organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2,2'-(Disulfanediyl)dibenzoic acid-N,N'bis(3-pyridylmethyl)ethanediamide (1/1)

Hadi D. Arman,^a Tyler Miller,^a Pavel Poplaukhin^b and Edward R. T. Tiekink^c*

^aDepartment of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA, ^bChemical Abstracts Service, 2540 Olentangy River Rd, Columbus, Ohio 43202, USA, and ^cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: edward.tiekink@gmail.com

Received 12 September 2010; accepted 13 September 2010

Key indicators: single-crystal X-ray study; T = 98 K; mean σ (C–C) = 0.003 Å; R factor = 0.051; wR factor = 0.120; data-to-parameter ratio = 17.1.

The asymmetric unit of the title cocrystal, C₁₄H₁₄N₄O₂.-C₁₄H₁₀O₄S₂, comprises a twisted 2,2'-(disulfanediyl)dibenzoic acid molecule [dihedral angle between the benzene rings = 76.35 (10)°] and a U-shaped N. N'-bis(3-pyridylmethyl)ethanediamide molecule with the pyridyl groups lying to the same side of the central diamide moiety [C-C-C-N = 113.8 (2)]and $-117.6 (2)^{\circ}$]. The latter aggregate into supramolecular tapes propagating along the a axis via centrosymmetric eightmembered amide $\{\cdots \text{OCNH}\}_2$ synthons. Intramolecular N- $H \cdots O$ hydrogen bonds are observed. The 2,2'-(disulfanediyl)dibenzoic acid molecules form carboxyl-pyridine O-H···N hydrogen bonds, bridging a pyridine residue below the plane of the tape and one above the plane with two intervening N, N'-bis(3-pyridylmethyl)ethanediamide molecules. The supramolecular chains are consolidated in the crystal packing by C-H···O contacts. An intermolecular C-H···S interaction also occurs.

Related literature

For related studies on co-crystal formation involving 2-[(2-carboxyphenyl)disulfanyl]benzoic acid, see: Broker & Tiekink (2007, 2010); Broker *et al.* (2008); Arman *et al.* (2010). For crystal engineering studies on N,N'-bis(3-pyridylmethyl)-ethanediamide, see: Poplaukhin & Tiekink (2010).

Experimental

Crystal data

 $\begin{array}{l} C_{14}H_{14}N_4O_2\cdot C_{14}H_{10}O_4S_2\\ M_r = 576.63\\ \text{Triclinic, } P\overline{1}\\ a = 10.015 \ (3) \ \text{\AA}\\ b = 10.310 \ (3) \ \text{\AA}\\ c = 14.795 \ (4) \ \text{\AA}\\ \alpha = 86.910 \ (16)^\circ\\ \beta = 78.052 \ (15)^\circ \end{array}$

Data collection

Rigaku AFC12/SATURN724 diffractometer Absorption correction: multi-scan (ABSCOR; Higashi, 1995) $T_{min} = 0.755, T_{max} = 1.000$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.051$ $wR(F^2) = 0.120$ S = 1.09 6365 reflections 373 parameters4 restraints 10806 measured reflections 6365 independent reflections 5644 reflections with $I > 2\sigma(I)$ $R_{int} = 0.031$

 $\gamma = 69.554 \ (10)^{\circ}$

Z = 2

V = 1400.1 (7) Å³

Mo $K\alpha$ radiation

 $0.50 \times 0.19 \times 0.10 \text{ mm}$

 $\mu = 0.24 \text{ mm}^{-1}$

T = 98 K

H atoms treated by a mixture of independent and constrained refinement
$$\begin{split} &\Delta\rho_{max}=0.36~e~{\rm \AA}^{-3}\\ &\Delta\rho_{min}=-0.41~e~{\rm \AA}^{-3} \end{split}$$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2 - H1n \cdots O2 N2 - H1n \cdots O2^{i} N3 - H2n \cdots O1 N3 - H2n \cdots O1^{ii} O4 - H1n \cdots N1^{iii} O4 - M1n \cdots N1^{iii} O4 - M1n - N1n - M1n - M1$	0.88 (1) 0.88 (1) 0.88 (1) 0.88 (1) 0.88 (1) 0.84 (2)	2.37 (2) 2.03 (1) 2.37 (2) 1.97 (1) 1.83 (2)	2.736 (2) 2.789 (3) 2.698 (2) 2.773 (3) 2.664 (3)	105 (1) 144 (2) 103 (1) 151 (2) 175 (1)
$\begin{array}{c} O6 - H2o \cdots N4^{n} \\ C2 - H2 \cdots O3^{iv} \\ C3 - H3 \cdots O1^{v} \\ C9 - H9b \cdots S1^{i} \end{array}$	0.84 (2) 0.95 0.95 0.99	1.80 (2) 2.53 2.48 2.73	2.641 (3) 3.220 (3) 3.261 (3) 3.370 (2)	179 (4) 129 139 123

