Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

1-(3-Bromo-2-thienyl)ethanone

M. Mahendra, ${ }^{\text {a }}$ H. K. Vivek, ${ }^{\text {b }}$ S. L. Gaonkar, ${ }^{\text {c B. S. Priya }}{ }^{\text {c }}$ and S. Nanjunda Swamy ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore 570 006, India, ${ }^{\mathbf{b}}$ Department of Biotechnology, Sri Jayachamarajendra College of Engineering, Mysore 570 006, India, and ${ }^{\text {c }}$ Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India
Correspondence e-mail: nanju_xrd@yahoo.com

Received 19 August 2010; accepted 28 August 2010
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$; R factor $=0.027 ; w R$ factor $=0.067$; data-to-parameter ratio $=17.4$.

In the title compound, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{BrOS}$, the non- H and aromatic H atoms lie on a crystallographic mirror plane. In the crystal, molecules are linked into chains propagating along the c axis by intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Related literature

For the uses of acetyl thiophenes, see: Ashalatha et al. (2009); Bando et al. (2010); Ito \& Furukawa (1990); Lutz et al. (2005); Nakayama et al. (1989); Pelly et al. (2005); Yasuhara et al. (2002).

Experimental

Crystal data
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{BrOS}$
$M_{r}=205.07$
Orthorhombic, Cmca
$a=6.8263$ (17) \AA
$b=13.149$ (4) A
$c=16.007(4) \AA$
$V=1436.8(7) \AA^{3}$
$Z=8$
Mo $K \alpha$ radiation
$\mu=5.92 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
$0.25 \times 0.21 \times 0.20 \mathrm{~mm}$
Data collection
Bruker APEXII CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 2001)
$T_{\text {min }}=0.313, T_{\text {max }}=0.384$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.027 \quad 56$ parameters
$w R\left(F^{2}\right)=0.067 \quad \mathrm{H}$-atom parameters constrained
$S=1.06$
973 reflections
$\Delta \rho_{\max }=0.68 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.48 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry $\left(\AA \AA^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{O} 8^{\mathrm{i}}$	0.93	2.43	$3.352(4)$	174
Symmetry code: (i) $-x,-y+\frac{1}{2}, z-\frac{1}{2}$.				

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON.

SNS is grateful to University Grants Commission (UGC), Government of India, for financial support under the major research project [grant No. 38-220/2009 (SR)]. SNS also expresses his sincere gratitude to J. S. S. Mahavidyapeetha for the encouragement towards this research work. MM thanks the University of Mysore for awarding a project (No. DV3/ 136/2007-2008/24.09.09).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI5166).

References

Ashalatha, B. V., Narayana, B. \& Vijaya Raj, K. K. (2009). Phosphorus Sulfur Silicon Relat. Elem. 184, 1904-1919.
Bando, S., Satake, S. \& Kagano, H. (2010). US Patent No. 7659411 B2.
Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Ito, C. \& Furukawa, H. (1990). Chem. Pharm. Bull. 38, 1548-1550.
Lutz, G. B., Thomas, S. \& Hans-Hartwig, O. (2005). Monatsh. Chem. 136, 635653.

Nakayama, J., Konishi, T., Ishii, A. \& Hoshino, M. (1989). Bull. Chem. Soc. Jpn, 62, 2608-2612.
Pelly, S. C., Parkinson, C. J., van Otterlo, W. A. L. \& de Koning, C. B. (2005). J. Org. Chem. 70, 10474-10481.
Sheldrick, G. M. (2001). SADABS. University of Gottingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Yasuhara, A., Suzuki, N. \& Sakamoto, T. (2002). Chem. Pharm. Bull. 50, 143145.

supporting information

Acta Cryst. (2010). E66, o2540 [doi:10.1107/S1600536810034677]

1-(3-Bromo-2-thienyl)ethanone

M. Mahendra, H. K. Vivek, S. L. Gaonkar, B. S. Priya and S. Nanjunda Swamy

S1. Comment

2-Acetyl-3-bromothiophene is one of the well-known bio-active intermediate used for the construction of number of new heterocycles (Lutz et al. 2005; Pelly et al. 2005). It is used as an intermediate for the synthesis of furo[3,2-a]carbazole alkaloid, furostifoline (Ito et al. 1990) and its derivatives, which show broad pharmacological properties (Yasuhara et al. 2002). Chalcones of 2-acetyl-3-bromothiophene exhibit promising anti-inflammatory, analgesic and antibacterial activities (Ashalatha et al. 2009). Acetyl thiophenes are useful as intermediates for preparing number of pharmaceutical compounds (Bando et al. 2010). Acetyl bromothiophenes are also used for the synthesis of number of biologically active pyridazine derivatives (Nakayama et al. 1989). With this background, the title compound (I), was synthesized and we report its crystal structure here.

