Its structure was elucidated by spectroscopic analysis and was confirmed by single-crystal X-ray diffraction analysis. The asymmetric unit (Fig. 1) of the title compound contains a cytochalasin-structure and a methanol molecule. The cytochalasin-structure has a tetracyclic terpenoid skeleton, consisting of fused five-, six-, three- and eleven-membered rings (A: C1/N2/C3—C4/C9, B: C4—C9, C: C6—C7/O1, D: C9—C8/C13—C21). *Cis* junctions are present between ring A and ring B and also ring B and ring C, while there is a *trans* junction is between ring B and ring D. Ring A adopts an envelope conformation while ring B is in a chair conformation. The epoxy atom in ring R is pointing away from ring A. Intermolecular O—H…O and N—H…O hydrogen bonds are present in the crystal structure, and an eight-membered ring is formed by the hydrogen bonding interaction between two cytochalasin molecules and one methanol molecule (Fig. 2).

S2. Experimental

A solid-state fermented rice culture (4 kg) of *Phomopsis sp. 108* was extracted with ethyl acetate. The solvent was evaporated *in vacuo* to afford a residue (60.0 g). This residue was separated over a silica gel column (Silica gel: 800 g) eluted with petroleum ether/acetone (3:1, 4000 ml) to afford fractions A (18.0 g), B (6.5 g), C (4.8 g), D (5.5 g), E (7.6 g). The title compound (0.5 g) was deposited repeatedly from fraction C in the solvent system of petroleum ether/acetone (2:1) (The *Rf* value of the title compound in this solvent system was 0.35). It was then crystallized in methanol by slow evaporation in a shady place to afford suitable crystals for single-crystal X-ray diffraction analysis.

¹³C NMR (150 MHz, CDCl₃, *δ*, p.p.m.): 175.0(C1), 170.0(C29), 138.0(C14), 137.2(C31), 136.0(C20), 130.2(C24, 28), 128.7(C25, 27), 127.6(C19), 127.1(C13), 125.5(C26), 76.0(C21), 74.1(C18), 62.9(C7), 57.0(C6), 53.8(C3), 53.7(C17), 53.5(C9), 51.1(C4), 45.7(C15), 45.0(C8), 43.1(C10), 36.6(C5), 30.1(C16), 28.6(C23), 26.4(C22), 20.6(C30), 19.5(C12), 13.0(C11). The ¹³C NMR values are in accordance with those reported by Cole (Cole *et al.* (1982)).

S3. Refinement

All hydrogen atoms were located geometrically with C—H distances of 0.95–1.00 Å. The H of O-3, O-6 and N-2 were located in difference Fourier maps and were refined with O—H distances of 0.83 (3)–0.84 (3) Å. H atoms on carbon atoms were placed geometrically with C—H distances of 0.95–1.00 Å ($U_{iso}(H) = 1.2U_{eq}(C)$). The absolute configuration could not be determined from the X-ray analysis, owing to the absence of significant anomalous scatterers, and Friedel pairs were merged. However, when the title compound was orginally isolated by Cole (Cole *et al.* (1982)), its absolute configuration was confirmed by comparison with a similar compound (Cytochalasin H) of which the absolute configuration of the title

compound was assigned by a comparison between the measured optical rotatory power ($[\alpha]^{25}_{D}$ =-91° (c=0.1, CHCl₃)) and the value ($[\alpha]^{30}_{D}$ =-84.68° (c=0.33, CHCl₃)) reported by Cole (Cole *et al.* (1982)).

Figure 1

View of the title molecule showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

The crystal packing of the title molecule, viewed down the a axis. Most of the H-atoms were omitted for clarity. The intermolecular O—H…O and N—H…O hydrogen bonds are marked as dashed lines.

