

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Metronidazolium perchlorate

Yong-Tao Wang,* Xiao-Lei Chu, Shi-Chen Yan and Gui-Mei Tang

Shandong Provincial Key Laboratory of Fine Chemicals, Department of Chemical Engineering, Shandong Institute of Light Industry, Jinan, Shandong 250353, People's Republic of China

Correspondence e-mail: ceswyt@sohu.com

Received 10 September 2010; accepted 23 September 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.053; wR factor = 0.159; data-to-parameter ratio = 16.2.

In the crystal structure of the title compound [systematic name: 1-(2-hydroxyethyl)-2-methyl-5-nitro-1*H*-imidazol-3ium perchlorate], $C_6H_{10}N_3O_3^+ \cdot ClO_4^-$, the cations are linked by intermolecular N-H···O hydrogen bonds into zigzag chains along the *c* axis. The cations and anions are connected by O-H···O and C-H···O hydrogen bonds. A weak intramolecular C-H···O hydrogen bond is also observed.

Related literature

For metronidazole, see: Castelli *et al.* (2000); Contrerasa *et al.* (2009). For a related structure, see: Wang *et al.* (2006).

Experimental

Crystal data

$C_6H_{10}N_3O_3^+ \cdot ClO_4^-$
$M_r = 271.62$
Monoclinic, $P2_1/c$
a = 7.8541 (13) Å
b = 10.6791 (17) Å

c = 13.032 (2) Å β = 93.904 (2)° V = 1090.5 (3) Å³ Z = 4 Mo K\alpha radiation

organic compounds

 $0.40 \times 0.20 \times 0.20$ mm

 $\mu = 0.38 \text{ mm}^{-1}$ T = 296 K

Data collection

Bruker SMART CCD area-detector	9191 measured reflections
diffractometer	2509 independent reflections
Absorption correction: multi-scan	2219 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.030$
$T_{\rm min} = 0.862, \ T_{\rm max} = 0.928$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.053$	155 parameters
$vR(F^2) = 0.159$	H-atom parameters constrained
5 = 1.04	$\Delta \rho_{\rm max} = 0.60 \ {\rm e} \ {\rm \AA}^{-3}$
2509 reflections	$\Delta \rho_{\rm min} = -0.43 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$01 - H1 \cdots O5$ $N2 - H2 \cdots O1^{i}$ $C1 - H1B \cdots O2$ $C6 - H6B \cdots O7^{i}$	0.89 0.83 0.97 0.96	2.02 1.98 2.52 2.52	2.860 (4) 2.803 (3) 3.126 (3) 3.441 (4)	157 169 121 161

Symmetry code: (i) $x, -y + \frac{3}{2}, z + \frac{1}{2}$.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors thank the Project of Shandong Province Higher Educational Science and Technology Program (J09LB03) and the Starting Fund of Shandong Institute of Light Industry for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2601).

References

- Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Castelli, M., Malagoli, M., Lupo, L., Bofia, S., Paolucci, F., Cermelli, C., Zanca, A. & Baggio, G. (2000). J. Antimicrob. Chemother. 46, 541–550.
- Contrerasa, R., Flores-Parraa, A., Mijangosa, E., Téllezb, F., López-Sandoval, H. & Barba-Behrens, N. (2009). *Coord. Chem. Rev.* **253**, 1979–1999.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wang, Y.-T., Tang, G.-M., Qin, D.-W., Duan, H.-D. & Ng, S. W. (2006). Acta Cryst. E62, 03094–03095.

supporting information

Acta Cryst. (2010). E66, o2647 [doi:10.1107/S1600536810038055]

Metronidazolium perchlorate

Yong-Tao Wang, Xiao-Lei Chu, Shi-Chen Yan and Gui-Mei Tang

S1. Comment

Metronidazole is usually applied in the area of anaerobic protozoan and bacterial infections (Castelli *et al.*, 2000). Its solubility is low in water, so that its absorption is not easy in human body. To solve this problem and to increase its solubility in water, a kind of new strategy of protonated metronidazole has been studied though other methods have been developed in the area of medicine, for example, metal complexes (Contrerasa *et al.*, 2009) and pharmaceutical co-crystals. However, co-crystals containing metronidazole has rarely been investigated. In this paper, we report the 1:1 salt formed by metronidazole and perchloric acid, (I).

A view of the title structure is shown in Fig. 1. The H atom is transferred from the perchloric acid group to the imidazole N atom forming an 1:1 organic salt, which is similar to other organic salt published previously (Wang *et al.*, 2006). In the crystal structure, one-dimensional chains are formed *via* intermolecular O—H…O and N—H…O hydrogen bonds (Table 1 and Fig. 2).

S2. Experimental

Metronidazole (1.71 g, 10 mmol) and 75% aqueous $HClO_4$ (2 ml) were mixed and dissolved in 10 ml water. The reaction mixture was stirred slowly to room temperature. The bar colourless crystals suitable for X-ray diffraction were obtained after two weeks. Analysis found: C 26.17, H 3.69, N 15.41%; calcd. : C 26.53, H 3.71, N 15.47%. IR (KBr, cm⁻¹): 3394, 3078, 1610, 1546, 1527, 1502, 1411, 1373, 1319, 1251, 1193, 1143, 1111, 1085, 1080, 1062, 037, 867, 831, 736, 671, 630, 559, 516.

