

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis[*N*-(4-chlorophenyl)pyridine-3carboxamide]silver(I) nitrate

Chun-Yue Shi,^{a,b} Chun-Hua Ge^c and Qi-Tao Liu^{a,c}*

^aDepartment of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China, ^bApplied Chemistry Department, Shenyang University of Chemical Technology, Shenyang 110142, People's Republic of China, and ^cCollege of Chemistry, Liaoning University, Shenyang 110036, People's Republic of China Correspondence e-mail: qtliu@yahoo.com.cn

Received 14 June 2010; accepted 29 June 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.026; wR factor = 0.064; data-to-parameter ratio = 12.7.

In the title compound, $[Ag(C_{12}H_9ClN_2O)_2]NO_3$, two N atoms from two pyridine rings of two N-(4-chlorophenyl)pyridine-3carboxamide ligands coordinate to the Ag^I atom, forming a nearly linear geometry with an N-Ag-N angle of 173.41 (7)°. The crystal structure is stabilized by N-H···O, C-H···O and C-H···Cl hydrogen bonds and π - π stacking interactions [centroid-centroid distance = 3.5469 (16) Å] between the pyridyl and benzene rings. The shortest Ag···Ag distance is 3.2574 (5) Å.

Related literature

For general background to metal-organic complexes with pyridyl carboxamide ligands, see: Noveron *et al.* (2002); Zhang *et al.* (2002); Mondal *et al.* (2004); Jacob & Mukherjee (2006). For related structures and the synthesis of the title ligand, see: Shi *et al.* (2007, 2008).

Experimental

Crystal data $[Ag(C_{12}H_9CIN_2O)_2]NO_3$ $M_r = 635.20$ Triclinic, $P\overline{1}$ a = 10.0745 (10) Å b = 10.1425 (10) Å c = 13.473 (2) Å $\alpha = 107.515$ (2)° $\beta = 102.602$ (2)°

 $\gamma = 103.706 (1)^{\circ}$ $V = 1211.6 (2) \text{ Å}^{3}$ Z = 2Mo K\alpha radiation $\mu = 1.10 \text{ mm}^{-1}$ T = 296 K $0.24 \times 0.23 \times 0.18 \text{ mm}$ $R_{\rm int} = 0.014$

6194 measured reflections

4232 independent reflections

3848 reflections with $I > 2\sigma(I)$

Data collection

Bruker APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{min} = 0.776, T_{max} = 0.820$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.026$	334 parameters
$wR(F^2) = 0.064$	H-atom parameters constrained
S = 1.05	$\Delta \rho_{\rm max} = 0.27 \text{ e } \text{\AA}^{-3}$
4232 reflections	$\Delta \rho_{\rm min} = -0.39 \text{ e } \text{\AA}^{-3}$

Table	e 1		

TT 1 1	1 /	14	\sim
Hydrogen-bond	1 geometry	(A,	č)

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N2-H1\cdots O4$	0.86	2.10	2.953 (3)	169
$N4-H2\cdotsO1^{i}$	0.86	2.10	2.931 (3)	162
$C2-H3\cdots O5$	0.93	2.51	3.210 (3)	133
C3−H4···O3 ⁱⁱ	0.93	2.57	3.300 (3)	136
C4−H5···Cl2 ⁱⁱⁱ	0.93	2.83	3.516 (3)	132
$C5-H6\cdots O1^{iv}$	0.93	2.55	3.376 (3)	148
C8-H7···O1	0.93	2.27	2.841 (3)	119
$C11 - H9 \cdots O2^{v}$	0.93	2.49	3.194 (4)	132
C16−H13···O5 ^{vi}	0.93	2.48	3.370 (4)	160
C20-H15···O2	0.93	2.46	2.906 (3)	109
Symmetry codes: (i)	x + 1, y +	-1, z + 1; (ii)	-x + 2, -y + 1	, -z + 1; (iii)
-x+2, -y+1, -z+2;	(iv)	-x + 1, -y, -z	x; (v) x, y	, z - 1; (vi)
-x + 2, -y + 2, -z + 1.				

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

This project was supported by the Innovation Team Foundation of the Education Bureau of Liaoning Province (2007 T052) and by the Key Laboratory Foundation of the Education Bureau of Liaoning Province (2008 S104).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2286).