21-acetoxy-18,21-dihydroxy-5,6,16,18-tetramethyl-10-phenyl-6,7- epoxy-[11]cytochalasa-13,19-dien-1-one methanol solvate

Crystal data	
C ₃₀ H ₃₉ NO ₅ ·CH ₄ O	V = 703.4 (3) Å ³
$M_r = 525.66$	Z = 1
Triclinic, P1	F(000) = 284
a = 8.367 (2) Å	$D_{\rm x} = 1.241 {\rm Mg} {\rm m}^{-3}$
b = 8.5937 (18) Å	Melting point: 398 K
c = 10.917 (3) Å	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
$\alpha = 75.312 \ (9)^{\circ}$	Cell parameters from 2524 reflections
$\beta = 87.779 (10)^{\circ}$	$\theta = 3.2 - 27.5^{\circ}$
$\gamma = 68.150 \ (8)^{\circ}$	$\mu = 0.09 \text{ mm}^{-1}$

T = 93 K Block colorless	$0.50 \times 0.50 \times 0.28 \text{ mm}$
Data collection	
Rigaku SPIDER diffractometer Radiation source: Rotating Anode Graphite monochromator ω scans 7075 measured reflections 3175 independent reflections	3015 reflections with $I > 2\sigma(I)$ $R_{int} = 0.022$ $\theta_{max} = 27.5^{\circ}, \ \theta_{min} = 3.2^{\circ}$ $h = -10 \rightarrow 10$ $k = -11 \rightarrow 10$ $l = -14 \rightarrow 14$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.030$ $wR(F^2) = 0.070$ S = 1.00 3175 reflections 361 parameters 2 restricts	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_0^2) + (0.0338P)^2 + 0.116P]$ where $B = (F_0^2 + 2F_0^2)/2$
3 restraints Primary atom site location: structure-invariant direct methods	where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.23 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.16 \text{ e} \text{ Å}^{-3}$

Special details

Experimental. ¹³C NMR (150 MHz, CDCl₃, δ , p.p.m.): 175.0(C1), 170.0(C29), 138.0(C14), 137.2(C31), 136.0(C20), 130.2(C24,28), 128.7(C25, 27), 127.6(C19), 127.1(C13), 125.5(C26), 76.0(C21), 74.1(C18), 62.9(C7), 57.0(C6), 53.8(C3), 53.7(C17), 53.5(C9), 51.1(C4), 45.7(C15), 45.0(C8), 43.1(C10), 36.6(C5), 30.1(C16), 28.6(C23), 26.4(C22), 20.6(C30), 19.5(C12), 13.0(C11). And they are in accordance with those reported by Cole (Cole *et al.* (1982)). **Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of *F*² against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*², conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*². The threshold expression of *F*² > $\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*² are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	
01	-0.26599 (18)	0.47464 (18)	0.27188 (13)	0.0196 (3)	
O2	0.05816 (17)	0.57776 (17)	0.56786 (12)	0.0187 (3)	
03	0.80244 (17)	0.04100 (17)	0.57468 (13)	0.0173 (3)	