Symmetry codes: (i) -x + 2, -y, -z; (ii) -x + 1, -y, -z; (iii) x + 1, y, z; (iv) x - 1, y, z; (v) -x + 1, -y + 1, -z.

Data collection: *CrystalClear* (Molecular Structure Corporation & Rigaku, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEPII* (Johnson, 1976) and *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2010).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2712).

References

Arman, H. D., Kaulgud, T. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2117. Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Broker, G. A., Bettens, R. P. A. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 879–887.

- Broker, G. A. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 1096-1109.
- Broker, G. A. & Tiekink, E. R. T. (2010). Acta Cryst. E66, 0705.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Johnson, C. K. (1976). ORTEPH. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Molecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
- Poplaukhin, P. & Tiekink, E. R. T. (2010). CrystEngComm, 12, 1302-1306.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2010). E66, o2590-o2591 [doi:10.1107/S1600536810036494]

2,2'-(Disulfanediyl)dibenzoic acid-*N*,*N*'-bis(3-pyridylmethyl)ethanediamide (1/1)

Hadi D. Arman, Tyler Miller, Pavel Poplaukhin and Edward R. T. Tiekink

S1. Comment

As a continuation of studies into the phenomenon of co-crystallization of 2-[(2-carboxyphenyl)disulfanyl]benzoic acid (Broker & Tiekink, 2007; Broker *et al.*, 2008; Broker & Tiekink, 2010; Arman *et al.*, 2010), the co-crystallization of 2,2'-(disulfanediyl)dibenzoic acid and *N*,*N*'-bis(3-pyridylmethyl)ethanediamide (Poplaukhin & Tiekink, 2010) was investigated. The asymmetric unit of the resulting co-crystal contains one molecule of 2,2'-(disulfanediyl)dibenzoic acid, Fig. 1, and *N*,*N*'-bis(3-pyridylmethyl)ethanediamide, Fig. 2.

The 2,2'-(disulfanediyl)dibenzoic acid molecule adopts the expected conformation (Broker & Tiekink, 2007), stabilized in part by two close $S \cdots O(\text{carbonyl})$ interactions, *i.e.* S1 \cdots O3 = 2.6520 (18) Å and S2 \cdots O5 = 2.6593 (19) Å; the dihedral angle formed between the benzene rings = 76.35 (10) °. The *N*,*N*'-bis(3-pyridylmethyl)ethanediamide molecule adopts a U-shape with the pyridyl groups lying to the same side of the central diamide molecy [C2-C1-C6-N2 = 113.8 (2) ° and N3-C9-C10-C11 = -117.6 (2) °]; the dihedral angle formed between the pyridyl rings = 72.24 (12) °. The pyridine-N atoms are each directed to the same side of the molecule.

Supramolecular tapes are formed comprising alternately orientated U-shaped N,N'-bis(3-pyridylmethyl)ethanediamide molecules and mediated by centrosymmetric eight-membered amide {...OCNH}₂ synthons, Fig. 3; intramolecular N— H...O contacts are also noted, Table 1. This arrangement results in successive pairs of pyridine residues of the N,N'-bis(3pyridylmethyl)oxamide molecules being orientated above and below the plane of the tape. The 2,2'-(disulfanediyl)dibenzoic acid molecules form carboxylic acid-OH…N-pyridine interactions so that a bridge is formed between a pyridine residue below the plane of the tape and one above the plane with two intervening N,N'-bis(3-pyridylmethyl)oxamide molecules. In summary, amide-mediated chains are gird by N,N'-bis(3-pyridylmethyl)oxamide molecules as highlighted in the end-on view shown in Fig. 4. The tapes are orientated along the *a* direction with the most prominent connection between them being of the type C—H…O, Fig. 5.

S2. Experimental

Equimolar amounts of 2-[(2-carboxyphenyl)disulfanyl]benzoic acid (Fluka) and *N*,*N*'-bis(3-pyridylmethyl)ethanediamide (Poplaukhin & Tiekink, 2010) were dissolved in a 1:1 ethanol/chloroform mixture. Crystals were harvested after a few days of slow evaporation.