References

- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Jacob, W. & Mukherjee, R. (2006). Inorg. Chim. Acta, 359, 4565-4573.
- Mondal, A., Li, Y., Khan, M. A., Ross, J. H. & Houser, R. P. (2004). *Inorg. Chem.* **43**, 7075–7082.
- Noveron, J. C., Lah, M. S., Del Sesto, R. E., Arif, A. M., Miller, J. S. & Stang, P. J. (2002). J. Am. Chem. Soc. 124, 6613–6625.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shi, C. Y., Ge, C. H., Gao, E. J., Yin, H. X. & Liu, Q. T. (2008). Inorg. Chem. Commun. 11, 703–706.
- Shi, C.-Y., Ge, C.-H., Song, X.-M. & Liu, Q.-T. (2007). Acta Cryst. E63, m2104–m2105.
- Zhang, J., Liu, Q., Duan, C., Shao, Y., Ding, J., Miao, J., You, X. & Guo, Z. (2002). J. Chem. Soc. Dalton Trans. pp. 591–597.

Acta Cryst. (2010). E66, m877 [https://doi.org/10.1107/S1600536810025511] Bis[N-(4-chlorophenyl)pyridine-3-carboxamide]silver(l) nitrate Chun-Yue Shi, Chun-Hua Ge and Qi-Tao Liu

S1. Comment

Supramolecular chemistry has generated considerable interest due to the novel structural topologies that can be built that way and due to its potential applications in many areas of science. The carboxamide functionality is an appropriate intermolecular connector, in part due to its well known ability to act as a hydrogen-bonding donor (via the amide hydrogen atoms) or acceptor (via the amide carbonyl oxygen atoms) to enhance structure diversities. Therefore, pyridyl-type compounds that contain a carboxamide group have been used to produce a great number of novel metal-organic complexes (see, for example, Noveron *et al.*, 2002; Zhang *et al.*, 2002; Mondal *et al.*, 2004; Jacob & Mukherjee, 2006). Recently, we have used the non-chelating ligand 3-pyridinecarboxamide in the syntheses of several metal complexes with different topologies (Shi *et al.*, 2007; Shi *et al.*, 2008). In this paper, the crystal structure of the title silver(I) complex is reported.

In the title complex (Fig. 1), each asymmetric unit contains one NO₃⁻ anion and one [Ag(*N*-(4'-chlorophenyl)-3pyridinecarboxamide)₂]⁺ cation. The Ag¹ ion is coordinated by two nitrogen atoms from two pyridyl rings of two crystallographically independent ligands, thus forming a slightly distorted linear coordination geometry around the silver center. Adjacent symmetry related Ag atoms are connected through nitrate anions via weak interactions with two of the nitrate oxygen atoms (O3 and O5) to form dinuclear units. The distances of Ag···O3ⁱⁱ and Ag···O5 are 2.773 (3) and 2.835 (2) Å, respectively (symmetry operator ii = 2-x,1-y,1-z). The dinculear units are inversion symmetric and the two symmetry related silver ions are bridged in a chelating fashion by two symmetry equivalent nitrate ions. The Ag1···Ag1ⁱⁱ seperation within the units is 3.2574 (5) Å. Via the third oxygen atom the bridging nitrate anion is also hydrogen bonded to one of the amide N—H groups (Table 1). The dimeric units are further stabilized by π - π interactions between pyridyl rings within the dimers [Cg1···Cg2ⁱⁱ = 3.631 (1) Å with a slippage of 1.371 Å, where Cg1 and Cg2 are the centroids of the N1/C1–C5 and N3/C13–C17 pyridyl rings].

The amide unit on the other ligand molecule undergoes a hydrogen bond with one of the amide keto groups in neighboring molecules, which link the dinuclear units together to form infinite 1-D chains via double N—H···O hydrogen bonds [N4···O1ⁱ = 2.931 (3) Å, symmetry operator i: x+1, y+1, z+1, Table 1].

