Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Ethyl 2-{[7-fluoro-4-oxo-3-(1H-1,2,4triazol-1-yl)-4H-thiochromen-2-yl]sulfanyl}acetate

Yang Li, Tao Xiao,* Guang-yan Yu and Dong-liang Liu

Department of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China Correspondence e-mail: taoxiao@njut.edu.cn

Received 3 July 2010; accepted 11 July 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; R factor = 0.044; wR factor = 0.151; data-to-parameter ratio = 13.2.

In the title compound, C₁₅H₁₂FN₃O₃S₂, the two six-membered rings are essentially coplanar, their mean plnes making a dihedral angle of $1.1 (2)^\circ$. The carbonyl C, the two attached non-fused C atoms and the S atom deviate from the plane of the benzene ring by -0.046(5), -0.017(5), 0.000(6), 0.026 (4) Å, respectively. The angle between the mean planes of the triazole ring and the sulfur heterocycle is $53.3 (1)^{\circ}$. In the crystal, intermolecular $C-H \cdots O$ hydrogen bonds link the molecules in a stacked arrangement along the *a* axis.

Related literature

For related compounds containing a 4H-thiochromen-4-one fragment, see: Adams et al. (1991); Nakazumi et al. (1992); Weiss et al. (2008); Li et al. (2010). For bond-length data, see: Allen et al. (1987).

Experimental

Crystal data C15H12FN3O3S2 $M_r = 365.40$

Monoclinic, $P2_1/c$ a = 9.3890 (19) Å

b = 8.2430 (16) Å c = 20.861 (4) Å $\beta = 100.72 \ (3)^{\circ}$ V = 1586.3 (5) Å³ Z = 4

Data collection

Enraf–Nonius CAD-4	2867 independent reflections
diffractometer	2186 reflections with $I > 2\sigma(I)$
Absorption correction: ψ scan	$R_{\rm int} = 0.013$
(North et al., 1968)	3 standard reflections every 200
$T_{\min} = 0.898, T_{\max} = 0.964$	reflections
3053 measured reflections	intensity decay: 1%

Mo $K\alpha$ radiation

 $0.30 \times 0.20 \times 0.10 \text{ mm}$

 $\mu = 0.37 \text{ mm}^{-1}$

T = 293 K

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.044$	217 parameters
$wR(F^2) = 0.151$	H-atom parameters constrained
S = 1.00	$\Delta \rho_{\rm max} = 0.22 \text{ e} \text{ Å}^{-3}$
2867 reflections	$\Delta \rho_{\rm min} = -0.32 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C4-H4A\cdots O2^{i}$	0.97	2.47	3.199 (4)	131
$C11 - H11A \cdots O2^{ii}$	0.93	2.43	3.276 (4)	151

Symmetry codes: (i) $-x, y - \frac{1}{2}, -z + \frac{1}{2}$; (ii) -x, -y + 2, -z.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1985); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZQ2047).

References

- Adams, H., Bailey, N. A., Giles, P. R. & Marson, C. M. (1991). Acta Cryst. C47, 1332-1334.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Enraf-Nonius (1985). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands

Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Li, Y., Xiao, T., Liu, D. & Yu, G. (2010). Acta Cryst. E66, 0694.

Nakazumi, H., Watanabe, S. & Kitao, T. (1992). J. Chem. Res. 212, 1616-1641. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359

- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Weiss, R., Bess, M., Huber, S. M. & Heinemann, F. W. (2008). J. Am. Chem. Soc. 130, 4610-4617.

supporting information

Acta Cryst. (2010). E66, o2072 [https://doi.org/10.1107/S1600536810027467]

Ethyl 2-{[7-fluoro-4-oxo-3-(1*H*-1,2,4-triazol-1-yl)-4*H*-thiochromen-2-yl]sulfanyl}acetate

Yang Li, Tao Xiao, Guang-yan Yu and Dong-liang Liu

S1. Comment

The title compound, ethyl 2-((7-fluoro-4-oxo-3-(1*H*-1,2,4-triazol-1-yl)-4*H*-thiochromen-2-yl)thio) acetate (I), is a new molecule which has a potential use as antifungal. We herein report its crystal structure.