The non-hydrogen and aromatic hydrogen atoms of the title molecule lie on a crystallographic mirror plane (Fig. 1). The molecules are linked into a chain along the c axis by intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 1).

S2. Experimental

A three-necked, round-bottomed flask was charged with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ and anhydrous $\mathrm{AlCl}_{3}(2.45 \mathrm{~g}, 18.4 \mathrm{mmol})$. The flask was cooled to 273 K . A dropping funnel was charged with freshly distilled acetyl chloride ($1.48 \mathrm{~g}, 19.6 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{ml})$, and was added drop wise for a period of 30 min . The reaction mixture was stirred for 1 h at 273 K . The reaction mass was further cooled to 250 K .3 -Bromothiophene ($1.00 \mathrm{~g}, 6.13 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ was added drop wise for 1 h . The reaction was stirred at 250 K for 30 min and then warmed slowly to room temperature and stirred for 1 h. Then the reaction mixture was quenched on ice water (50 ml). Layers were separated and aqueous layer was repeatedly extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the combined organic extracts were washed with saturated $\mathrm{NaHCO}_{3}(25 \mathrm{ml})$, then brine (25 ml) and finally dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Solvent was removed by distillation at atmospheric pressure. The remaining oily mass was distilled under high vacuum (403 K at 10 mbar) to give a pale yellow oil which was crystallized in n-hexane to give 2-acetyl-3-bromothiophene ($1.10 \mathrm{~g}, 88 \%$) as a yellow solid. Block-shaped yellow single crystals were obtained by slow evaporation of an n-hexane solution.

S3. Refinement

H atoms were placed at idealized positions and allowed to ride on their parent atoms with $\mathrm{C}-\mathrm{H}$ distances in the range $0.93-0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2-1.5 U_{\text {eq }}($ carrier atom $)$.

Figure 1

Molecular structure of (I), showing 50\% probability displacement ellipsoids and the atomic numbering.

Figure 2
Packing diagram of (I), viewed down the a axis. The dashed lines represent hydrogen bonds.

1-(3-Bromo-2-thienyl)ethanone

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{BrOS}$
$M_{r}=205.07$
Orthorhombic, Cmca
Hall symbol: -C 2bc 2
$a=6.8263$ (17) \AA
$b=13.149$ (4) \AA
$c=16.007$ (4) \AA
$V=1436.8(7) \AA^{3}$
$Z=8$

```
\(F(000)=800\)
\(D_{\mathrm{x}}=1.896 \mathrm{Mg} \mathrm{m}^{-3}\)
Mo \(K \alpha\) radiation, \(\lambda=0.71073 \AA\)
Cell parameters from 1982 reflections
\(\theta=2.5-28.4^{\circ}\)
\(\mu=5.92 \mathrm{~mm}^{-1}\)
\(T=293 \mathrm{~K}\)
Block, yellow
\(0.25 \times 0.21 \times 0.20 \mathrm{~mm}\)
```


Data collection

Bruker APEXII CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ω and φ scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
$T_{\min }=0.313, T_{\text {max }}=0.384$

> 12363 measured reflections
> 973 independent reflections
> 790 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.041$
> $\theta_{\max }=28.4^{\circ}, \theta_{\min }=2.5^{\circ}$
> $h=-9 \rightarrow 9$
> $k=-17 \rightarrow 17$
> $l=-21 \rightarrow 20$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.027$
$w R\left(F^{2}\right)=0.067$
$S=1.06$
973 reflections
56 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

> Secondary atom site location: difference Fourier map
> Hydrogen site location: inferred from neighbouring sites
> H -atom parameters constrained
> $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0333 P)^{2}+1.3829 P\right]$
> where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }=0.001$
> $\Delta \rho_{\text {max }}=0.68$ e \AA^{-3}
> $\Delta \rho_{\text {min }}=-0.48$ e \AA^{-3}

