

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Trihexyphenidyl hydrochloride: a powder diffraction study

Elisabetta Maccaroni,^a* Luciana Malpezzi^a and Norberto Masciocchi^b

^aDipartimento di Chimica, Materiali e Ingegneria Chimica "G. Natta", Politecnico di Milano, via Mancinelli, 7, 20131 Milano, Italy, and ^bDipartimento di Scienze Chimiche e Ambientali, Università degli Studi dell'Insubria, via Valleggio, 11, 22100 Como, Italy

Correspondence e-mail: elisabetta.maccaroni@chem.polimi.it

Received 17 May 2010; accepted 1 September 2010

Key indicators: powder X-ray study; T = 298 K; mean σ (C–C) = 0.015 Å; R factor = 0.051; wR factor = 0.075; data-to-parameter ratio = 499.

In the cation of the title compound [systematic name: 1-(3-cyclohexyl-3-hydroxy-3-phenylpropyl)piperidinium chloride], $C_{20}H_{32}NO^+ \cdot Cl^-$, the cyclohexyl and piperidine rings are in chair conformations. In the crystal structure, cations and anions are linked into chains along the *c*-axis direction *via* O-H···Cl and N-H···Cl hydrogen bonds. Weak intermolecular C-H···Cl interactions link further these chains into layers parallel to the *bc* plane. The salt, obtained from a racemic solution, was found to crystallize in the chiral *P*2₁2₁2 space group, indicating that, in the absence of any evident chirality-inducing process, the polycrystalline powders consist of an equivalent mixture of *R* and *S* enantiomers, forming a racemic conglomerate.

Related literature

For characterization of related structures, see Camerman & Camerman (1971*a*, 1972*a*); Codding (1986); Marubayashi *et al.* (1999). For structure–activity relationships, see Camerman & Camerman (1970, 1971*a*,*b*, 1972*a*,*b*, 1981). For the profile function, see: Cheary & Coelho (1992) and for the March–Dollase orientation correction, see: Dollase (1986).

Cu $K\alpha$ radiation, $\lambda = 1.540562$,

 $V = 1987.08 (12) \text{ Å}^3$

Flat sheet, $15 \times 20 \text{ mm}$

1.544390 Å

Scan method: step $2\theta_{\min} = 5^{\circ}, 2\theta_{\max} = 104.86^{\circ},$

 $2\theta_{\text{step}} = 0.02^{\circ}$

T = 298 K

Z = 4

Experimental

Crystal data

$C_{20}H_{32}NO^{+}\cdot Cl^{-}$
$M_r = 337.93$
Orthorhombic, $P2_12_12$
a = 30.0265 (8) Å
b = 11.2297 (4) Å
c = 5.8931 (2) Å

Data collection

Bruker D8 Advance diffractometer
Specimen mounting: packed powder
Data collection mode: reflection

Refinement

$R_{\rm p} = 0.051$	4994 data points
$R_{wp} = 0.075$	100 parameters
$R_{\rm exp} = 0.008$	46 restraints
$R_{\text{Bragg}} = 0.023$	H-atom parameters constrained
$\chi^2 = 91.317$	•

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N1-H1···Cl ⁱ	0.91	2.25	3.141 (13)	166
O1−H2···Cl	0.88	2.11	2.986 (13)	173
$C20-H20B\cdots Cl$	0.97	2.76	3.623 (12)	149

Symmetry code: (i) x, y, z + 1.

Data collection: *D8 Software* (Bruker, 2005); cell refinement: *TOPAS-R* (Coelho, 2005); data reduction: *TOPAS-R*; program(s) used to solve structure: *TOPAS-R*; program(s) used to refine structure: *TOPAS-R*; molecular graphics: *SHELXTL/NT* (Sheldrick, 2008); software used to prepare material for publication: *enCIFer* (Allen *et al.*, 2004).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2721).

References

Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.

Bruker (2005). D8 Software. Bruker AXS Inc., Madison, Wisconsin, USA.