The molecular structure of (I) is shown in Fig. 1, and selected geometric parameters are given in Table 1. The bond lengths and angles (Table 1) are within normal ranges (Allen *et al.*, 1987). The two-ring system is essentially planar [angle between the mean planes = $1.1 (2)^{\circ}$]. The atoms C7, C8, C15 and S2 deviate from the benzene ring by -0.046 (5), -0.017 (5), 0.000 (6), 0.026 (4) Å, respectively. The angle between the mean planes of the triazole ring and the sulfur heterocycle is 53.3 (1)°.

In the crystal packing, a weak intramolecular C4—H4B \cdots S2 interaction is observed, and intermolecular C—H \cdots O hydrogen bonds link the molecules in a stacked arrangement along the *a* axis.

S2. Experimental

 CS_2 (2.0 g, 26.3 mmol) was dropwise added to a solution of 1-(2,4- difluorophenyl)-2-(1*H*-1,2,4-triazol-1-yl)ethanone (5 g, 22.4 mmol) in DMSO (20 ml) containing NaOH (1.8 g, 45 mmol). The yellow solution was stirred for about 2 h at room temperature. Then ethyl bromoacetate (3.8 g, 22.4 mmol) was dropwise added to the intermediate. After 3 h, the solution was poured into water (50 ml). The crystalline product was isolated by filtration, and washed with water (300 ml). The crystals were obtained by dissolving (I) in acetone (20 ml) and evaporating acetone slowly at room temperature for about 7 d.

S3. Refinement

H atoms were positioned geometrically with C—H = 0.93 Å for aromatic H atoms, C—H = 0.97 Å for methylene H atoms, and with C—H = 0.96 Å for methyl H atoms, and constrained to ride on their parent atoms with $U_{iso}(H) = xU_{eq}(C)$, where x = 1.2 for aromatic and methylene H atoms and x = 1.5 for methyl H atoms.

Figure 1

The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

F(000) = 752 $D_x = 1.530 \text{ Mg m}^{-3}$ Melting point: 397 K

 $\theta = 9-14^{\circ}$ $\mu = 0.37 \text{ mm}^{-1}$ T = 293 KBlock, pink

Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å Cell parameters from 25 reflections

 $0.30 \times 0.20 \times 0.10$ mm

Figure 2

A packing diagram of (I). Intra- and inter-molecular interactions are shown as dashed lines.

Ethyl 2-{[7-fluoro-4-oxo-3-(1H-1,2,4-triazol-1-yl)-4H-thiochromen-2-yl]sulfanyl}acetate

Crystal data
$C_{15}H_{12}FN_3O_3S_2$
$M_r = 365.40$
Monoclinic, $P2_1/c$
Hall symbol: -P 2ybc
a = 9.3890 (19) Å
b = 8.2430 (16) Å
c = 20.861 (4) Å
$\beta = 100.72 (3)^{\circ}$
V = 1586.3 (5) Å ³
Z = 4

Data collection

ndependent reflections
eflections with $I > 2\sigma(I)$
0.013
25.3°, $\theta_{\min} = 2.0^{\circ}$
→11
→ 9
5→24
lard reflections every 200 reflections
ty decay: 1%