Special details

Refinement. Refinement on F^{2} for ALL reflections except those flagged by the user for potential systematic errors.
Weighted R-factors $w R$ and all goodnesses of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The observed criterion of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating - R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$	Occ. (<1)
Br1	0.00000	$0.01659(3)$	$0.38478(2)$	$0.0547(1)$	
S5	0.00000	$0.33480(6)$	$0.30339(5)$	$0.0463(3)$	
O8	0.00000	$0.19098(19)$	$0.51639(13)$	$0.0584(9)$	
C2	0.00000	$0.1452(2)$	$0.33378(18)$	$0.0365(9)$	
C3	0.00000	$0.1547(3)$	$0.2458(2)$	$0.0448(10)$	
C4	0.00000	$0.2530(3)$	$0.2207(2)$	$0.0479(10)$	
C6	0.00000	$0.2366(2)$	$0.37465(17)$	$0.0357(9)$	
C7	0.00000	$0.2587(2)$	$0.46527(19)$	$0.0389(9)$	
C9	0.00000	$0.3685(3)$	$0.4922(2)$	$0.0541(11)$	
H3	0.00000	0.09970	0.20930	0.0540^{*}	
H4	0.00000	0.27350	0.16510	0.0570^{*}	0.500
H9A	0.13140	0.39450	0.49060	0.0810^{*}	0.500
H9B	-0.05010	0.37360	0.54810	0.0810^{*}	0.500
H9C	-0.08130	0.40740	0.45510	0.0810^{*}	

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	$0.0910(3)$	$0.0316(2)$	$0.0415(2)$	0.0000	0.0000	$-0.0009(1)$

S5	$0.0590(5)$	$0.0401(4)$	$0.0397(4)$	0.0000	0.0000	$0.0117(3)$
O8	$0.106(2)$	$0.0408(13)$	$0.0285(12)$	0.0000	0.0000	$0.0023(10)$
C2	$0.0400(16)$	$0.0399(16)$	$0.0297(14)$	0.0000	0.0000	$0.0021(12)$
C3	$0.0512(18)$	$0.0519(18)$	$0.0314(15)$	0.0000	0.0000	$-0.0035(13)$
C4	$0.0526(19)$	$0.063(2)$	$0.0281(14)$	0.0000	0.0000	$0.0069(14)$
C6	$0.0428(16)$	$0.0333(14)$	$0.0309(15)$	0.0000	0.0000	$0.0057(11)$
C7	$0.0482(17)$	$0.0354(15)$	$0.0332(15)$	0.0000	0.0000	$-0.0021(12)$
C9	$0.079(2)$	$0.0385(16)$	$0.0448(19)$	0.0000	0.0000	$-0.0061(14)$