O4	0.34749 (16)	0.40110 (17)	0.24838 (12)	0.0161 (3)	
05	0.40913 (18)	0.60342 (19)	0.09849 (13)	0.0233 (3)	
N2	-0.0535 (2)	0.8235 (2)	0.40622 (15)	0.0155 (3)	
C1	0.0353 (2)	0.6548 (2)	0.45346 (17)	0.0145 (4)	
C3	-0.0527 (2)	0.8866 (2)	0.26910 (17)	0.0141 (4)	
H3	-0.1731	0.9614	0.2336	0.017*	
C4	0.0084 (2)	0.7177 (2)	0.22278 (16)	0.0134 (3)	
H4	0.0976	0.7227	0.1598	0.016*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C5	-0.1383 (2)	0.6900(2)	0.15966 (17)	0.0151 (4)
H5	-0.0812	0.5846	0.1273	0.018*
C6	-0.2551 (2)	0.6432 (2)	0.26100 (17)	0.0158 (4)
C7	-0.1616 (2)	0.4928 (2)	0.36551 (17)	0.0165 (4)
H7	-0.2082	0.4926	0.4513	0.020*
C8	0.0336 (2)	0.4143 (2)	0.36131 (17)	0.0148 (4)
H8	0.0586	0.3724	0.2825	0.018*
C9	0.0983 (2)	0.5674 (2)	0.34475 (17)	0.0134 (3)
C10	0.0622 (2)	0.9935 (2)	0.23827 (17)	0.0171 (4)
H10A	0.0325	1.0756	0.2925	0.021*
H10B	0.1837	0.9139	0.2611	0.021*
C11	-0.2324(3)	0.8372 (3)	0.04402 (18)	0.0205(4)
H11A	-0.3176	0.8074	0.0058	0.025*
H11B	-0.1488	0.8540	-0.0183	0.025*
HIIC	-0.2910	0.9444	0.0704	0.025*
C12	-0.4211(2)	0.7803 (3)	0.28126 (19)	0.020
U12 H124	-0.5006	0.8201	0.20120 (19)	0.0204 (4)
H12R	-0.3078	0.8785	0.2005	0.024
H12C	-0.4732	0.3785	0.2950	0.024
C12	0.4752 0.1132 (2)	0.7518	0.5557 0.47220(18)	0.024
U13	0.1132 (2)	0.2389 (2)	0.47220 (18)	0.0108 (4)
C14	0.0727 0.2260 (2)	0.2038	0.5559 0.46122(18)	0.020°
U14	0.2309(2)	0.1131 (2)	0.40122 (18)	0.0172(4)
П14 С15	0.2774	0.1110	0.5769	0.021
	0.3193 (2)	-0.0482 (2)	0.50495 (18)	0.0180 (4)
HIJA UISD	0.3111	-0.14//	0.5393	0.022*
ПЭВ	0.2547	-0.0368	0.0421	0.022^{*}
	0.5108 (2)	-0.0869 (2)	0.59701 (18)	0.0183 (4)
H10	0.5685	-0.0/15	0.5153	0.022*
	0.5316 (2)	0.0393 (3)	0.66833 (18)	0.01//(4)
HI/A	0.4150	0.1189	0.6813	0.021*
HI/B	0.5883	-0.0291	0.7532	0.021*
C18	0.6351 (2)	0.1496 (2)	0.60366 (17)	0.0151 (4)
C19	0.5449 (2)	0.2644 (2)	0.47624 (17)	0.0152 (4)
H19	0.5953	0.2345	0.4018	0.018*
C20	0.4017 (2)	0.4024 (3)	0.46214 (17)	0.0169 (4)
H20	0.3600	0.4394	0.5362	0.020*
C21	0.2980 (2)	0.5068 (2)	0.33880 (17)	0.0143 (4)
H21	0.3281	0.6116	0.3058	0.017*
C22	0.5994 (3)	-0.2758 (3)	0.6732 (2)	0.0287 (5)
H22A	0.5433	-0.2951	0.7530	0.034*
H22B	0.7213	-0.3001	0.6915	0.034*
H22C	0.5903	-0.3531	0.6238	0.034*
C23	0.6591 (3)	0.2519 (3)	0.69262 (18)	0.0193 (4)
H23A	0.7233	0.1710	0.7710	0.023*
H23B	0.5459	0.3267	0.7127	0.023*
H23C	0.7235	0.3235	0.6512	0.023*
C24	0.1621 (3)	1.0297 (3)	0.0148 (2)	0.0231 (4)
H24	0.2495	0.9170	0.0403	0.028*