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.044$	Hydrogen site location: inferred from
$wR(F^2) = 0.151$	neighbouring sites
S = 1.00	H-atom parameters constrained
2867 reflections	$w = 1/[\sigma^2(F_o^2) + (0.1P)^2 + 0.170P]$
217 parameters	where $P = (F_0^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.22 \ m e \ m \AA^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.32$ e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
F	0.2497 (3)	0.9099 (3)	-0.12075 (10)	0.0728 (7)
S1	-0.10898 (8)	0.52611 (10)	0.15706 (4)	0.0434 (3)
01	0.3016 (2)	0.6102 (3)	0.23375 (11)	0.0473 (6)
N1	-0.5765 (3)	0.6974 (5)	0.09253 (17)	0.0721 (10)
C1	0.5439 (4)	0.6893 (6)	0.2766 (2)	0.0871 (15)
H1B	0.6065	0.7781	0.2928	0.131*
H1C	0.5738	0.6438	0.2388	0.131*
H1D	0.5494	0.6077	0.3098	0.131*
S2	0.06614 (8)	0.65095 (9)	0.06388 (3)	0.0375 (2)
O2	0.1081 (3)	0.7704 (3)	0.22875 (11)	0.0554 (6)
N2	-0.4048 (3)	0.5142 (4)	0.07917 (15)	0.0562 (8)
C2	0.3947 (4)	0.7475 (5)	0.2588 (2)	0.0614 (10)
H2B	0.3884	0.8312	0.2257	0.074*
H2C	0.3635	0.7935	0.2967	0.074*
N3	-0.3597 (3)	0.6709 (3)	0.07017 (13)	0.0472 (7)
O3	-0.3528 (3)	0.8531 (3)	-0.03655 (13)	0.0646 (7)
C3	0.1619 (3)	0.6420 (4)	0.21998 (13)	0.0372 (7)
C4	0.0790 (3)	0.4931 (3)	0.19245 (14)	0.0382 (7)
H4A	0.0840	0.4136	0.2271	0.046*
H4B	0.1269	0.4468	0.1593	0.046*
C5	-0.5331 (4)	0.5401 (6)	0.0927 (2)	0.0673 (11)
H5A	-0.5917	0.4556	0.1020	0.081*
C6	-0.4652 (4)	0.7752 (5)	0.07764 (19)	0.0601 (10)
H6A	-0.4601	0.8871	0.0729	0.072*
C7	-0.2261 (3)	0.6990 (4)	0.04953 (14)	0.0378 (7)

C8	-0.2363 (3)	0.7960 (4)	-0.00981 (15)	0.0428 (7)
C9	-0.1040 (3)	0.8222 (3)	-0.03656 (14)	0.0386 (7)
C10	-0.1155 (4)	0.9141 (4)	-0.09443 (15)	0.0473 (8)
H10A	-0.2052	0.9558	-0.1138	0.057*
C11	0.0020 (4)	0.9427 (4)	-0.12239 (16)	0.0521 (9)
H11A	-0.0068	1.0032	-0.1606	0.063*
C12	0.1336 (4)	0.8808 (4)	-0.09318 (16)	0.0490 (8)
C13	0.1538 (4)	0.7913 (4)	-0.03709 (15)	0.0432 (7)
H13A	0.2445	0.7502	-0.0188	0.052*
C14	0.0329 (3)	0.7637 (3)	-0.00815 (13)	0.0357 (7)
C15	-0.1023 (3)	0.6355 (3)	0.08501 (14)	0.0362 (7)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
F	0.0870 (16)	0.0758 (15)	0.0678 (14)	-0.0063 (13)	0.0462 (12)	0.0109 (12)
S1	0.0411 (4)	0.0490 (5)	0.0400 (4)	-0.0036 (4)	0.0071 (3)	0.0107 (3)
01	0.0433 (12)	0.0353 (12)	0.0611 (14)	-0.0009 (10)	0.0037 (10)	-0.0065 (10)
N1	0.0419 (17)	0.088 (3)	0.088 (2)	-0.0022 (17)	0.0173 (16)	0.019 (2)
C1	0.052 (2)	0.074 (3)	0.128 (4)	-0.007(2)	-0.003 (2)	-0.028 (3)
S2	0.0376 (4)	0.0383 (4)	0.0366 (4)	0.0003 (3)	0.0071 (3)	0.0057 (3)
O2	0.0633 (15)	0.0396 (13)	0.0589 (15)	0.0130 (11)	-0.0001 (11)	-0.0129 (11)
N2	0.0419 (16)	0.0521 (18)	0.072 (2)	-0.0130 (13)	0.0024 (14)	0.0184 (15)
C2	0.055 (2)	0.045 (2)	0.083 (3)	-0.0150 (17)	0.0077 (19)	-0.0131 (18)
N3	0.0371 (14)	0.0473 (16)	0.0551 (16)	-0.0067 (12)	0.0029 (12)	0.0093 (13)
O3	0.0485 (14)	0.0726 (18)	0.0679 (16)	0.0057 (13)	-0.0015 (12)	0.0296 (14)
C3	0.0488 (18)	0.0330 (16)	0.0290 (14)	0.0022 (14)	0.0051 (12)	0.0027 (12)
C4	0.0441 (16)	0.0322 (16)	0.0368 (15)	0.0017 (13)	0.0038 (13)	0.0026 (13)
C5	0.044 (2)	0.078 (3)	0.076 (3)	-0.017 (2)	0.0012 (18)	0.025 (2)
C6	0.0440 (19)	0.058 (2)	0.081 (3)	0.0040 (18)	0.0176 (18)	0.013 (2)
C7	0.0348 (15)	0.0327 (16)	0.0456 (16)	-0.0044 (13)	0.0067 (12)	0.0033 (13)
C8	0.0470 (18)	0.0354 (16)	0.0426 (16)	-0.0047 (14)	-0.0004 (14)	0.0027 (14)
C9	0.0526 (18)	0.0261 (15)	0.0355 (15)	-0.0016 (13)	0.0038 (13)	-0.0009 (12)
C10	0.063 (2)	0.0363 (17)	0.0384 (16)	-0.0023 (16)	-0.0007 (15)	0.0038 (14)
C11	0.084 (3)	0.0357 (18)	0.0392 (17)	-0.0022 (18)	0.0171 (17)	0.0065 (14)
C12	0.069 (2)	0.0382 (18)	0.0451 (18)	-0.0060 (16)	0.0244 (16)	-0.0024 (15)
C13	0.0524 (18)	0.0377 (17)	0.0427 (16)	-0.0012 (15)	0.0168 (14)	-0.0017 (14)
C14	0.0496 (18)	0.0242 (14)	0.0333 (15)	-0.0043 (13)	0.0074 (13)	-0.0022 (12)
C15	0.0419 (16)	0.0294 (15)	0.0373 (15)	-0.0054 (13)	0.0077 (12)	-0.0009 (12)