- Camerman, A. & Camerman, N. (1970). Science, 168, 1457-1458.
- Camerman, N. & Camerman, A. (1971a). Mol. Pharmacol. 7, 406-412.
- Camerman, A. & Camerman, N. (1971b). Acta Cryst. B27, 2205–2211.
- Camerman, A. & Camerman, N. (1972a). J. Am. Chem. Soc. 94, 268–272.
- Camerman, N. & Camerman, A. (1972b). J. Am. Chem. Soc. 94, 8553–8556.
- Camerman, A. & Camerman, N. (1981). Acta Cryst. B37, 1677–1679.
- Cheary, R. W. & Coelho, A. (1992). J. Appl. Cryst. 25, 109–121. Codding, P. W. (1986). Acta Cryst. B42, 632–638.
- Coelho, A. (2005). TOPAS-R. Bruker AXS, Karlsruhe, Germany.

Dollase, W. A. (1986). J. Appl. Cryst. 19, 267–272.

- Marubayashi, N., Yamashita, M. & Hirayama, N. (1999). *Anal. Sci.* **15**, 815–816.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2010). E66, o2511 [doi:10.1107/S1600536810035294]

Trihexyphenidyl hydrochloride: a powder diffraction study

Elisabetta Maccaroni, Luciana Malpezzi and Norberto Masciocchi

S1. Comment

The title compound, THPD-HCl (THPD = trihexyphenidyl) (1), crystallizes in the non-centrosymmetric space group $P2_{1}2_{1}2_{2}$, thus powders of 1 are formed by an equivalent mixture of enantiomorphic crystals in a racemic conglomerate. 1 consists of an ionic packing of N-protonated cations and chloride anions. The organic cation is formed by a phenyl and a cyclohexyl groups connected to the asymmetric carbon atom (C3) which is further linked to an hydroxyl group and to a protonated N-ethyl piperidine moiety (see Fig. 1). Trihexyphenidyl hydrochloride (1), is a salt used in the treatment of all forms of Parkinson's disease. Trihexyphenidyl and other pharmacological agents of the same class, such as procyclidine hydrochloride and biperiden, were completely characterized by single-crystal X-ray analyses (Camerman, 1971a, 1972a; Codding, 1986; Marubayashi et al., 1999), which showed some common stereochemical features which were correlated to their common pharmacological activity. The presence of the electron donating OH group and of the heterocyclic nitrogen has been considered as the typical stereochemical feature of these compounds. The distance between the two groups is 4.00 Å, 2.76 Å and 3.55 Å for 1, THPD, biperiden and procyclidine hydrochloride, in sequence. The shorter N—O distance observed in THPD allows the formation of intramolecular hydrogen bonds O—H…N. At variance, 1 and procyclidine hydrochloride form intermolecular hydrogen bonds through chloride anions. In the crystal, the NH group is pointing away from the direction of the OH group, allowing the formation of molecular chains running along the c axis, through intermolecular O—H···Cl and N—H···Cl hydrogen bonds (Table 1). Moreover, weaker C—H···Cl interactions (Table 1) link the chains in a three-dimensional network.

S2. Experimental

Samples of the racemic mixture of the title compound were kindly provided by Dr. C. Pellegatta (Solmag, Divisione di Fidia Farmaceutici S.p.A., Garbagnate Milanese, Italy)

S3. Refinement

Approximate cell parameters for 1 were determined by the SVD indexing algorithm present in the program TOPAS-*R* (Coelho, 2005), using the first 20 peak positions, M(20) = 31. Structure solution was initiated by employing a semi-rigid molecular fragment (flexible about five torsion angles) taken from the known crystal structure of THPD (see Camerman & Camerman 1972*a*) and a freely floating Cl⁻ anion. Simulated annealing allowed the location and orientation of the used fragments, later refined by the Rietveld method, using the independent atom model for non-H atoms (geometrically restrained to achieve convergence to a chemically plausible structure) and idealized H-atom positions. The diffraction profile and the difference between the measured and calculated profiles are shown in Fig. 3.