C25	0.1483 (3)	1.1291 (3)	-0.1103 (2)	0.0333 (5)
H25	0.2264	1.0832	-0.1693	0.040*
C26	0.0226 (4)	1.2931 (3)	-0.1488 (2)	0.0346 (6)
H26	0.0144	1.3602	-0.2338	0.042*
C27	-0.0913 (4)	1.3590 (3)	-0.0630 (2)	0.0331 (5)
H27	-0.1783	1.4719	-0.0890	0.040*
C28	-0.0791 (3)	1.2605 (3)	0.06136 (19)	0.0235 (4)
H28	-0.1586	1.3066	0.1196	0.028*
C29	0.4050 (2)	0.4611 (3)	0.13584 (17)	0.0180 (4)
C30	0.4606 (3)	0.3225 (3)	0.0651 (2)	0.0293 (5)
H30A	0.5033	0.3652	-0.0163	0.035*
H30B	0.3620	0.2928	0.0500	0.035*
H30C	0.5526	0.2191	0.1155	0.035*
C31	0.0484 (2)	1.0952 (2)	0.10157 (18)	0.0165 (4)
O6	1.0050 (2)	-0.2459 (2)	0.75153 (14)	0.0272 (3)
C32	1.1481 (3)	-0.3222 (3)	0.8413 (2)	0.0270 (5)
H32A	1.1523	-0.2359	0.8837	0.032*
H32B	1.2546	-0.3629	0.7979	0.032*
H32C	1.1363	-0.4205	0.9044	0.032*
H6O	1.023 (4)	-0.304 (4)	0.698 (3)	0.036 (8)*
H3O	0.856 (4)	-0.027 (4)	0.641 (3)	0.043 (8)*
H2N	-0.098 (3)	0.897 (3)	0.455 (2)	0.025 (6)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U ²³
01	0.0189 (7)	0.0198 (7)	0.0219 (7)	-0.0094 (6)	-0.0008 (5)	-0.0053 (6)
O2	0.0231 (7)	0.0167 (7)	0.0131 (6)	-0.0052 (6)	0.0016 (5)	-0.0020 (5)
03	0.0116 (6)	0.0165 (7)	0.0176 (7)	0.0010 (5)	-0.0018 (5)	-0.0032 (6)
O4	0.0153 (6)	0.0157 (7)	0.0150 (6)	-0.0027 (5)	0.0010 (5)	-0.0050 (5)
05	0.0200 (7)	0.0246 (8)	0.0202 (7)	-0.0062 (6)	0.0026 (5)	-0.0004 (6)
N2	0.0172 (8)	0.0126 (8)	0.0142 (8)	-0.0023 (6)	0.0018 (6)	-0.0041 (6)
C1	0.0118 (8)	0.0153 (9)	0.0161 (9)	-0.0048 (7)	0.0012 (6)	-0.0042 (7)
C3	0.0139 (8)	0.0129 (9)	0.0129 (8)	-0.0027 (7)	0.0003 (6)	-0.0024 (7)
C4	0.0123 (8)	0.0134 (9)	0.0118 (8)	-0.0025 (7)	0.0003 (6)	-0.0023 (7)
C5	0.0143 (9)	0.0154 (9)	0.0139 (8)	-0.0038 (7)	-0.0006 (6)	-0.0035 (7)
C6	0.0137 (9)	0.0170 (10)	0.0179 (9)	-0.0062 (7)	-0.0011 (7)	-0.0055 (7)
C7	0.0153 (9)	0.0188 (10)	0.0168 (9)	-0.0084(8)	0.0016 (7)	-0.0042 (7)
C8	0.0150 (9)	0.0136 (9)	0.0153 (9)	-0.0050 (7)	0.0005 (7)	-0.0034 (7)
C9	0.0130 (8)	0.0115 (9)	0.0134 (8)	-0.0027 (7)	-0.0001 (6)	-0.0017 (7)
C10	0.0192 (9)	0.0161 (10)	0.0165 (9)	-0.0073 (8)	-0.0021 (7)	-0.0034 (7)
C11	0.0208 (10)	0.0214 (11)	0.0162 (9)	-0.0049 (8)	-0.0036 (7)	-0.0037 (8)
C12	0.0147 (9)	0.0244 (11)	0.0220 (9)	-0.0064 (8)	0.0012 (7)	-0.0076 (8)
C13	0.0179 (9)	0.0166 (9)	0.0169 (9)	-0.0082 (8)	0.0002 (7)	-0.0029(7)
C14	0.0193 (9)	0.0165 (10)	0.0171 (9)	-0.0096 (8)	-0.0019 (7)	-0.0018 (7)
C15	0.0191 (9)	0.0135 (10)	0.0230 (10)	-0.0066 (8)	-0.0017 (7)	-0.0030 (8)
C16	0.0165 (9)	0.0143 (9)	0.0221 (10)	-0.0041 (7)	-0.0015 (7)	-0.0033 (8)
C17	0.0179 (9)	0.0177 (10)	0.0162 (9)	-0.0066 (8)	0.0007 (7)	-0.0025 (7)