Geometric parameters (Å, °)

FC12	1.345 (4)	N3—C7	1.419 (4)	
S1—C15	1.764 (3)	O3—C8	1.226 (4)	
S1—C4	1.802 (3)	C3—C4	1.509 (4)	
O1—C3	1.316 (4)	C4—H4A	0.9700	
O1—C2	1.466 (4)	C4—H4B	0.9700	
N1—C6	1.311 (4)	C5—H5A	0.9300	

supporting information

N1—C5	1.359 (5)	С6—Н6А	0.9300
C1—C2	1.462 (5)	C7—C15	1.361 (4)
C1—H1B	0.9600	C7—C8	1.461 (4)
C1—H1C	0.9600	C8—C9	1.469 (4)
C1—H1D	0.9600	C9—C14	1.397 (4)
S2—C15	1.723 (3)	C9—C10	1.412 (4)
S2—C14	1.745 (3)	C10-C11	1.361 (5)
O2—C3	1.201 (4)	C10—H10A	0.9300
N2—C5	1.305 (5)	C11—C12	1.370 (5)
N2—N3	1.383 (4)	C11—H11A	0.9300
C2—H2B	0.9700	C12—C13	1.366 (5)
C2—H2C	0.9700	C13—C14	1.400 (4)
N3—C6	1.342 (4)	C13—H13A	0.9300
	1.5 12 (1)		0.9500
C15—S1—C4	103.82 (14)	N1—C5—H5A	121.8
C3—O1—C2	115.3 (3)	N1—C6—N3	110.6 (4)
C6—N1—C5	102.4 (3)	N1—C6—H6A	124.7
C2—C1—H1B	109.5	N3—C6—H6A	124.7
C2—C1—H1C	109.5	C15—C7—N3	119.1 (3)
H1B—C1—H1C	109.5	C15—C7—C8	125.8 (3)
C2—C1—H1D	109.5	N3—C7—C8	115.1 (3)
H1B—C1—H1D	109.5	O3—C8—C7	120.5 (3)
H1C—C1—H1D	109.5	O3—C8—C9	121.1 (3)
C15—S2—C14	103.51 (15)	C7—C8—C9	118.4 (3)
C5—N2—N3	101.2 (3)	C14—C9—C10	117.7 (3)
C1—C2—O1	108.4 (3)	C14—C9—C8	124.3 (3)
C1—C2—H2B	110.0	C10—C9—C8	117.9 (3)
O1—C2—H2B	110.0	C11—C10—C9	121.4 (3)
C1—C2—H2C	110.0	C11—C10—H10A	119.3
O1—C2—H2C	110.0	C9—C10—H10A	119.3
H2B—C2—H2C	108.4	C10-C11-C12	118.7 (3)
C6—N3—N2	109.3 (3)	C10-C11-H11A	120.7
C6—N3—C7	130.1 (3)	C12—C11—H11A	120.7
N2—N3—C7	120.3 (3)	F	117.9 (3)
02—C3—O1	124.9 (3)	F—C12—C11	118.6 (3)
O2—C3—C4	125.0 (3)	C13—C12—C11	123.5 (3)
O1—C3—C4	110.1 (2)	C12—C13—C14	117.6 (3)
C3—C4—S1	115.4 (2)	С12—С13—Н13А	121.2
C3—C4—H4A	108.4	C14—C13—H13A	121.2
S1—C4—H4A	108.4	C9—C14—C13	121.1 (3)
C3—C4—H4B	108.4	C9—C14—S2	123.5 (2)
S1—C4—H4B	108.4	C13—C14—S2	115.4 (2)
H4A—C4—H4B	107.5	C7—C15—S2	124.3 (2)
N2—C5—N1	116.4 (3)	C7—C15—S1	119.8 (2)
N2—C5—H5A	121.8	S2—C15—S1	115.82 (17)
C3—O1—C2—C1	175.4 (3)	C7—C8—C9—C10	179.1 (3)
C5—N2—N3—C6	-1.3 (4)	C14—C9—C10—C11	1.1 (4)