The infinite parallel hydrogen bonded chains of complexes are further connected through non-classical hydrogen bonds (Table 1) to generate a 2-D sheet-like network (Fig. 2). These sheets are ultimately joined together to form a 3-D solid network by additional hydrogen bonds and π - π stacking interactions between the pyridyl and benzene rings of neighboring ligands [Cg2…Cg4^v (Symmetry operator v: -x+2, -y+2, -z+2) = 3.5469 (16) Å with a slippage of 0.082 Å, where Cg2 and Cg4 are the centroids of the N3/C13–C17 pyridyl and C19–C24 benzene rings].

S2. Experimental

N-(4'-chlorophenyl)-3-pyridinecarboxamide was prepared from nicotinoyl chloride hydrochloride and 4-chloroaniline in the presence of triethylamine, yield 80% (Shi *et al.*, 2008). An ethanolic solution of the organic ligand (0.5 mmol in 20 ml

ethanol) was added dropwise to AgNO₃ (0.5 mmol in 5 ml water). The resulting mixture was stirred for 20 min at room temperature and was then filtered. Single crystals suitable for data collection were obtained by slow evaporation of the solvent in a dark room (0.12g, yield 67%). *M*.P.: 345-346K. ¹H NMR (d₆-DMSO): δ 10.48 (s, 1H, H1), 9.09 (s, 1H, H3), 8.73 (d, 1H, H4), 8.28 (d, 1H, H6), 7.80 (d, 2H, H7, H10), 7.54 (m, 1H, H5), 7.36 (d, 2H, H8, H9). IR (KBr)/cm⁻¹: 701, 724, 833, 1093, 1329, 1351, 1398, 1489, 1535, 1604, 1650, 1680, 3067, 3276.

S3. Refinement

The H atoms bound to the N atoms were located in a difference Fourier map and refined with a distance restraint of 0.87 (2) Å. All other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.97 Å, O—H = 0.84 Å and with U_{iso} (H) = 1.2 U_{eq} (C) or 1.5 U_{eq} (C, O) for methyl and hydroxy groups.

Figure 1

The molecular structure of the title complex with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2

The packing diagram of molecules, viewed down the *b* axis, with the weak interactions shown as dashed lines and π - π interactions as double arrows.

Bis[N-(4-chlorophenyl)pyridine-3-carboxamide]silver(I) nitrate

Hall symbol: -P 1
a = 10.0745 (10) Å
b = 10.1425 (10) Å

Mo *K* α radiation, $\lambda = 0.71073$ Å

 $\theta = 2.2 - 27.8^{\circ}$

 $\mu = 1.10 \text{ mm}^{-1}$

Block, colourless

 $0.24 \times 0.23 \times 0.18 \text{ mm}$

T = 296 K

Cell parameters from 4853 reflections

c = 13.473 (2) Å $\alpha = 107.515 (2)^{\circ}$ $\beta = 102.602 (2)^{\circ}$ $\gamma = 103.706 (1)^{\circ}$ $V = 1211.6 (2) \text{ Å}^{3}$ Z = 2 F(000) = 636 $D_{x} = 1.741 \text{ Mg m}^{-3}$

Data collection

Bruker APEXII CCD area-detector	6194 measured reflections
diffractometer	4232 independent reflections
Radiation source: fine-focus sealed tube	3848 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.014$
phi and ω scans	$\theta_{\rm max} = 25.0^\circ, \ \theta_{\rm min} = 2.2^\circ$
Absorption correction: multi-scan	$h = -11 \rightarrow 11$
(SADABS; Sheldrick, 1996)	$k = -12 \rightarrow 11$
$T_{\min} = 0.776, T_{\max} = 0.820$	$l = -7 \rightarrow 16$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.026$	Hydrogen site location: inferred from
$wR(F^2) = 0.064$	neighbouring sites
S = 1.05	H-atom parameters constrained
4232 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0278P)^2 + 0.6379P]$
334 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.002$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.27 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\min} = -0.39 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Ag1	0.87169 (2)	0.56734 (2)	0.518117 (14)	0.04869 (8)	
C11	0.58438 (8)	0.45918 (8)	-0.36615 (5)	0.05917 (18)	
Cl2	1.33119 (13)	1.05319 (10)	1.51069 (6)	0.0891 (3)	
N2	0.64188 (19)	0.3727 (2)	0.05514 (14)	0.0375 (4)	
H1	0.7178	0.4325	0.1077	0.045*	
01	0.44206 (18)	0.17952 (18)	0.01256 (13)	0.0507 (4)	
N3	0.9912 (2)	0.7669 (2)	0.65614 (15)	0.0402 (4)	
N1	0.7302 (2)	0.3744 (2)	0.38083 (14)	0.0388 (4)	
C6	0.5572 (2)	0.2683 (2)	0.07732 (17)	0.0356 (5)	