Figure 1

The molecular structure of 1 showing the atomic numbering and 50% probability displacement spheres.

Figure 2

A portion of the crystal packing of 1 viewed down b axis. Intermolecular hydrogen contacts (O—H···Cl and N—H···Cl) are shown as dashed lines.

 $D_{\rm x} = 1.130 {\rm Mg} {\rm m}^{-3}$

flat sheet, 15×20 mm

101.325 kPa

Scan method: step

T = 298 K

white

Cu *K* α radiation, $\lambda = 1.540562$, 1.544390 Å

Specimen preparation: Prepared at 298 K and

Particle morphology: no specific habit

Specimen mounting: packed powder

 $2\theta_{\min} = 5^{\circ}, 2\theta_{\max} = 104.86^{\circ}, 2\theta_{\text{step}} = 0.02^{\circ}$

Data collection mode: reflection

Figure 3

The Rietveld plot for 1 with peak markers at the bottom. The inset shows the high angle region $(2\theta > 40^\circ)$.

1-(3-cyclohexyl-3-hydroxy-3-phenylpropyl)piperidinium chloride

Crystal data

 $C_{20}H_{32}NO^+ \cdot Cl^ M_r = 337.93$ Orthorhombic, $P2_12_12$ a = 30.0265 (8) Å *b* = 11.2297 (4) Å c = 5.8931 (2) Å $V = 1987.08 (12) \text{ Å}^3$ Z = 4F(000) = 736

Data collection

Bruker AXS D8 Advance diffractometer Radiation source: sealed X-ray tube Ni filter monochromator

Refinement

Refinement on <i>I</i> _{net}	Profile function: fundamental parameters
Least-squares matrix: full with fixed elements	(Cheary & Coelho, 1992)
per cycle	100 parameters
$R_{\rm p} = 0.051$	46 restraints
$R_{wp} = 0.075$	H-atom parameters constrained
$R_{\rm exp} = 0.008$	$w = 1/\sigma (Y_{obs})^2$
$R_{\mathrm{Bragg}} = 0.023$	$(\Delta/\sigma)_{\rm max} = 0.01$
$\chi^2 = 91.317$	Background function: Chebyshev polynomial
4994 data points	Preferred orientation correction: March-Dollase
	(Dollase, 1986); direction of preferred
	orientation 100, texture parameter $r = 0.763$).

Special details

Geometry. Bond distances, angles *etc.* have been calculated using the rounded fractional coordinates. All e.s.d.'s are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	-0.1539 (3)	0.9849 (13)	-0.521 (2)	0.0703 (16)*