S3. Refinement

C-bound H-atoms were placed in calculated positions (C–H 0.95–0.99 Å) and were included in the refinement in the riding model approximation with $U_{iso}(H)$ set to $1.2-1.5U_{eq}(C)$. The O– and N-bound H-atoms were located in a difference Fourier map and were refined with distance restraints of O–H 0.840±0.001 Å and N—H = 0.880±0.001 Å, and with $U_{iso}(H) = yU_{eq}(\text{carrier atom}); y = 1.5$ for O and y = 1.2 for N.

Figure 1

Molecular structure of 2-[(2-carboxyphenyl)disulfanyl]benzoic acid found in the structure of (I) showing atom-labelling scheme and displacement ellipsoids at the 50% probability level.

Figure 2

Molecular structure of N,N'-bis(3-pyridylmethyl)ethanediamide found in the structure of (I) showing atom-labelling scheme and displacement ellipsoids at the 50% probability level.

Figure 3

Supramolecular chain along the *a* axis in (I). The O—H…N and N—H…O hydrogen bonds are shown as orange dashed lines.

Figure 4

End-on view of the supramolecular chain along the *a* axis in (I). The O—H…N and N—H…O hydrogen bonds are shown as orange dashed lines.

Figure 5

View in projection down the *a* axis in (I) showing the crystal packing. The O—H…N and N—H…O hydrogen bonds are shown as orange dashed lines, and C—H…O interactions are shown as blue dashed lines.

Z = 2

F(000) = 600

 $\theta = 2.2 - 40.6^{\circ}$ $\mu = 0.24 \text{ mm}^{-1}$

Block, colourless

 $0.50\times0.19\times0.10~mm$

T = 98 K

 $D_{\rm x} = 1.368 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71069$ Å

Cell parameters from 5721 reflections

2,2'-(disulfanediyl)dibenzoic acid-N,N'-bis(3-pyridylmethyl)ethanediamide (1/1)

Crvstal	data
Crystat	uuuu

 $C_{14}H_{14}N_4O_2 \cdot C_{14}H_{10}O_4S_2$ $M_r = 576.63$ Triclinic, *P*1 Hall symbol: -P 1 a = 10.015 (3) Å b = 10.310 (3) Å c = 14.795 (4) Å $a = 86.910 (16)^{\circ}$ $\beta = 78.052 (15)^{\circ}$ $\gamma = 69.554 (10)^{\circ}$ $V = 1400.1 (7) \text{ Å}^3$

Data collection

Rigaku AFC12K/SATURN724	10806 measured reflections
diffractometer	6365 independent reflections
Radiation source: fine-focus sealed tube	5644 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.031$
ω scans	$\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 2.2^{\circ}$
Absorption correction: multi-scan	$h = -10 \rightarrow 13$
(ABSCOR; Higashi, 1995)	$k = -12 \rightarrow 13$
$T_{\min} = 0.755, \ T_{\max} = 1.000$	$l = -18 \rightarrow 19$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.051$	Hydrogen site location: inferred from
$wR(F^2) = 0.120$	neighbouring sites
S = 1.09	H atoms treated by a mixture of independent
6365 reflections	and constrained refinement
373 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0472P)^2 + 0.7689P]$
4 restraints	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.001$
direct methods	$\Delta \rho_{\rm max} = 0.36 \text{ e } \text{\AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.41 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
S1	0.95625 (5)	0.47011 (5)	0.27148 (3)	0.02334 (12)
S2	0.77520 (5)	0.41447 (5)	0.31055 (3)	0.02470 (12)
O1	0.57298 (14)	0.09350 (15)	0.05444 (10)	0.0277 (3)
O2	0.92729 (14)	-0.08648 (15)	-0.06739 (10)	0.0274 (3)
O3	1.18914 (15)	0.52923 (14)	0.18911 (10)	0.0261 (3)
O4	1.20535 (15)	0.73668 (15)	0.14860 (11)	0.0292 (3)
H1o	1.2938 (7)	0.688 (2)	0.1330 (18)	0.044*
O5	0.57421 (16)	0.29499 (15)	0.34728 (10)	0.0274 (3)
O6	0.49044 (17)	0.21673 (18)	0.48313 (10)	0.0324 (4)
H2o	0.437 (2)	0.194 (3)	0.4549 (17)	0.049*
N1	0.48914 (18)	0.59287 (18)	0.10362 (12)	0.0262 (4)
N2	0.78541 (17)	0.12250 (17)	0.06156 (11)	0.0222 (3)
H1n	0.8801 (4)	0.093 (2)	0.0407 (14)	0.027*
N3	0.70914 (17)	-0.09173 (17)	-0.08631 (12)	0.0231 (3)
H2n	0.6141 (4)	-0.064 (2)	-0.0674 (15)	0.028*
N4	0.67717 (19)	-0.14651 (19)	-0.39347 (12)	0.0283 (4)
C1	0.6801 (2)	0.3730 (2)	0.10738 (13)	0.0212 (4)
C2	0.5347 (2)	0.4577 (2)	0.12348 (13)	0.0233 (4)
H2	0.4635	0.4178	0.1500	0.028*
C3	0.5902 (2)	0.6486 (2)	0.06698 (16)	0.0332 (5)
Н3	0.5598	0.7446	0.0540	0.040*
C4	0.7377 (2)	0.5712 (3)	0.04726 (17)	0.0363 (5)
H4	0.8066	0.6133	0.0200	0.044*
C5	0.7829 (2)	0.4320 (2)	0.06776 (15)	0.0293 (4)