C7	0.6197 (2)	0.3948 (2)	-0.04546 (17)	0.0347 (5)
N4	1.2066 (2)	0.9810 (2)	1.04496 (15)	0.0417 (5)
H2	1.2615	1.0478	1.0314	0.050*
C8	0.4900 (2)	0.3301 (3)	-0.12996 (18)	0.0406 (5)
H7	0.4103	0.2727	-0.1208	0.049*
C3	0.7042 (2)	0.2420 (3)	0.38709 (19)	0.0422 (5)
H4	0.7352	0.2354	0.4551	0.051*
C2	0.6833 (2)	0.3825 (2)	0.28185 (17)	0.0355 (5)
H3	0.6993	0.4742	0.2771	0.043*
C13	1.0816 (2)	0.8926 (2)	0.85119 (18)	0.0355 (5)
O2	1.0207 (2)	0.7703 (2)	0.96688 (15)	0.0770 (7)
C16	1.0810 (3)	1.0276 (3)	0.7337 (2)	0.0457 (6)
H13	1.1003	1.1159	0.7233	0.055*
C5	0.5870(2)	0.1236 (2)	0.19497 (18)	0.0378 (5)
H6	0.5396	0.0392	0.1327	0.045*
C4	0.6329 (2)	0.1148 (3)	0.29612 (19)	0.0412 (5)
Н5	0.6161	0.0243	0.3031	0.049*
N5	0.9683 (2)	0.6282 (2)	0.31338 (17)	0.0501 (5)
C1	0.6126 (2)	0.2601 (2)	0.18731 (17)	0.0333 (5)
C23	1.3156 (2)	1.1510 (3)	1.34542 (19)	0.0412 (5)
H17	1.3479	1.2442	1.3993	0.049*
C17	1.1113 (2)	1.0260 (2)	0.8381 (2)	0.0413 (5)
H14	1.1510	1.1130	0.8989	0.050*
С9	0.4794 (3)	0.3512 (2)	-0.22784(19)	0.0421 (5)
H8	0.3927	0.3077	-0.2846	0.050*
C15	1.0219 (3)	0.8970 (3)	0.6450 (2)	0.0453 (6)
H12	1.0026	0.8990	0.5749	0.054*
C10	0.5971 (3)	0.4366 (2)	-0.24093(18)	0.0404 (5)
C24	1.2834 (2)	1.1322 (2)	1.23596 (18)	0.0365 (5)
H18	1.2933	1.2132	1.2159	0.044*
C22	1.2991 (3)	1.0296 (3)	1.37339 (19)	0.0453 (6)
C14	1.0215(2)	0 7664 (2)	0 75782 (17)	0.0361(5)
H11	1 0012	0.6767	0.7662	0.043*
C19	1 2365 (2)	0.9934(2)	1 15612 (18)	0.0359(5)
05	0.9102 (3)	0.7052(2)	0.3672 (2)	0.0828(7)
C11	0.7258(3)	0.5049(3)	-0.1567(2)	0.0482(6)
H9	0.8045	0 5640	-0.1658	0.058*
C20	1 2222 (3)	0.8724 (3)	1 1858 (2)	0.0440 (6)
H15	1 1914	0 7791	1 1323	0.053*
C18	1.1008(2)	0.8748(3)	0.95936 (19)	0.022
C12	0 7364 (3)	0.4844(2)	-0.05886(19)	0.0434(5)
H10	0 8224	0 5309	-0.0015	0.052*
03	1 0717 (3)	0.6017 (3)	0 3604 (2)	0.0869(7)
C21	1 2540 (3)	0.8910 (3)	1 2953 (2)	0.0007(7) 0.0475(6)
H16	1.2350 (3)	0.8105	1 3159	0.057*
04	0 9214 (2)	0 5770 (3)	0.21319(16)	0.0913 (8)
	0.7217 (2)	0.0770 (0)	0.21317 (10)	0.0715 (0)