N1	-0.2407 (2)	1.0155 (11)	-0.0092 (18)	0.0703 (16)*
C1	-0.1953 (3)	1.0772 (12)	-0.079 (3)	0.0703 (16)*
C2	-0.1630(3)	0.9800 (12)	-0.118(2)	0.0703 (16)*
C3	-0.1306 (3)	0.9977 (10)	-0.3049 (17)	0.0703 (16)*
C4	-0.0896(3)	0.9088 (8)	-0.3708 (19)	0.0703 (16)*
C5	-0.1053(3)	0.7793 (9)	-0.349(2)	0.0703 (16)*
C6	-0.0643(3)	0.6928 (9)	-0.3714(19)	0.0703 (16)*
C7	-0.0458(3)	0.7068(9)	-0.6064(19)	0.0703 (16)*
C8	-0.0271(3)	0.8346 (9)	-0.617(2)	0.0703 (16)*
C9	-0.0682(3)	0.0210(9)	-0.612(2)	0.0703 (16)*
C10	-0.1089(3)	1 1202 (8)	-0.2851(17)	0.0703 (16)*
C11	-0.1119(4)	1.1202(0) 1 2011(9)	-0.4647(19)	0.0703 (16)*
C12	-0.0882(3)	1.2011(9) 1 3065 (10)	-0.4550(18)	0.0703 (16)*
C12 C13	-0.0622(3)	1.3003(10) 1.3275(10)	-0.2593(16)	0.0703(10)
C13	-0.0603(4)	1.3273(10) 1.2400(0)	-0.0726(18)	0.0703(10)
C14	-0.0003(4)	1.2490 (9)	-0.0720(18)	$0.0703(10)^{\circ}$
	-0.0837(4)	1.1401 (9)	-0.0896(18)	0.0703 (16)*
C16	-0.2651(3)	1.0901 (10)	0.1634 (19)	0.0703 (16)*
C17	-0.3081(3)	1.03/5(12)	0.2536 (16)	0.0703 (16)*
C18	-0.3374(3)	1.0063 (13)	0.051 (2)	0.0703 (16)*
C19	-0.3122 (3)	0.9158 (10)	-0.091 (2)	0.0703 (16)*
C20	-0.2705 (3)	0.9634 (13)	-0.1905 (16)	0.0703 (16)*
Cl	-0.22190 (13)	0.8068 (5)	-0.6675 (10)	0.0703 (16)*
H1	-0.23187	0.95067	0.07164	0.0703*
H1A	-0.19914	1.12387	-0.21648	0.0703*
H1B	-0.18491	1.12941	0.04069	0.0703*
H2	-0.17234	0.92801	-0.56039	0.0703*
H2A	-0.17952	0.90757	-0.14864	0.0703*
H2B	-0.14641	0.96752	0.02116	0.0703*
H4	-0.06586	0.92116	-0.25892	0.0703*
H5A	-0.12688	0.76178	-0.46648	0.0703*
H5B	-0.11951	0.76773	-0.20272	0.0703*
H6A	-0.04184	0.71266	-0.25946	0.0703*
H6B	-0.07368	0.61116	-0.34674	0.0703*
H7A	-0.06895	0.69573	-0.71908	0.0703*
H7B	-0.02234	0.64909	-0.63362	0.0703*
H8A	-0.01016	0.84599	-0.75576	0.0703*
H8B	-0.00772	0.84971	-0.48882	0.0703*
H9A	-0.05872	1.00254	-0.63816	0.0703*
H9B	-0.08956	0.89932	-0.72825	0.0703*
H11	-0.12967	1.18414	-0.58978	0.0703*
H12	-0.08933	1.36158	-0.57273	0.0703*
H13	-0.04506	1 39670	-0.25339	0.0703*
H14	-0.04432	1.25872	0.05746	0.0703*
H15	-0.08230	1.08356	0.02551	0.0703*
H16A	-0 27176	1 16675	0.09554	0.0703*
H16R	-0.24530	1 10473	0.09004	0.0703*
H17A	-0 32313	1.10423	0.35033	0.0703*
H17R	-0.30188	0.06667	0.34216	0.0703*
111/D	0.50100	0.70002	0.57410	0.0705

supporting information

H18A	-0.36547	0.97302	0.10171	0.0703*	
H18B	-0.34357	1.07706	-0.03843	0.0703*	
H19A	-0.30505	0.84757	0.00304	0.0703*	
H19B	-0.33137	0.88837	-0.21298	0.0703*	
H20A	-0.27764	1.02447	-0.30103	0.0703*	
H20B	-0.25477	0.89994	-0.26842	0.0703*	

Geometric parameters (Å, °)