supporting information

C18	0.0126 (8)	0.0142 (9)	0.0155 (9)	-0.0021 (7)	-0.0001 (6)	-0.0028 (7)
C19	0.0155 (9)	0.0154 (9)	0.0151 (9)	-0.0062 (7)	0.0020 (7)	-0.0041 (7)
C20	0.0164 (9)	0.0194 (10)	0.0145 (9)	-0.0053 (8)	0.0002 (7)	-0.0056 (7)
C21	0.0156 (8)	0.0121 (9)	0.0144 (8)	-0.0041 (7)	0.0017 (7)	-0.0038 (7)
C22	0.0228 (11)	0.0158 (10)	0.0417 (13)	-0.0042 (9)	-0.0060 (9)	-0.0009 (9)
C23	0.0213 (10)	0.0164 (10)	0.0192 (9)	-0.0054 (8)	-0.0020 (7)	-0.0048 (8)
C24	0.0233 (10)	0.0235 (11)	0.0259 (10)	-0.0114 (9)	0.0062 (8)	-0.0090 (9)
C25	0.0455 (14)	0.0428 (15)	0.0246 (11)	-0.0288 (12)	0.0159 (10)	-0.0140 (11)
C26	0.0605 (17)	0.0341 (13)	0.0178 (10)	-0.0319 (13)	0.0010 (10)	0.0006 (9)
C27	0.0493 (15)	0.0190 (11)	0.0265 (11)	-0.0121 (11)	-0.0105 (10)	0.0024 (9)
C28	0.0305 (11)	0.0186 (10)	0.0201 (10)	-0.0081 (9)	0.0004 (8)	-0.0040(8)
C29	0.0129 (8)	0.0209 (10)	0.0144 (9)	-0.0011 (7)	-0.0004 (7)	-0.0027 (7)
C30	0.0300 (12)	0.0277 (12)	0.0203 (10)	0.0016 (9)	0.0032 (8)	-0.0086 (9)
C31	0.0197 (9)	0.0150 (9)	0.0185 (9)	-0.0107 (8)	0.0000 (7)	-0.0040 (7)
06	0.0292 (8)	0.0218 (8)	0.0222 (8)	0.0026 (6)	-0.0077 (6)	-0.0086 (6)
C32	0.0262 (11)	0.0287 (12)	0.0241 (10)	-0.0094 (9)	-0.0045 (8)	-0.0037 (9)

Geometric parameters (Å, °)

O1—C7	1.444 (2)	C15—C16	1.545 (3)
O1—C6	1.460 (2)	C15—H15A	0.9900
O2—C1	1.241 (2)	C15—H15B	0.9900
O3—C18	1.440 (2)	C16—C22	1.531 (3)
O3—H3O	0.83 (3)	C16—C17	1.547 (3)
O4—C29	1.351 (2)	C16—H16	1.0000
O4—C21	1.454 (2)	C17—C18	1.540 (3)
O5—C29	1.200 (3)	C17—H17A	0.9900
N2-C1	1.330 (2)	C17—H17B	0.9900
N2—C3	1.458 (2)	C18—C19	1.519 (3)
N2—H2N	0.90 (3)	C18—C23	1.528 (3)
C1—C9	1.536 (2)	C19—C20	1.315 (3)
C3—C10	1.535 (3)	C19—H19	0.9500
C3—C4	1.557 (2)	C20—C21	1.506 (3)
С3—Н3	1.0000	C20—H20	0.9500
C4—C5	1.551 (2)	C21—H21	1.0000
C4—C9	1.578 (2)	C22—H22A	0.9800
C4—H4	1.0000	C22—H22B	0.9800
C5—C6	1.524 (2)	C22—H22C	0.9800
C5—C11	1.530 (3)	C23—H23A	0.9800
С5—Н5	1.0000	C23—H23B	0.9800
С6—С7	1.467 (3)	C23—H23C	0.9800
C6—C12	1.502 (3)	C24—C31	1.386 (3)
С7—С8	1.521 (3)	C24—C25	1.398 (3)
С7—Н7	1.0000	C24—H24	0.9500
C8—C13	1.508 (3)	C25—C26	1.378 (4)
С8—С9	1.569 (2)	C25—H25	0.9500
С8—Н8	1.0000	C26—C27	1.379 (4)
C9—C21	1.559 (2)	C26—H26	0.9500