Atomic displacement parameters $(Å^2)$

	U^{11}	<i>U</i> ²²	<i>U</i> ³³	U^{12}	<i>U</i> ¹³	U ²³
Ag1	0.05203 (13)	0.04686 (12)	0.03000 (11)	0.00860 (9)	0.00232 (8)	0.00417 (8)
Cl1	0.0777 (5)	0.0579 (4)	0.0394 (3)	0.0099 (3)	0.0166 (3)	0.0252 (3)
Cl2	0.1476 (9)	0.0747 (5)	0.0392 (4)	0.0264 (5)	0.0197 (5)	0.0274 (4)
N2	0.0337 (9)	0.0385 (10)	0.0285 (9)	-0.0010 (8)	0.0017 (8)	0.0120 (8)
01	0.0446 (9)	0.0506 (10)	0.0358 (9)	-0.0106 (8)	-0.0024 (7)	0.0180 (8)
N3	0.0381 (10)	0.0429 (11)	0.0332 (10)	0.0096 (8)	0.0069 (8)	0.0113 (8)
N1	0.0409 (10)	0.0396 (10)	0.0298 (9)	0.0097 (8)	0.0061 (8)	0.0109 (8)
C6	0.0361 (12)	0.0344 (11)	0.0296 (11)	0.0061 (9)	0.0065 (9)	0.0095 (9)
C7	0.0369 (11)	0.0315 (11)	0.0299 (10)	0.0066 (9)	0.0072 (9)	0.0095 (9)
N4	0.0408 (10)	0.0384 (10)	0.0321 (10)	-0.0039 (8)	0.0060 (8)	0.0115 (8)
C8	0.0357 (12)	0.0432 (13)	0.0367 (12)	0.0035 (10)	0.0078 (10)	0.0163 (10)
C3	0.0421 (13)	0.0488 (14)	0.0359 (12)	0.0122 (11)	0.0085 (10)	0.0207 (11)
C2	0.0355 (11)	0.0345 (11)	0.0335 (11)	0.0086 (9)	0.0077 (9)	0.0130 (9)
C13	0.0273 (10)	0.0388 (12)	0.0352 (11)	0.0065 (9)	0.0086 (9)	0.0109 (10)
O2	0.0791 (14)	0.0669 (13)	0.0411 (10)	-0.0345 (11)	0.0039 (10)	0.0162 (9)
C16	0.0442 (13)	0.0392 (13)	0.0535 (15)	0.0114 (11)	0.0103 (11)	0.0221 (11)
C5	0.0347 (11)	0.0353 (12)	0.0368 (12)	0.0069 (9)	0.0081 (9)	0.0102 (9)
C4	0.0404 (12)	0.0392 (12)	0.0455 (13)	0.0113 (10)	0.0108 (10)	0.0212 (11)
N5	0.0533 (13)	0.0433 (12)	0.0390 (11)	-0.0037 (10)	0.0013 (10)	0.0199 (10)
C1	0.0293 (10)	0.0371 (11)	0.0303 (11)	0.0072 (9)	0.0083 (9)	0.0117 (9)
C23	0.0435 (13)	0.0369 (12)	0.0353 (12)	0.0097 (10)	0.0092 (10)	0.0075 (10)
C17	0.0361 (12)	0.0350 (12)	0.0436 (13)	0.0068 (10)	0.0077 (10)	0.0091 (10)
C9	0.0431 (13)	0.0398 (12)	0.0346 (12)	0.0077 (10)	0.0035 (10)	0.0127 (10)
C15	0.0441 (13)	0.0514 (14)	0.0406 (13)	0.0141 (11)	0.0079 (11)	0.0220 (11)
C10	0.0531 (14)	0.0359 (12)	0.0309 (11)	0.0107 (10)	0.0127 (10)	0.0140 (9)
C24	0.0335 (11)	0.0338 (11)	0.0379 (12)	0.0061 (9)	0.0076 (9)	0.0138 (10)
C22	0.0524 (14)	0.0493 (14)	0.0349 (12)	0.0161 (11)	0.0109 (11)	0.0188 (11)
C14	0.0320 (11)	0.0348 (11)	0.0346 (11)	0.0057 (9)	0.0070 (9)	0.0102 (9)
C19	0.0297 (11)	0.0380 (12)	0.0339 (11)	0.0055 (9)	0.0067 (9)	0.0114 (9)
05	0.114 (2)	0.0582 (13)	0.0899 (17)	0.0286 (13)	0.0503 (16)	0.0324 (12)
C11	0.0481 (14)	0.0441 (13)	0.0467 (14)	0.0004 (11)	0.0147 (11)	0.0206 (11)
C20	0.0491 (14)	0.0333 (12)	0.0439 (13)	0.0108 (10)	0.0120 (11)	0.0103 (10)
C18	0.0377 (12)	0.0408 (12)	0.0333 (11)	0.0002 (10)	0.0101 (10)	0.0086 (10)
C12	0.0381 (12)	0.0411 (13)	0.0371 (12)	-0.0018 (10)	0.0032 (10)	0.0131 (10)
03	0.0772 (15)	0.0788 (15)	0.0962 (18)	0.0178 (12)	-0.0082 (13)	0.0520 (14)
C21	0.0557 (15)	0.0424 (13)	0.0474 (14)	0.0157 (11)	0.0136 (12)	0.0227 (11)
O4	0.0622 (13)	0.129 (2)	0.0382 (11)	-0.0217 (13)	-0.0009 (10)	0.0228 (12)