01—C3	1.460 (15)	C2—H2A	0.9696
O1—H2	0.8767	C2—H2B	0.9696
N1—C1	1.584 (13)	C4—H4	0.9808
N1-C20	1.511 (14)	C5—H5A	0.9684
N1-C16	1.508 (15)	С5—Н5В	0.9705
N1—H1	0.9096	C6—H6A	0.9694
C1—C2	1.478 (17)	C6—H6B	0.9700
С2—С3	1.483 (14)	С7—Н7А	0.9693
C3—C4	1.632 (14)	C7—H7B	0.9704
C3—C10	1.527 (14)	C8—H8A	0.9714
C4—C5	1.534 (13)	C8—H8B	0.9685
C4—C9	1.566 (16)	С9—Н9А	0.9701
C5—C6	1.574 (13)	С9—Н9В	0.9697
С6—С7	1.500 (15)	C11—H11	0.9297
С7—С8	1.542 (14)	C12—H12	0.9301
С8—С9	1.571 (13)	C13—H13	0.9294
C10-C11	1.398 (14)	C14—H14	0.9297
C10-C15	1.396 (15)	C15—H15	0.9301
C11—C12	1.382 (15)	C16—H16A	0.9700
C12—C13	1.416 (15)	C16—H16B	0.9698
C13—C14	1.411 (15)	C17—H17A	0.9700
C14—C15	1.414 (15)	C17—H17B	0.9700
C16—C17	1.516 (14)	C18—H18A	0.9693
C17—C18	1.524 (15)	C18—H18B	0.9713
C18—C19	1.518 (17)	C19—H19A	0.9697
C19—C20	1.482 (14)	C19—H19B	0.9710
C1—H1A	0.9718	C20—H20A	0.9698
C1—H1B	0.9688	C20—H20B	0.9704
Cl…C20	3.623 (12)	H2B…C15	2.7799
Cl…O1	2.986 (13)	H2B…H1	2.5900
Cl…N1 ⁱ	3.141 (13)	H2B····H9B ⁱⁱ	2.3837
Cl···C16 ⁱ	3.577 (12)	H2B…H15	2.3248
Cl···H20B	2.7567	H4…C15	2.7069
Cl···H16A	2.9787	Н4…Н6А	2.4500
Cl···H5A	3.1305	H4…H8B	2.3510
C1···H17B ⁱ	2.9986	H4…H15	2.5257
Cl···H1 ⁱ	2.2501	H5A…Cl	3.1305
Cl···H2	2.1132	H5A…H9B	2.4538

O1…Cl	2.986 (13)	H5A…H17A	2.4986
O1…H9B	2.4795	Н5А…Н7А	2.4065
O1…H11	2.3874	H5A…O1	2.6532
O1…H2B ⁱ	2.7145	Н5А…Н2	2.3779
O1…H5A	2.6532	H5B…H2A	2.4113
O1…H1A	2.7389	H5B…C2	2.7635
N1…Cl ⁱⁱ	3.141 (13)	Н6А…Н4	2.4500
C1…C15	3.425 (15)	H6A…H8B	2.2902
C9…C11	3.516 (15)	Н7А…Н5А	2.4065
C11···C9	3.516 (15)	Н7А…Н9В	2.3691
C15…C1	3.425 (15)	H8A…H14 ^{iv}	2.3521
C16···Cl ⁱⁱ	3.577 (12)	H8A…C14 ^{iv}	3.0168
C17…C20 ⁱⁱ	3.564 (14)	H8B…H4	2.3510
C20Cl	3.623 (12)	H8B…H6A	2.2902
C20···C17 ⁱ	3.564 (14)	H9A···C11	2.9269
C1H19A	3,0690	H9AC10	2.9209
C2···H5B	2 7635	H9AH15 ⁱ	2.0000
C2H20B	3 0310	H9R···H5A	2.2525
C2H15	2 8176	H9B···H7A	2.1550
C4H15	3 0584	H9B····O1	2.3071
C5H2	2 8970	H9B···H2B ⁱ	2.4795
C5H17A	2.8970	H9BH15 ⁱ	2.5657
C5H2A	2.9000	H1101	2.3304
C9H15 ⁱ	2.9049		2.3674
C10H9A	2.8409	H15C4	3 0584
C10···H14	2.0000	H15C9 ⁱⁱ	2 8409
C10····H1B	2.7400	H15H2B	2.0409
	2.9042	ш15ц <i>і</i>	2.5240
C12H18A	2.3203		2.3237
	2.0707		2.2929
C14H4	2 7060	H15C2	2.3304
С15н2Р	2.7009	H15C2	2.01/0
	2.1199		2.9/0/
C1/H20A"	2.7852		2.3072
C20H1/B	2.9110		2.3331
	2.8138		2.4980
	2.5900		2.9860
	2.5165	HI/A···H20A"	2.5901
	2.0953	HI/B····Cl ^a	2.9986
	2.2501		2.9110
HIA…OI	2.7389		2.4063
HIA····CI0	2.7400	HI/B····H20A"	2.3180
HIB····CI0	2.9842		2.8/6/
	2.4818	H18B···H20A	2.5811
	2.3531	HI8B····HI6A	2.5072
H2C5	2.8970	H19A····C1	3.0690
H2···Cl	2.1132	H19A···H1	2.5165
H2···H2A	2.4468	H19A···H17B	2.4063
H2···H5A	2.3779	H19A…H1B	2.4818