Geometric parameters $\left(\stackrel{A}{A},{ }^{\circ}\right)$

$\mathrm{Br} 1-\mathrm{C} 2$	1.878 (3)	C3-H3	0.93
S5-C4	1.706 (4)	$\mathrm{C} 4-\mathrm{H} 4$	0.93
S5-C6	1.723 (3)	C9-H9A	0.96
O8-C7	1.209 (4)	C9-H9B	0.96
C2-C3	1.414 (4)	C9-H9C	0.96
C2-C6	1.368 (4)	C9—H9A ${ }^{\text {i }}$	0.96
C3-C4	1.354 (6)	C9-H9B ${ }^{\text {i }}$	0.96
C6-C7	1.479 (4)	C9—H9C ${ }^{\text {i }}$	0.96
C7-C9	1.507 (5)		
$\mathrm{Br} 1 \cdots \mathrm{O} 8$	3.114 (3)	$\mathrm{C} 3 \cdots \mathrm{C} 3^{\text {xi }}$	3.4158 (11)
$\mathrm{Br} 1 \cdots \mathrm{Br} 1^{\mathrm{ii}}$	3.7144 (12)	C3 \cdots C3 ${ }^{\text {ix }}$	3.4158 (11)
$\mathrm{Br} 1 \cdots \mathrm{O} 8^{\text {ii }}$	3.155 (3)	$\mathrm{C} 3 \cdots \mathrm{C} 3^{\text {vi }}$	3.4158 (11)
Br1 \cdots S5 ${ }^{\text {iii }}$	3.8453 (15)	$\mathrm{C} 4 \cdots \mathrm{O} 8^{\text {xvi }}$	3.352 (4)
$\mathrm{Br} 1 \cdots \mathrm{Br} 1^{\text {iv }}$	3.7144 (12)	$\mathrm{C} 4 \cdots \mathrm{O} 8^{\text {xvii }}$	3.352 (4)
$\mathrm{Br} 1 \cdots \mathrm{O} 8^{\text {iv }}$	3.155 (3)	C4 ${ }^{\text {a }}$ S5 ${ }^{\text {x }}$	3.5993 (17)
Br1 $\cdots 5^{\text {v }}$	3.8453 (15)	C4 \cdots S $5^{\text {xi }}$	3.5993 (17)
S5 $\cdots \mathrm{C} 4{ }^{\text {vi }}$	3.5993 (17)	$\mathrm{C} 4 \cdots \mathrm{C} 4^{\text {x }}$	3.5397 (16)
S5 \cdots Br1 ${ }^{\text {vii }}$	3.8453 (15)	$\mathrm{C} 4 \cdots \mathrm{C} 4^{\text {xi }}$	3.5397 (16)
S5 \cdots Br1 ${ }^{\text {viii }}$	3.8453 (15)	C4 \cdots S $5^{\text {ix }}$	3.5993 (17)
S5 \cdots C $4{ }^{\text {ix }}$	3.5993 (17)	C4 \cdots S5 ${ }^{\text {vi }}$	3.5993 (17)
S5 \cdots C4 ${ }^{\text {x }}$	3.5993 (17)	C $4 \cdots \mathrm{C} 4^{\text {ix }}$	3.5397 (16)
S5 $\cdots \mathrm{C} 4^{\mathrm{xi}}$	3.5993 (17)	$\mathrm{C} 4 \cdots \mathrm{C} 4^{\text {vi }}$	3.5397 (16)
S5 \cdots H9C ${ }^{\text {i }}$	2.6700	C7 \cdots C $7^{\text {xiv }}$	3.5970 (17)
S5 \cdots H9C	2.6700	C7 \cdots C $7^{\text {xviii }}$	3.5970 (17)
$\mathrm{O} 8 \cdots \mathrm{Br} 1$	3.114 (3)	C7 \cdots C $7^{\text {xix }}$	3.5970 (17)
O8 \cdots C4 $4^{\text {xii }}$	3.352 (4)	C7 \cdots C7 ${ }^{\text {xv }}$	3.5970 (17)
O8 $\cdots \mathrm{C} 4^{\text {xiii }}$	3.352 (4)	C9 \cdots C9 ${ }^{\text {xx }}$	3.467 (6)
O8 $\cdots \mathrm{Br} 1^{\text {ii }}$	3.155 (3)	C9 \cdots C $9^{\text {xxi }}$	3.467 (6)
O8 $\cdots \mathrm{Br}^{\text {iv }}$	3.155 (3)	$\mathrm{H} 4 \cdots \mathrm{O} 8^{\text {xvi }}$	2.4300
O8 $\cdots{ }^{\text {dii }}$	2.4300	$\mathrm{H} 4 \cdots \mathrm{O} 8^{\text {xvii }}$	2.4300
O8 \cdots H4xiii	2.4300	H9A \cdots O8xviii	2.7600
O8 $\cdots \mathrm{H}^{\text {a }}{ }^{\text {xiv }}$	2.7600	H9A $\cdots \mathrm{O}^{\mathrm{xv}}$	2.7600
O8... $\mathrm{H9A}^{\text {xv }}$	2.7600	H9C...S5	2.6700
$\mathrm{C} 3 \cdots \mathrm{C} 3^{x}$	3.4158 (11)		
C4-S5-C6	92.36 (16)	C7-C9-H9B	109.00