Н5	0 8834	0 3773	0 0548	0.035*
C6	0.7231(2)	0 2239 (2)	0 13762 (13)	0.022 (4)
H6A	0.7947	0.2082	0.1778	0.027*
H6B	0.6360	0.2085	0 1750	0.027*
C7	0.7054(2)	0.06452(19)	0.02830 (13)	0.0209(4)
C8	0.7929(2)	-0.0458(2)	-0.04751(13)	0.0205(1)
C9	0.7676(2)	-0.2038(2)	-0.15588(14)	0.0229(1) 0.0249(4)
H9A	0.7105	-0.2664	-0.1422	0.030*
H9B	0.8694	-0.2581	-0.1517	0.030*
C10	0.7639 (2)	-0.1524(2)	-0.25316(14)	0.0253 (4)
C11	0.6821 (2)	-0.1873(2)	-0.30620(14)	0.0253 (4)
H11	0.6266	-0.2430	-0.2794	0.030*
C12	0.7536(3)	-0.0680(3)	-0.43111 (17)	0.0391 (5)
H12	0.7508	-0.0393	-0.4930	0.047*
C13	0.8371 (4)	-0.0266(4)	-0.3833(2)	0.0588 (8)
H13	0.8907	0.0300	-0.4115	0.071*
C14	0.8410 (3)	-0.0696(3)	-0.29329(19)	0.0517(7)
H14	0.8972	-0.0418	-0.2590	0.062*
C15	0.9789 (2)	0.7291 (2)	0.23181 (13)	0.0219 (4)
C16	0.8894 (2)	0.65541 (19)	0.27535 (13)	0.0220 (4)
C17	0.7493 (2)	0.7285 (2)	0.32319 (14)	0.0269 (4)
H17	0.6887	0.6794	0.3536	0.032*
C18	0.6974 (2)	0.8720 (2)	0.32683 (16)	0.0321 (5)
H18	0.6020	0.9204	0.3601	0.039*
C19	0.7833 (2)	0.9455 (2)	0.28253 (16)	0.0327 (5)
H19	0.7472	1.0438	0.2850	0.039*
C20	0.9230 (2)	0.8740 (2)	0.23438 (14)	0.0273 (4)
H20	0.9814	0.9243	0.2027	0.033*
C21	1.1338 (2)	0.6551 (2)	0.18689 (13)	0.0221 (4)
C22	0.7479 (2)	0.40288 (19)	0.43378 (13)	0.0220 (4)
C23	0.6509 (2)	0.3389 (2)	0.48074 (13)	0.0223 (4)
C24	0.6283 (2)	0.3319 (2)	0.57712 (14)	0.0279 (4)
H24	0.5644	0.2871	0.6089	0.033*
C25	0.6978 (2)	0.3893 (2)	0.62702 (15)	0.0315 (5)
H25	0.6802	0.3855	0.6925	0.038*
C26	0.7928 (2)	0.4519 (2)	0.58043 (15)	0.0293 (4)
H26	0.8411	0.4909	0.6142	0.035*
C27	0.8185 (2)	0.4583 (2)	0.48487 (15)	0.0274 (4)
H27	0.8849	0.5009	0.4538	0.033*
C28	0.5689 (2)	0.2819 (2)	0.43016 (14)	0.0230 (4)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S 1	0.0235 (2)	0.0226 (2)	0.0238 (3)	-0.00938 (18)	-0.00082 (18)	-0.00458 (17)
S2	0.0287 (3)	0.0311 (3)	0.0190 (2)	-0.0164 (2)	-0.00315 (19)	-0.00354 (18)
01	0.0151 (6)	0.0334 (8)	0.0350 (8)	-0.0080 (6)	-0.0035 (6)	-0.0117 (6)
O2	0.0158 (6)	0.0346 (8)	0.0316 (8)	-0.0075 (6)	-0.0036 (6)	-0.0119 (6)