Geometric parameters (Å, °)

Ag1—N3	2.1467 (19)	C16—C15	1.379 (3)	
Ag1—N1	2.1519 (18)	C16—C17	1.379 (3)	
Ag1—Ag1 ⁱ	3.2574 (5)	C16—H13	0.9300	
Cl1—C10	1.751 (2)	C5—C4	1.377 (3)	
Cl2—C22	1.738 (2)	C5—C1	1.386 (3)	

N2—C6	1.346 (3)	С5—Н6	0.9300
N2—C7	1.419 (3)	C4—H5	0.9300
N2—H1	0.8600	N5-04	1.224 (3)
01—C6	1 228 (3)	N5-03	1 228 (3)
N3-C14	1,220(3)	N5-05	1.220(3) 1 240(3)
N2 C15	1.337(3)	C^{22}	1.240(3)
N3-C13	1.343 (3)	C23—C22	1.377(3)
	1.338 (3)	C23-C24	1.382 (3)
NI-C2	1.348 (3)	C23—H17	0.9300
C6—C1	1.499 (3)	C17—H14	0.9300
C7—C12	1.388 (3)	C9—C10	1.373 (3)
С7—С8	1.389 (3)	С9—Н8	0.9300
N4—C18	1.341 (3)	С15—Н12	0.9300
N4—C19	1.422 (3)	C10-C11	1.381 (3)
N4—H2	0.8600	C24—C19	1.384 (3)
C8—C9	1 384 (3)	C24—H18	0.9300
C8—H7	0.9300	C^{22} C^{21}	1.374(3)
$C_3 C_4$	1 381 (3)	C14 H11	0.0300
C_{3}	1.361 (3)		0.9300
	0.9300	C19 - C20	1.387 (3)
C2—C1	1.380 (3)	C11—C12	1.381 (3)
С2—Н3	0.9300	С11—Н9	0.9300
C13—C14	1.385 (3)	C20—C21	1.383 (3)
C13—C17	1.387 (3)	С20—Н15	0.9300
C13—C18	1.499 (3)	С12—Н10	0.9300
O2—C18	1.216 (3)	С21—Н16	0.9300
$N3 - A\sigma 1 - N1$	173 41 (7)	$C_{2} - C_{1} - C_{5}$	1185(2)
$N_2 Ag1 Ag1^{i}$	1/5.41(7) 100.45(5)	$C_2 C_1 C_5$	110.5(2)
$N_{1} = A_{2} = A_{2}$	100.45(5)	$C_2 - C_1 - C_0$	122.93(19)
NI—AgI—AgI	80.14(3)	C_{3}	118.30 (19)
C6—N2—C7	127.13 (18)	C22—C23—C24	118.9 (2)
C6—N2—H1	116.4	С22—С23—Н17	120.5
C7—N2—H1	116.4	С24—С23—Н17	120.5
C14—N3—C15	117.8 (2)	C16—C17—C13	119.1 (2)
C14—N3—Ag1	120.15 (15)	C16—C17—H14	120.5
C15—N3—Ag1	121.49 (16)	С13—С17—Н14	120.5
C3—N1—C2	118.20 (19)	C10—C9—C8	119.8 (2)
C3—N1—Ag1	121.23 (15)	С10—С9—Н8	120.1
C_2 —N1—Ag1	119.84 (15)	С8—С9—Н8	120.1
01-C6-N2	1240(2)	N3-C15-C16	120.11 122.5(2)
01 - C6 - C1	124.0(2) 110.57(10)	N3 C15 H12	122.3 (2)
$N_2 \subset C_1$	119.37(19) 116.29(19)	10 - 015 - 112	110.0
	110.38 (18)		110.0
C12—C/—C8	119.4 (2)		120.9 (2)
C12—C/—N2	116.96 (19)	C9—C10—C11	119.65 (18)
C8—C7—N2	123.61 (19)	C11—C10—C11	119.43 (18)
C18—N4—C19	126.02 (19)	C23—C24—C19	120.3 (2)
C18—N4—H2	117.0	C23—C24—H18	119.9
C19—N4—H2	117.0	C19—C24—H18	119.9
C9—C8—C7	120.0 (2)	C21—C22—C23	121.6 (2)
С9—С8—Н7	120.0	C21—C22—Cl2	119.61 (19)