$\mathrm{Br} 1-\mathrm{C} 2-\mathrm{C} 3$	$120.8(2)$
$\mathrm{Br} 1-\mathrm{C} 2-\mathrm{C} 6$	$125.7(2)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 6$	$113.5(3)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$112.3(3)$
$\mathrm{S} 5-\mathrm{C} 4-\mathrm{C} 3$	$111.8(2)$
$\mathrm{S} 5-\mathrm{C} 6-\mathrm{C} 2$	$110.0(2)$
$\mathrm{S} 5-\mathrm{C} 6-\mathrm{C} 7$	$120.1(2)$
$\mathrm{C} 2-\mathrm{C} 6-\mathrm{C} 7$	$129.9(2)$
$\mathrm{O} 8-\mathrm{C} 7-\mathrm{C} 6$	$121.3(3)$
$\mathrm{O} 8-\mathrm{C} 7-\mathrm{C} 9$	$120.8(3)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 9$	$118.0(2)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	124.00
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	124.00
$\mathrm{~S} 5-\mathrm{C} 4-\mathrm{H} 4$	124.00
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4$	124.00
$\mathrm{C} 7-\mathrm{C} 9-\mathrm{H} 9 \mathrm{~A}$	109.00
$\mathrm{C} 6-\mathrm{S} 5-\mathrm{C} 4-\mathrm{C} 3$	0.00
$\mathrm{C} 4-\mathrm{S} 5-\mathrm{C} 6-\mathrm{C} 2$	0.00
$\mathrm{C} 4-\mathrm{S} 5-\mathrm{C} 6-\mathrm{C} 7$	-180.00
$\mathrm{Br} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	-180.00
$\mathrm{C} 6-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	0.00
$\mathrm{Br} 4-\mathrm{C} 2-\mathrm{C} 6-\mathrm{S} 5$	180.00
$\mathrm{Br} 1-\mathrm{C} 2-\mathrm{C} 6-\mathrm{C} 7$	0.00

C7-C9-H9C	109.00
C7-C9-H9A ${ }^{\text {i }}$	109.00
C7-C9-H9B ${ }^{\text {i }}$	109.00
C7-C9-H9C ${ }^{\text {i }}$	109.00
H9A-C9-H9B	109.00
H9A-C9-H9C	109.00
H9A-C9-H9A ${ }^{\text {i }}$	138.00
H9A-C9-H9B ${ }^{\text {i }}$	71.00
H9B-C9-H9C	109.00
H9A - C9-H9B	71.00
H9B-C9-H9C ${ }^{\text {i }}$	138.00
H9B - C9-H9C	138.00
H9C-C9-H9C ${ }^{\text {i }}$	71.00
H9A - C9-H9B ${ }^{\text {i }}$	109.00
H9A - C9-H9C ${ }^{\text {i }}$	109.00
H9B- ${ }^{\text {C }}$ - $-\mathrm{H} 9 \mathrm{C}^{\text {i }}$	109.00
C3-C2-C6-S5	0.00
C3-C2-C6-C7	180.00
C2-C3-C4-S5	0.00
S5-C6-C7-O8	-180.00
S5-C6-C7-C9	0.00
C2-C6-C7-O8	0.00
C2-C6-C7-C9	-180.00

Symmetry codes: (i) $-x, y, z$; (ii) $x,-y,-z+1$; (iii) $-x, y-1 / 2,-z+1 / 2$; (iv) $-x,-y,-z+1$; (v) $x, y-1 / 2,-z+1 / 2$; (vi) $x+1 / 2, y,-z+1 / 2$; (vii) $-x, y+1 / 2,-z+1 / 2$; (viii) $x, y+1 / 2,-z+1 / 2$; (ix) $x-1 / 2, y,-z+1 / 2$; (x) $-x-1 / 2, y,-z+1 / 2$; (xi) $-x+1 / 2, y,-z+1 / 2$; (xii) $-x,-y+1 / 2, z+1 / 2$; (xiii) $x,-y+1 / 2, z+1 / 2$; (xiv) $x-1 / 2$, $-y+1 / 2,-z+1$; (xv) $-x+1 / 2,-y+1 / 2,-z+1$; (xvi) $-x,-y+1 / 2, z-1 / 2$; (xvii) $x,-y+1 / 2, z-1 / 2$; (xviii) $x+1 / 2,-y+1 / 2,-z+1$; (xix) $-x-1 / 2,-y+1 / 2,-z+1$; (xx) $x,-y+1,-z+1 ;($ xxi $)-x,-y+1,-z+1$.

Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 4 — \mathrm{H} 4 \cdots \mathrm{O}^{\mathrm{xvi}}$	0.93	2.43	$3.352(4)$	174

Symmetry code: (xvi) $-x,-y+1 / 2, z-1 / 2$.