C5—N2—N3—C7	-175.4 (3)	C8—C9—C10—C11	-179.6 (3)
C2-01-C3-02	-2.9 (5)	C9—C10—C11—C12	-0.2 (5)
C2	177.9 (3)	C10-C11-C12-F	-179.7 (3)
O2—C3—C4—S1	11.9 (4)	C10-C11-C12-C13	-0.1 (5)
O1—C3—C4—S1	-168.9 (2)	F-C12-C13-C14	179.0 (3)
C15—S1—C4—C3	70.5 (2)	C11—C12—C13—C14	-0.6 (5)
N3—N2—C5—N1	0.9 (5)	C10-C9-C14-C13	-1.8 (4)
C6—N1—C5—N2	-0.1 (5)	C8—C9—C14—C13	178.9 (3)
C5—N1—C6—N3	-0.8 (4)	C10—C9—C14—S2	179.0 (2)
N2—N3—C6—N1	1.4 (4)	C8—C9—C14—S2	-0.2 (4)
C7—N3—C6—N1	174.8 (3)	C12—C13—C14—C9	1.6 (4)
C6—N3—C7—C15	131.6 (4)	C12—C13—C14—S2	-179.2 (2)
N2—N3—C7—C15	-55.7 (4)	C15—S2—C14—C9	0.6 (3)
C6—N3—C7—C8	-48.6 (5)	C15—S2—C14—C13	-178.6 (2)
N2—N3—C7—C8	124.1 (3)	N3—C7—C15—S2	176.7 (2)
C15—C7—C8—O3	-177.0 (3)	C8—C7—C15—S2	-3.0 (5)
N3—C7—C8—O3	3.3 (4)	N3—C7—C15—S1	-2.2 (4)
C15—C7—C8—C9	3.4 (5)	C8—C7—C15—S1	178.1 (2)
N3—C7—C8—C9	-176.4 (3)	C14—S2—C15—C7	0.9 (3)
O3—C8—C9—C14	178.7 (3)	C14—S2—C15—S1	179.85 (16)
C7—C8—C9—C14	-1.6 (4)	C4—S1—C15—C7	-171.9 (2)
O3—C8—C9—C10	-0.6 (5)	C4—S1—C15—S2	9.1 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
C4—H4A····O2 ⁱ	0.97	2.47	3.199 (4)	131
C4—H4 <i>B</i> ···S2	0.97	2.59	2.963 (3)	103
С11—Н11А…О2 ^{іі}	0.93	2.43	3.276 (4)	151

Symmetry codes: (i) -*x*, *y*-1/2, -*z*+1/2; (ii) -*x*, -*y*+2, -*z*.