C7 C9 U7	120.0	G22 G22 G12	110 70 (10)
C/-C8-H/	120.0	$C_{23} = C_{22} = C_{12}$	118.78 (19)
NI-C3-C4	122.4 (2)	N3-C14-C13	123.3 (2)
NI—C3—H4	118.8	N3—CI4—HII	118.3
C4—C3—H4	118.8	C13—C14—H11	118.3
N1—C2—C1	122.6 (2)	C24—C19—C20	120.0 (2)
N1—C2—H3	118.7	C24—C19—N4	117.7 (2)
С1—С2—Н3	118.7	C20—C19—N4	122.3 (2)
C14—C13—C17	118.0 (2)	C12—C11—C10	119.3 (2)
C14—C13—C18	117.1 (2)	С12—С11—Н9	120.3
C17—C13—C18	124.7 (2)	С10—С11—Н9	120.3
C15—C16—C17	119.3 (2)	C21—C20—C19	119.8 (2)
C15—C16—H13	120.4	С21—С20—Н15	120.1
C17—C16—H13	120.4	С19—С20—Н15	120.1
C4—C5—C1	119.1 (2)	O2—C18—N4	123.4 (2)
С4—С5—Н6	120.5	O2—C18—C13	120.3 (2)
С1—С5—Н6	120.5	N4—C18—C13	116.31 (19)
C5—C4—C3	119.2 (2)	C11—C12—C7	120.5 (2)
C5—C4—H5	120.4	C11—C12—H10	119.8
C3—C4—H5	120.4	С7—С12—Н10	119.8
04—N5—O3	119.8 (3)	C22—C21—C20	119.4 (2)
04—N5—O5	120.0 (3)	C22—C21—H16	120.3
03—N5—05	120.1 (3)	C20—C21—H16	120.3
	12011 (0)		120.0
$Ag1^{i}$ Ag1 $N3$ $C14$	-83.05 (17)	C17—C16—C15—N3	0.5 (4)
$Ag1^{i}$ $Ag1$ $N3$ $C15$	105 37 (18)	C8 - C9 - C10 - C11	-15(4)
$Ag1^{i}$ $Ag1$ $N1$ $C3$	66 84 (17)	C8-C9-C10-C11	178 39 (19)
$Ag1^{i}$ $Ag1$ $N1$ $C2$	-103 19 (16)	C^{22} C^{23} C^{24} C^{19}	-0.6(4)
C7 - N2 - C6 - 01	-37(4)	$C_{22} = C_{23} = C_{24} = C_{13}$	12(4)
C7 N2 C6 C1	174 A (2)	$C_{24} = C_{23} = C_{22} = C_{21}$	-176.88(10)
$C_{1} = N_{2} = C_{1} = C_{1}$	-1644(2)	$C_{15} = N_3 = C_{14} = C_{13}$	170.00(17)
$C_{0} = N_{2} = C_{1} = C_{12}$	104.4(2)	$A_{g1} = N_3 = C_{14} = C_{13}$	-171 44 (16)
$C_0 = N_2 = C_1 = C_8$	14.4(4)	$Ag_{1} - N_{3} - C_{14} - C_{13}$	-1/1.44(10)
12 - 12 - 12 - 12 - 12 - 12 - 12 - 12 -	2.2(4)	C17 - C13 - C14 - N3	0.2(3)
$N_2 - C_7 - C_8 - C_9$	-1/0.0(2)	C18 - C13 - C14 - N3	1/0.3 (2)
C_2 —NI— C_3 — C_4	0.7(3)	$C_{23} = C_{24} = C_{19} = C_{20}$	-0.3(3)
Ag1 - N1 - C3 - C4	-169.49 (18)	C23—C24—C19—N4	-1/9.3(2)
C3—N1—C2—C1	-1.3(3)	C18—N4—C19—C24	-143.7 (2)
Ag1—N1—C2—C1	169.04 (16)	C18—N4—C19—C20	37.3 (4)
C1—C5—C4—C3	-0.5(3)	C9-C10-C11-C12	1.2 (4)
N1—C3—C4—C5	0.2 (4)	Cl1—C10—C11—C12	-178.6(2)
N1—C2—C1—C5	1.0 (3)	C24—C19—C20—C21	0.4 (4)
N1—C2—C1—C6	178.6 (2)	N4—C19—C20—C21	179.4 (2)
C4—C5—C1—C2	0.0 (3)	C19—N4—C18—O2	-3.9 (4)
C4—C5—C1—C6	-177.8 (2)	C19—N4—C18—C13	174.3 (2)
O1—C6—C1—C2	-142.3 (2)	C14—C13—C18—O2	-28.4 (3)
N2—C6—C1—C2	39.6 (3)	C17—C13—C18—O2	147.4 (3)
O1—C6—C1—C5	35.4 (3)	C14—C13—C18—N4	153.3 (2)
N2-C6-C1-C5	-142.8 (2)	C17—C13—C18—N4	-30.8 (3)
C15—C16—C17—C13	0.1 (4)	C10—C11—C12—C7	0.8 (4)