supporting information

C10—C31	1.510 (3)	C27—C28	1.390 (3)
C10—H10A	0.9900	С27—Н27	0.9500
C10—H10B	0.9900	C28—C31	1.393 (3)
C11—H11A	0.9800	C28—H28	0.9500
C11—H11B	0.9800	C29—C30	1 502 (3)
	0.9800	C_{30} H_{30A}	0.0800
	0.9800	C20 H20P	0.9800
C12—III2A	0.9800		0.9800
CI2—HI2B	0.9800	C30—H30C	0.9800
C12—H12C	0.9800	06-032	1.416 (3)
C13—C14	1.325 (3)	O6—H6O	0.84 (3)
С13—Н13	0.9500	С32—Н32А	0.9800
C14—C15	1.494 (3)	С32—Н32В	0.9800
C14—H14	0.9500	С32—Н32С	0.9800
C7—01—C6	60 70 (12)	C16—C15—H15B	108 9
C18-03-H30	109(2)	H15A - C15 - H15B	107.7
$C_{20} = 04$ C_{21}	100(2) 110.78(14)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100.03 (16)
$C_{29} = 04 = C_{21}$	119.70(14) 115.29(15)	$C_{22} = C_{10} = C_{13}$	109.93(10)
CI = N2 = C3	115.28 (15)		111.15 (17)
CI—N2—H2N	122.7 (16)		112.02 (15)
C3—N2—H2N	121.5 (16)	C22—C16—H16	107.9
02—C1—N2	125.31 (17)	C15—C16—H16	107.9
O2—C1—C9	124.87 (17)	C17—C16—H16	107.9
N2—C1—C9	109.76 (15)	C18—C17—C16	116.27 (15)
N2-C3-C10	109.65 (14)	C18—C17—H17A	108.2
N2—C3—C4	103.39 (14)	C16—C17—H17A	108.2
C10—C3—C4	115.66 (15)	C18—C17—H17B	108.2
N2-C3-H3	109.3	C16—C17—H17B	108.2
C10-C3-H3	109.3	H17A - C17 - H17B	107.4
C4-C3-H3	109.3	03-C18-C19	105 29 (14)
$C_{5} C_{4} C_{3}$	113.80 (14)	$O_{3}^{2} C_{18}^{18} C_{23}^{23}$	103.29(14) 108.79(15)
$C_{5} = C_{4} = C_{5}$	113.09(14) 112.91(14)	$C_{10} = C_{18} = C_{23}$	100.79(15)
$C_3 = C_4 = C_9$	112.81(14)	C19 - C18 - C23	113.22 (13)
C3-C4-C9	104.64 (14)	03 - 018 - 017	110.76(15)
C5—C4—H4	108.4	C19—C18—C17	109.41 (15)
C3—C4—H4	108.4	C23—C18—C17	109.31 (15)
С9—С4—Н4	108.4	C20—C19—C18	124.34 (16)
C6—C5—C11	114.86 (16)	С20—С19—Н19	117.8
C6—C5—C4	109.27 (14)	С18—С19—Н19	117.8
C11—C5—C4	113.97 (15)	C19—C20—C21	125.68 (17)
С6—С5—Н5	106.0	С19—С20—Н20	117.2
С11—С5—Н5	106.0	C21—C20—H20	117.2
С4—С5—Н5	106.0	O4—C21—C20	108.18 (15)
01-C6-C7	59.09 (11)	Q4—C21—C9	107.03 (14)
01-C6-C12	114 16 (15)	$C_{20} - C_{21} - C_{9}$	115 88 (15)
C7-C6-C12	120.90 (16)	04-C21-H21	108 5
01 C6 C5	11/ 31 (15)	C_{20} C_{21} H_{21}	108.5
$C_1 \subset C_2 \subset C_3$	117.31(13) 112.22(15)	$C_{20} = C_{21} = H_{21}$	108.5
$C_1 = C_1 = C_2$	113.23(13) 120.00(10)	$C_{2} = C_{21} = 1121$	100.5
$C_{12} = C_0 = C_3$	120.09(10)	C10-C22-H22A	109.5
$U_1 - U_7 - U_6$	00.21 (12)	U10-U22-H22B	109.5