Acta Cryst. (2010). E66, o2590-o2591

O3	0.0243 (7)	0.0246 (7)	0.0284 (8)	-0.0087 (6)	-0.0019 (6)	-0.0029 (6)
O4	0.0231 (7)	0.0279 (8)	0.0345 (8)	-0.0095 (6)	-0.0013 (6)	0.0058 (6)
05	0.0319 (7)	0.0352 (8)	0.0198 (7)	-0.0171 (6)	-0.0054 (6)	-0.0021 (6)
O6	0.0339 (8)	0.0519 (10)	0.0230 (8)	-0.0280 (8)	-0.0084 (6)	0.0042 (7)
N1	0.0260 (8)	0.0275 (9)	0.0246 (9)	-0.0091 (7)	-0.0045 (7)	0.0016 (7)
N2	0.0174 (7)	0.0259 (8)	0.0224 (8)	-0.0060 (6)	-0.0026 (6)	-0.0078 (6)
N3	0.0165 (7)	0.0258 (8)	0.0271 (9)	-0.0065 (6)	-0.0036 (6)	-0.0092 (7)
N4	0.0274 (9)	0.0337 (9)	0.0264 (9)	-0.0136 (7)	-0.0053 (7)	-0.0017 (7)
C1	0.0234 (9)	0.0260 (9)	0.0156 (9)	-0.0097 (8)	-0.0041 (7)	-0.0029 (7)
C2	0.0229 (9)	0.0274 (10)	0.0206 (10)	-0.0106 (8)	-0.0030 (7)	-0.0009 (7)
C3	0.0323 (11)	0.0325 (11)	0.0360 (12)	-0.0133 (9)	-0.0082 (9)	0.0091 (9)
C4	0.0283 (11)	0.0410 (13)	0.0415 (13)	-0.0176 (10)	-0.0044 (9)	0.0127 (10)
C5	0.0221 (9)	0.0364 (11)	0.0295 (11)	-0.0105 (8)	-0.0059 (8)	0.0048 (9)
C6	0.0227 (9)	0.0259 (9)	0.0186 (9)	-0.0086 (7)	-0.0038 (7)	-0.0046 (7)
C7	0.0183 (8)	0.0229 (9)	0.0232 (10)	-0.0078 (7)	-0.0063 (7)	-0.0020(7)
C8	0.0198 (9)	0.0254 (9)	0.0229 (10)	-0.0074 (7)	-0.0047 (7)	-0.0035 (7)
C9	0.0245 (9)	0.0247 (9)	0.0262 (10)	-0.0069 (8)	-0.0069 (8)	-0.0085 (8)
C10	0.0244 (9)	0.0281 (10)	0.0241 (10)	-0.0097 (8)	-0.0037 (8)	-0.0069 (8)
C11	0.0249 (9)	0.0293 (10)	0.0242 (10)	-0.0125 (8)	-0.0035 (8)	-0.0043 (8)
C12	0.0478 (14)	0.0460 (14)	0.0329 (13)	-0.0273 (12)	-0.0095 (10)	0.0035 (10)
C13	0.082 (2)	0.080 (2)	0.0464 (16)	-0.0664 (19)	-0.0207 (15)	0.0162 (15)
C14	0.0701 (19)	0.076 (2)	0.0388 (14)	-0.0562 (17)	-0.0209 (13)	0.0040 (13)
C15	0.0218 (9)	0.0252 (9)	0.0187 (9)	-0.0076 (7)	-0.0046 (7)	-0.0005 (7)
C16	0.0248 (9)	0.0230 (9)	0.0190 (9)	-0.0079 (7)	-0.0057 (7)	-0.0022 (7)
C17	0.0247 (10)	0.0277 (10)	0.0264 (11)	-0.0080 (8)	-0.0027 (8)	-0.0001 (8)
C18	0.0261 (10)	0.0280 (11)	0.0333 (12)	-0.0020 (8)	0.0004 (8)	-0.0006 (8)
C19	0.0372 (12)	0.0220 (10)	0.0323 (12)	-0.0042 (9)	-0.0034 (9)	0.0013 (8)
C20	0.0298 (10)	0.0251 (10)	0.0262 (10)	-0.0107 (8)	-0.0030 (8)	0.0037 (8)
C21	0.0232 (9)	0.0276 (10)	0.0175 (9)	-0.0108 (8)	-0.0044 (7)	-0.0003 (7)
C22	0.0228 (9)	0.0231 (9)	0.0197 (9)	-0.0073 (7)	-0.0036 (7)	-0.0038 (7)
C23	0.0207 (9)	0.0256 (9)	0.0212 (10)	-0.0073 (7)	-0.0062 (7)	-0.0015 (7)
C24	0.0250 (10)	0.0384 (11)	0.0219 (10)	-0.0129 (9)	-0.0046 (8)	0.0003 (8)
C25	0.0325 (11)	0.0457 (13)	0.0180 (10)	-0.0143 (10)	-0.0069 (8)	-0.0015 (9)
C26	0.0301 (10)	0.0372 (11)	0.0253 (11)	-0.0139 (9)	-0.0108 (8)	-0.0039 (8)
C27	0.0272 (10)	0.0312 (10)	0.0277 (11)	-0.0126 (8)	-0.0086 (8)	-0.0030 (8)
C28	0.0195 (9)	0.0252 (9)	0.0240 (10)	-0.0076 (7)	-0.0031 (7)	-0.0030 (7)