H2A…C5	2.9043	H20A…H17B ⁱ	2.3180
H2A…H5B	2.4113	H20A…H18B	2.5811
H2A…H20B	2.3689	H20A····C17 ⁱ	2.7832
H2A…C20	2.8138	H20A…H17A ⁱ	2.5901
H2A…H1	2.0953	H20B…Cl	2.7567
H2A…H2	2.4468	H20B…C2	3.0310
H2B…O1 ⁱⁱ	2.7145	H20B···H2A	2.3689
C3—O1—H2	127.25	С5—С6—Н6В	110.09
C1—N1—C16	110.5 (10)	С7—С6—Н6А	110.27
C16—N1—C20	113.8 (7)	С7—С6—Н6В	110.17
C1—N1—C20	119.7 (10)	H6A—C6—H6B	108.52
C20—N1—H1	103.47	С6—С7—Н7А	110.70
C1—N1—H1	103.61	С6—С7—Н7В	110.57
C16—N1—H1	103.48	С8—С7—Н7А	110.65
N1—C1—C2	106.4 (10)	С8—С7—Н7В	110.52
C1—C2—C3	116.5 (11)	H7A—C7—H7B	108.76
O1—C3—C4	95.4 (8)	С7—С8—Н8А	110.32
O1—C3—C10	111.1 (9)	C7—C8—H8B	110.50
C2—C3—C4	126.1 (9)	С9—С8—Н8А	110.22
C2—C3—C10	110.1 (9)	С9—С8—Н8В	110.43
O1—C3—C2	108.7 (8)	H8A—C8—H8B	108.60
C4—C3—C10	104.3 (7)	С4—С9—Н9А	110.35
C3—C4—C5	109.2 (7)	С4—С9—Н9В	110.34
C3—C4—C9	118.1 (8)	С8—С9—Н9А	110.45
C5—C4—C9	106.6 (8)	С8—С9—Н9В	110.51
C4—C5—C6	109.7 (7)	H9A—C9—H9B	108.63
C5—C6—C7	107.6 (8)	C10—C11—H11	120.28
C6—C7—C8	105.6 (9)	C12—C11—H11	120.24
C7—C8—C9	106.8 (7)	C11—C12—H12	121.32
C4—C9—C8	106.5 (8)	C13—C12—H12	121.14
C11—C10—C15	123.8 (9)	С12—С13—Н13	118.29
C3—C10—C11	120.0 (9)	C14—C13—H13	118.26
C3—C10—C15	116.0 (8)	C13—C14—H14	121.10
C10—C11—C12	119.5 (10)	C15—C14—H14	121.04
C11—C12—C13	117.5 (10)	C10—C15—H15	121.13
C12—C13—C14	123.5 (10)	C14—C15—H15	121.09
C13—C14—C15	117.9 (10)	N1—C16—H16A	108.37
C10-C15-C14	117.8 (9)	N1—C16—H16B	108.33
N1-C16-C17	115.7 (9)	C17—C16—H16A	108.34
C16—C17—C18	107.9 (8)	С17—С16—Н16В	108.35
C17—C18—C19	107.3 (8)	H16A—C16—H16B	107.45
C18—C19—C20	113.4 (10)	C16—C17—H17A	110.15
N1-C20-C19	111.1 (8)	C16—C17—H17B	110.15
N1—C1—H1A	110.51	C18—C17—H17A	110.12
N1—C1—H1B	110.66	C18—C17—H17B	110.12
C2—C1—H1A	110.28	H17A—C17—H17B	108.46
C2—C1—H1B	110.41	C17—C18—H18A	110.43