O1—C7—C8	118.13 (15)	H22A—C22—H22B	109.5
C6—C7—C8	116.79 (15)	C16—C22—H22C	109.5
O1—C7—H7	116.6	H22A—C22—H22C	109.5
С6—С7—Н7	116.6	H22B—C22—H22C	109.5
С8—С7—Н7	116.6	C18—C23—H23A	109.5
C13—C8—C7	111.45 (15)	C18—C23—H23B	109.5
C13—C8—C9	116.96 (15)	H23A—C23—H23B	109.5
C7—C8—C9	106.34 (14)	C18—C23—H23C	109.5
С13—С8—Н8	107.2	H23A—C23—H23C	109.5
С7—С8—Н8	107.2	H23B—C23—H23C	109.5
C9—C8—H8	107.2	$C_{31} - C_{24} - C_{25}$	120.2(2)
C1-C9-C21	111.33 (14)	C31—C24—H24	119.9
C1-C9-C8	108 67 (14)	C25—C24—H24	119.9
$C_{21} - C_{9} - C_{8}$	112 47 (14)	$C_{26} = C_{25} = C_{24}$	120.7(2)
C1 - C9 - C4	103 13 (14)	$C_{26} = C_{25} = H_{25}$	1197
$C_{21} - C_{9} - C_{4}$	109 56 (14)	C_{24} C_{25} H_{25}	119.7
C8-C9-C4	111 29 (14)	C_{25} C_{26} C_{27}	119.7 119.5(2)
$C_{31} - C_{10} - C_{3}$	115 31 (15)	$C_{25} = C_{26} = H_{26}$	120.2
$C_{31} - C_{10} - H_{10A}$	108.4	$C_{23} = C_{26} = H_{26}$	120.2
C_3 C_{10} H_{10A}	108.4	C_{26} C_{27} C_{28}	120.2 120.2(2)
C_{31} C_{10} H_{10B}	108.4	$C_{20} = C_{27} = C_{20}$	120.2 (2)
C_3 C_{10} H_{10B}	108.4	$C_{26} = C_{27} = H_{27}$	119.9
H_{10A} C_{10} H_{10B}	107.5	$C_{20} = C_{27} = H_{27}$	119.9 120.8(2)
C_{5}	109.5	$C_{27} = C_{28} = C_{31}$	120.0 (2)
$C_5 C_{11} H_{11}B$	109.5	$C_{21} = C_{20} = H_{20}$	119.6
H11A C11 H11B	109.5	$C_{31} - C_{20} - 1120$	119.0 125.02(18)
$C_{5} C_{11} H_{11}C$	109.5	05 - 029 - 04	125.02(18) 125.77(18)
	109.5	03 - 029 - 030	123.77(18) 100.20(17)
HIIA-CII-HIIC	109.5	C_{20} C_{20} H_{20A}	109.20 (17)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5	$C_{29} = C_{30} = H_{30} R$	109.5
C_{0}	109.5	H20A C20 H20P	109.5
	109.5	$H_{30A} = C_{30} = H_{30C}$	109.5
H12A - C12 - H12B	109.5	U29—U30—H30C	109.5
	109.5	$H_{30}A = C_{30} = H_{30}C$	109.5
H12A - C12 - H12C	109.5	H30B - C30 - H30C	109.5
H12B - C12 - H12C	109.5	$C_{24} = C_{31} = C_{28}$	118.09 (18)
C14 - C13 - C8	123.18 (17)	$C_{24} = C_{31} = C_{10}$	121.66 (18)
Cl4—Cl3—Hl3	118.4	$C_{28} = C_{31} = C_{10}$	119.63 (17)
C12 C14 C15	118.4	$C_{32} = 06 = H_{60}$	108 (2)
C13 - C14 - C15	126.72 (18)	$06 - C_{32} - H_{32}$	109.5
C13—C14—H14	116.6	06—C32—H32B	109.5
C15—C14—H14	116.6	H32A—C32—H32B	109.5
C14—C15—C16	113.25 (15)	06—C32—H32C	109.5
C14—C15—H15A	108.9	H32A—C32—H32C	109.5
CI6-CI5-HI5A	108.9	H32B—C32—H32C	109.5
C14—C15—H15B	108.9		
C3—N2—C1—O2	176.02 (17)	C5—C4—C9—C21	132.78 (15)
C3—N2—C1—C9	-6.7 (2)	C3—C4—C9—C21	-102.89 (16)