Geometric parameters (Å, °)

S1—C16	1.790 (2)	C9—C10	1.510 (3)	
S1—S2	2.0514 (9)	С9—Н9А	0.9900	
S2—C22	1.791 (2)	С9—Н9В	0.9900	
O1—C7	1.233 (2)	C10—C14	1.376 (3)	
O2—C8	1.237 (2)	C10—C11	1.386 (3)	
O3—C21	1.222 (2)	C11—H11	0.9500	
O4—C21	1.321 (2)	C12—C13	1.382 (3)	
O4—H1o	0.841 (15)	C12—H12	0.9500	
O5—C28	1.219 (2)	C13—C14	1.384 (4)	

O6—C28	1.319 (2)	С13—Н13	0.9500
O6—H2o	0.84 (2)	C14—H14	0.9500
N1—C3	1.339 (3)	C15—C20	1.400 (3)
N1—C2	1.343 (3)	C15—C16	1.407 (3)
N2—C7	1.331 (2)	C15—C21	1.494 (3)
N2—C6	1.459 (2)	C16—C17	1.395 (3)
N2—H1n	0.880 (12)	C17—C18	1.387 (3)
N3—C8	1 328 (2)	C17—H17	0.9500
N3_C9	1.526(2) 1 464(2)	C18-C19	1.382(3)
N3—H2n	0.880(13)	C18—H18	0.9500
N4_C12	1 326 (3)	C_{10} C_{20}	1 389 (3)
N4 C11	1.320(3)	$C_{10} + H_{10}$	0.9500
$\Lambda = C \Pi$	1.342(3)	C19—1119 C20 1120	0.9500
C1 = C3	1.380(3)	C_{20} H_{20} C_{27}	0.9300
C1 - C2	1.590 (5)	C_{22}	1.390 (3)
	1.514 (3)	C22—C23	1.407 (3)
C2—H2	0.9500	C23—C24	1.399 (3)
C3—C4	1.388 (3)	C23—C28	1.489 (3)
С3—Н3	0.9500	C24—C25	1.388 (3)
C4—C5	1.383 (3)	C24—H24	0.9500
C4—H4	0.9500	C25—C26	1.381 (3)
С5—Н5	0.9500	С25—Н25	0.9500
С6—Н6А	0.9900	C26—C27	1.386 (3)
С6—Н6В	0.9900	C26—H26	0.9500
С7—С8	1.534 (3)	С27—Н27	0.9500
C16—S1—S2	105.30 (7)	N4—C12—C13	122.2 (2)
C22— <u>\$2</u> _ <u>\$1</u>	105.35 (7)	N4—C12—H12	118.9
C21—O4—H1O	108 (2)	C13—C12—H12	118.9
$C_{28} = 06 = H_{20}$	113 (2)	C_{12} $-C_{13}$ $-C_{14}$	118.5(2)
$C_{3}-N_{1}-C_{2}$	117 81 (18)	C_{12} C_{13} H_{13}	120.8
C_{7} N2 C_{6}	121.95 (16)	C14 $C13$ $H13$	120.8
C7 - N2 - C0	121.95(10) 119(2)	C_{10} C_{14} C_{13} C_{14} C_{14} C_{13} C_{14} C_{14} C_{13} C_{14} C_{14} C_{15} C_{14} C_{14} C_{15} C_{15} C_{16} C_{14} C_{15} C_{15} C_{16} C	120.8 120.4(2)
$C_{1} = N_{2} = M_{1}N_{1}$	119(2) 110(2)	$C_{10} = C_{14} = C_{13}$	110.9
C_{0} N2 C_{0}	117(2) 122.05(16)	C_{10} C_{14} H_{14}	119.0
$C_{0} = N_{0} = C_{0}$	123.03(10)	C_{13} C_{14} C	119.0
$C_0 = N_2 = H_2 N_1$	122(2)	$C_{20} = C_{15} = C_{16}$	119.10(18)
C_{2} C_{12} C_{12} C_{12} C_{12} C_{13} C_{11}	114(2)	$C_{20} = C_{15} = C_{21}$	119.88 (17)
	118.65 (18)		120.90 (17)
C5-C1-C2	117.70(18)		119.16 (18)
C5—C1—C6	121.89 (18)	C17—C16—S1	120.49 (15)
C2-C1-C6	120.31 (17)	C15—C16—S1	120.34 (15)
N1—C2—C1	123.64 (18)	C18—C17—C16	120.66 (19)
N1—C2—H2	118.2	C18—C17—H17	119.7
C1—C2—H2	118.2	C16—C17—H17	119.7
N1—C3—C4	122.4 (2)	C19—C18—C17	120.6 (2)
N1—C3—H3	118.8	C19—C18—H18	119.7
С4—С3—Н3	118.8	C17—C18—H18	119.7
C5—C4—C3	119.1 (2)	C18—C19—C20	119.35 (19)
C5—C4—H4	120.4	C18—C19—H19	120.3