H1A—C1—H1B	108.59	C17—C18—H18B	110.31
C1—C2—H2A	108.23	C19—C18—H18A	110.20
C1—C2—H2B	108.19	C19—C18—H18B	110.09
C3—C2—H2A	108.04	H18A—C18—H18B	108.47
C3—C2—H2B	108.10	C18—C19—H19A	108.92
H2A—C2—H2B	107.39	C18—C19—H19B	108.96
C3—C4—H4	107.56	С20—С19—Н19А	108.91
C5—C4—H4	107.53	C20—C19—H19B	108.80
C9—C4—H4	107.42	H19A—C19—H19B	107.67
C4—C5—H5A	109.77	N1—C20—H20A	109.39
C4—C5—H5B	109.65	N1—C20—H20B	109.31
С6—С5—Н5А	109.75	С19—С20—Н20А	109.50
С6—С5—Н5В	109.62	C19—C20—H20B	109.48
H5A—C5—H5B	108.29	H20A—C20—H20B	108.00
С5—С6—Н6А	110.19		
C16—N1—C1—C2	144.9 (11)	C2-C3-C10-C11	-122.4 (10)
C20—N1—C1—C2	-79.8 (14)	C3—C4—C5—C6	-170.5 (8)
C1—N1—C16—C17	-176.9 (9)	C3—C4—C9—C8	174.3 (8)
C20—N1—C16—C17	45.0 (14)	C5—C4—C9—C8	-62.5 (9)
C1—N1—C20—C19	-177.0 (10)	C9—C4—C5—C6	60.9 (10)
C16—N1—C20—C19	-43.2 (14)	C4—C5—C6—C7	-64.1 (11)
N1—C1—C2—C3	143.5 (10)	C5—C6—C7—C8	66.4 (9)
C1—C2—C3—O1	-72.9 (14)	C6—C7—C8—C9	-69.6 (10)
C1—C2—C3—C4	175.4 (10)	C7—C8—C9—C4	67.6 (10)
C1—C2—C3—C10	49.0 (12)	C3—C10—C11—C12	-173.1 (9)
O1—C3—C4—C5	-77.8 (10)	C15—C10—C11—C12	1.4 (16)
C2—C3—C10—C15	62.7 (11)	C3—C10—C15—C14	175.3 (9)
C4—C3—C10—C11	99.8 (10)	C11—C10—C15—C14	0.6 (16)
C4—C3—C10—C15	-75.2 (11)	C10—C11—C12—C13	-0.5 (15)
C10—C3—C4—C5	168.8 (8)	C11—C12—C13—C14	-2.4 (16)
C10—C3—C4—C9	-69.3 (10)	C12—C13—C14—C15	4.4 (17)
O1—C3—C10—C11	-1.9 (13)	C13—C14—C15—C10	-3.4 (16)
O1—C3—C10—C15	-176.8 (9)	N1-C16-C17-C18	-53.6 (13)
O1—C3—C4—C9	44.1 (11)	C16—C17—C18—C19	60.4 (13)
C2—C3—C4—C5	40.0 (13)	C17—C18—C19—C20	-64.4 (12)
C2—C3—C4—C9	161.9 (9)	C18—C19—C20—N1	54.5 (13)

Symmetry codes: (i) *x*, *y*, *z*-1; (ii) *x*, *y*, *z*+1; (iii) -*x*, -*y*+2, *z*+1; (iv) -*x*, -*y*+2, *z*-1.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
N1—H1····Cl ⁱⁱ	0.91	2.25	3.141 (13)	166
O1—H2···Cl	0.88	2.11	2.986 (13)	173
C11—H11…O1	0.93	2.39	2.756 (17)	103
C20—H20 <i>B</i> ···Cl	0.97	2.76	3.623 (12)	149

Symmetry code: (ii) x, y, z+1.