C14 C13 C17 C16	-0.4(3)	C8 C7 C12 C11	-25(4)
C14 - C13 - C17 - C16	-176.2(2)	$N_{2} = C_{7} = C_{12} = C_{11}$	2.5(4)
$C_{10} = C_{10} = C$	-0.2(2)	12 - 07 - 012 - 011	-1.1.(4)
$C_{1-}C_{8-}C_{9-}C_{10}$	-0.3(4)	$C_{23} = C_{22} = C_{21} = C_{20}$	-1.1(4)
C14 - N3 - C15 - C16	-0.8(4)	C12 - C22 - C21 - C20	1/7.0(2)
Ag1—N3—C13—C16	1/0.9/ (18)	C19 - C20 - C21 - C22	0.2 (4)

Symmetry code: (i) -x+2, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
N2—H1…O4	0.86	2.10	2.953 (3)	169
N4—H2···O1 ⁱⁱ	0.86	2.10	2.931 (3)	162
С2—Н3…О5	0.93	2.51	3.210 (3)	133
C3—H4…O3 ⁱ	0.93	2.57	3.300 (3)	136
C4—H5····Cl2 ⁱⁱⁱ	0.93	2.83	3.516 (3)	132
C5—H6····O1 ^{iv}	0.93	2.55	3.376 (3)	148
C8—H7…O1	0.93	2.27	2.841 (3)	119
С11—Н9…О2 ^v	0.93	2.49	3.194 (4)	132
C16—H13…O5 ^{vi}	0.93	2.48	3.370 (4)	160
C20—H15…O2	0.93	2.46	2.906 (3)	109

Symmetry codes: (i) -*x*+2, -*y*+1, -*z*+1; (ii) *x*+1, *y*+1, *z*+1; (iii) -*x*+2, -*y*+1, -*z*+2; (iv) -*x*+1, -*y*, -*z*; (v) *x*, *y*, *z*-1; (vi) -*x*+2, -*y*+2, -*z*+1.