C3—C4—H4	120.4	C20—C19—H19	120.3
C4—C5—C1	119.31 (19)	C19—C20—C15	121.01 (19)
С4—С5—Н5	120.3	С19—С20—Н20	119.5
С1—С5—Н5	120.3	C15—C20—H20	119.5
N2—C6—C1	114.21 (16)	O3—C21—O4	123.62 (18)
N2—C6—H6A	108.7	O3—C21—C15	121.66 (17)
С1—С6—Н6А	108.7	O4—C21—C15	114.67 (17)
N2—C6—H6B	108.7	C27—C22—C23	118.96 (18)
C1—C6—H6B	108.7	C27—C22—S2	121.54 (16)
H6A—C6—H6B	107.6	C23—C22—S2	119.48 (14)
O1—C7—N2	124.84 (18)	C24—C23—C22	119.26 (17)
O1—C7—C8	121.27 (16)	C24—C23—C28	119.37 (18)
N2—C7—C8	113.89 (16)	C22—C23—C28	121.35 (17)
O2—C8—N3	125.32 (18)	C25—C24—C23	121.1 (2)
O2—C8—C7	121.87 (16)	C25—C24—H24	119.5
N3—C8—C7	112.80 (16)	C23—C24—H24	119.5
N3—C9—C10	113.04 (17)	C26—C25—C24	119.32 (19)
N3—C9—H9A	109.0	С26—С25—Н25	120.3
С10—С9—Н9А	109.0	C24—C25—H25	120.3
N3—C9—H9B	109.0	C25—C26—C27	120.63 (18)
С10—С9—Н9В	109.0	С25—С26—Н26	119.7
Н9А—С9—Н9В	107.8	C27—C26—H26	119.7
C14—C10—C11	117.0 (2)	C26—C27—C22	120.76 (19)
C14—C10—C9	122.02 (18)	С26—С27—Н27	119.6
C11—C10—C9	121.01 (18)	C22—C27—H27	119.6
N4—C11—C10	123.35 (19)	O5—C28—O6	123.38 (17)
N4—C11—H11	118.3	O5—C28—C23	122.65 (18)
C10—C11—H11	118.3	O6—C28—C23	113.97 (17)
C16—S1—S2—C22	-88.85 (9)	C20-C15-C16-S1	178.78 (15)
C3—N1—C2—C1	-0.6 (3)	C21—C15—C16—S1	-4.0 (2)
C5-C1-C2-N1	-0.7 (3)	S2—S1—C16—C17	16.77 (17)
C6-C1-C2-N1	175.91 (17)	S2—S1—C16—C15	-164.61 (14)
C2—N1—C3—C4	1.6 (3)	C15—C16—C17—C18	1.0 (3)
N1-C3-C4-C5	-1.4 (4)	S1—C16—C17—C18	179.59 (17)
C3—C4—C5—C1	0.1 (3)	C16—C17—C18—C19	0.5 (3)
C2-C1-C5-C4	0.9 (3)	C17—C18—C19—C20	-0.3 (3)
C6-C1-C5-C4	-175.63 (19)	C18—C19—C20—C15	-1.4 (3)
C7—N2—C6—C1	-96.1 (2)	C16—C15—C20—C19	2.9 (3)
C5-C1-C6-N2	-69.8 (2)	C21—C15—C20—C19	-174.42 (19)
C2-C1-C6-N2	113.8 (2)	C20—C15—C21—O3	174.69 (18)
C6—N2—C7—O1	3.2 (3)	C16—C15—C21—O3	-2.5 (3)
C6—N2—C7—C8	-176.49 (17)	C20—C15—C21—O4	-2.8 (3)
C9—N3—C8—O2	3.2 (3)	C16—C15—C21—O4	179.98 (17)
C9—N3—C8—C7	-175.71 (17)	S1—S2—C22—C27	14.52 (18)
O1—C7—C8—O2	-172.03 (19)	S1—S2—C22—C23	-166.75 (14)
N2—C7—C8—O2	7.7 (3)	C27—C22—C23—C24	-0.3 (3)
O1—C7—C8—N3	6.9 (3)	S2—C22—C23—C24	-179.10 (15)