C1—N2—C3—C10	-107.04 (18)	C5—C4—C9—C8	7.8 (2)
C1—N2—C3—C4	16.9 (2)	C3—C4—C9—C8	132.09 (15)
N2—C3—C4—C5	104.44 (16)	N2-C3-C10-C31	-168.78 (15)
C10—C3—C4—C5	-135.70 (16)	C4—C3—C10—C31	74.8 (2)
N2—C3—C4—C9	-19.19 (17)	C7—C8—C13—C14	136.71 (19)
C10—C3—C4—C9	100.67 (17)	C9—C8—C13—C14	-100.7(2)
C3—C4—C5—C6	-71.29 (19)	C8—C13—C14—C15	-178.15 (17)
C9—C4—C5—C6	47.79 (19)	C13—C14—C15—C16	-112.7 (2)
C3—C4—C5—C11	58.7 (2)	C14—C15—C16—C22	-163.36 (17)
C9—C4—C5—C11	177.80 (15)	C14—C15—C16—C17	72.5 (2)
C7—O1—C6—C12	-112.79 (18)	C22—C16—C17—C18	116.22 (19)
C7—O1—C6—C5	103.53 (17)	C15—C16—C17—C18	-120.37 (18)
C11—C5—C6—O1	110.27 (17)	C16—C17—C18—O3	-54.2 (2)
C4—C5—C6—O1	-120.21 (16)	C16—C17—C18—C19	61.4 (2)
C11—C5—C6—C7	175.47 (15)	C16—C17—C18—C23	-174.07 (16)
C4—C5—C6—C7	-55.0 (2)	O3—C18—C19—C20	-167.40 (17)
C11—C5—C6—C12	-31.1 (2)	C23—C18—C19—C20	-48.7 (2)
C4—C5—C6—C12	98.44 (19)	C17—C18—C19—C20	73.5 (2)
C6—O1—C7—C8	-106.43 (18)	C18—C19—C20—C21	-172.52 (17)
C12—C6—C7—O1	101.40 (18)	C29—O4—C21—C20	-124.04 (17)
C5-C6-C7-O1	-105.38 (16)	C29—O4—C21—C9	110.43 (17)
O1—C6—C7—C8	108.64 (17)	C19—C20—C21—O4	18.5 (3)
C12—C6—C7—C8	-149.96 (17)	C19—C20—C21—C9	138.65 (19)
C5—C6—C7—C8	3.3 (2)	C1—C9—C21—O4	170.55 (14)
O1—C7—C8—C13	-109.94 (18)	C8—C9—C21—O4	48.30 (18)
C6—C7—C8—C13	-178.77 (15)	C4—C9—C21—O4	-76.03 (17)
O1—C7—C8—C9	121.54 (16)	C1—C9—C21—C20	49.8 (2)
C6—C7—C8—C9	52.7 (2)	C8—C9—C21—C20	-72.4 (2)
O2—C1—C9—C21	-71.7 (2)	C4—C9—C21—C20	163.22 (15)
N2-C1-C9-C21	110.94 (17)	C31—C24—C25—C26	0.2 (3)
O2—C1—C9—C8	52.7 (2)	C24—C25—C26—C27	-0.4 (4)
N2-C1-C9-C8	-124.65 (16)	C25—C26—C27—C28	0.0 (4)
O2—C1—C9—C4	170.86 (17)	C26—C27—C28—C31	0.5 (3)
N2-C1-C9-C4	-6.46 (18)	C21—O4—C29—O5	-5.2 (3)
C13—C8—C9—C1	-68.96 (19)	C21—O4—C29—C30	175.47 (16)
C7—C8—C9—C1	56.26 (18)	C25—C24—C31—C28	0.3 (3)
C13—C8—C9—C21	54.8 (2)	C25-C24-C31-C10	-178.39 (18)
C7—C8—C9—C21	179.99 (14)	C27—C28—C31—C24	-0.6 (3)
C13—C8—C9—C4	178.15 (15)	C27—C28—C31—C10	178.06 (19)
C7—C8—C9—C4	-56.64 (18)	C3-C10-C31-C24	-95.0 (2)
C5—C4—C9—C1	-108.57 (16)	C3-C10-C31-C28	86.4 (2)
C3—C4—C9—C1	15.75 (17)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
O3—H3 <i>O</i> …O6	0.83 (3)	1.94 (3)	2.722 (2)	157 (3)

N2—H2N···O3ⁱ 0.90 (3) 1.97 (3) 2.867 (2) 175 (2) O6—H6O···O2ⁱⁱ 0.84 (3) 1.90 (3) 2.736 (2) 176 (3)

Symmetry codes: (i) *x*-1, *y*+1, *z*; (ii) *x*+1, *y*-1, *z*.