N2—C7—C8—N3 C8—N3—C9—C10	-173.41 (17) -101.3 (2)	C27—C22—C23—C28 S2—C22—C23—C28	178.05 (18) -0.7 (3)
N3—C9—C10—C14	62.5 (3)	C22—C23—C24—C25	1.3 (3)
N3-C9-C10-C11	-117.6 (2)	C28—C23—C24—C25	-177.13 (19)
C12—N4—C11—C10	-0.4 (3)	C23—C24—C25—C26	-1.3 (3)
C14—C10—C11—N4	1.1 (3)	C24—C25—C26—C27	0.3 (3)
C9—C10—C11—N4	-178.77 (18)	C25—C26—C27—C22	0.6 (3)
C11—N4—C12—C13	-0.3 (4)	C23—C22—C27—C26	-0.6 (3)
N4—C12—C13—C14	0.3 (5)	S2—C22—C27—C26	178.14 (16)
C11-C10-C14-C13	-1.1 (4)	C24—C23—C28—O5	173.73 (19)
C9—C10—C14—C13	178.8 (3)	C22—C23—C28—O5	-4.6 (3)
C12-C13-C14-C10	0.4 (5)	C24—C23—C28—O6	-6.2 (3)
C20-C15-C16-C17	-2.6 (3)	C22—C23—C28—O6	175.45 (18)
C21—C15—C16—C17	174.65 (18)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N2—H1 <i>n</i> …O2	0.88(1)	2.37 (2)	2.736 (2)	105 (1)
N2—H1 n ···O2 ⁱ	0.88 (1)	2.03 (1)	2.789 (3)	144 (2)
N3—H2 <i>n</i> ···O1	0.88 (1)	2.37 (2)	2.698 (2)	103 (1)
N3—H2 <i>n</i> ···O1 ⁱⁱ	0.88 (1)	1.97 (1)	2.773 (3)	151 (2)
O4—H10····N1 ⁱⁱⁱ	0.84 (2)	1.83 (2)	2.664 (3)	175 (1)
O6—H2o···N4 ⁱⁱ	0.84 (2)	1.80 (2)	2.641 (3)	179 (4)
C2—H2···O3 ^{iv}	0.95	2.53	3.220 (3)	129
C3—H3…O1 ^v	0.95	2.48	3.261 (3)	139
C9—H9b···S1 ⁱ	0.99	2.73	3.370 (2)	123

Symmetry codes: (i) -*x*+2, -*y*, -*z*; (ii) -*x*+1, -*y*, -*z*; (iii) *x*+1, *y*, *z*; (iv) *x*-1, *y*, *z*; (v) -*x*+1, -*y*+1, -*z*.