S3. Refinement

All H atoms were located in a difference Fourier map. Oxygen- and nitrogen-bound H atoms were then refined as riding, with $U_{iso}(H) = 1.5U_{eq}(O, N)$. Carbon-bound H atoms were positioned geometrically (C—H = 0.96 or 0.97 Å), and were included in the refinement in the riding-model approximation, with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

The molecular structure of (I), with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2

One-dimensional chain running along the c axis.

1-(2-hydroxyethyl)-2-methyl-5-nitro-1*H*-imidazol-3-ium perchlorate

Crystal data	
$C_6H_{10}N_3O_3^+ \cdot ClO_4^-$	F(000) = 560
$M_r = 271.62$	$D_{\rm x} = 1.654 {\rm Mg} {\rm m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 5428 reflections
a = 7.8541 (13) Å	$\theta = 2.5 - 27.5^{\circ}$
b = 10.6791 (17) Å	$\mu = 0.38 \text{ mm}^{-1}$
c = 13.032 (2) Å	T = 296 K
$\beta = 93.904(2)^{\circ}$	Prism, colourless
V = 1090.5 (3) Å ³	$0.40 \times 0.20 \times 0.20$ mm
<i>Z</i> = 4	
Data collection	
Bruker SMART CCD area-detector diffractometer	Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996)
Radiation source: fine-focus sealed tube	$T_{\min} = 0.862, T_{\max} = 0.928$
Graphite monochromator	9191 measured reflections
φ and ω scans	2509 independent reflections

2219 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.030$
$\theta_{\rm max} = 27.5^\circ, \ \theta_{\rm min} = 2.5^\circ$

Refinement

Kejinemeni	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.053$	H-atom parameters constrained
$wR(F^2) = 0.159$	$w = 1/[\sigma^2(F_o^2) + (0.085P)^2 + 0.8145P]$
S = 1.04	where $P = (F_o^2 + 2F_c^2)/3$
2509 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
155 parameters	$\Delta \rho_{\rm max} = 0.60 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.43 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Secondary atom site location: difference Fourier	Extinction coefficient: 0.190 (12)
map	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

 $h = -10 \rightarrow 10$ $k = -13 \rightarrow 13$ $l = -16 \rightarrow 16$

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
01	0.7469 (2)	0.70762 (17)	0.58597 (12)	0.0486 (4)
H1	0.8599	0.7118	0.5945	0.073*
O2	0.4144 (3)	0.4116 (2)	0.66132 (15)	0.0639 (6)
O3	0.2449 (3)	0.4469 (2)	0.78337 (19)	0.0727 (6)
N1	0.6726 (2)	0.55501 (15)	0.76908 (12)	0.0340 (4)
N2	0.6393 (3)	0.64689 (18)	0.91461 (14)	0.0437 (5)
H2	0.6580	0.6952	0.9643	0.066*
N3	0.3813 (3)	0.45742 (19)	0.74353 (16)	0.0487 (5)
C1	0.7048 (3)	0.5773 (2)	0.58035 (16)	0.0451 (5)
H1A	0.7611	0.5397	0.5240	0.054*
H1B	0.5827	0.5686	0.5656	0.054*
C2	0.7567 (3)	0.5070 (2)	0.67880 (16)	0.0404 (5)
H2A	0.7283	0.4191	0.6694	0.048*
H2B	0.8794	0.5131	0.6922	0.048*
C3	0.7495 (3)	0.6272 (2)	0.84260 (15)	0.0384 (5)
C4	0.4896 (3)	0.5882 (2)	0.88970 (17)	0.0441 (5)
H4A	0.3928	0.5879	0.9270	0.053*
C5	0.5098 (3)	0.53022 (19)	0.79949 (16)	0.0379 (5)
C6	0.9254 (3)	0.6762 (3)	0.8466 (2)	0.0550 (6)
H6A	0.9791	0.6507	0.7860	0.083*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supporting information

H6B	0.9887	0.6439	0.9065	0.083*
H6C	0.9228	0.7660	0.8500	0.083*
C11	1.22616 (7)	0.74741 (5)	0.59693 (4)	0.0442 (3)
O4	1.3343 (4)	0.7477 (2)	0.6879 (2)	0.0994 (10)
O5	1.1033 (4)	0.6500 (3)	0.5984 (3)	0.1022 (10)
O6	1.3237 (5)	0.7180 (3)	0.5116 (2)	0.1074 (11)
O7	1.1515 (5)	0.8663 (3)	0.5795 (2)	0.1214 (14)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0558 (10)	0.0482 (10)	0.0408 (8)	-0.0064 (7)	-0.0038 (7)	0.0107 (7)
O2	0.0773 (14)	0.0622 (12)	0.0503 (11)	-0.0159 (10)	-0.0096 (9)	-0.0110 (9)
03	0.0564 (12)	0.0751 (14)	0.0870 (16)	-0.0189 (10)	0.0074 (11)	0.0038 (12)
N1	0.0444 (9)	0.0313 (8)	0.0258 (8)	0.0031 (7)	-0.0008 (6)	0.0019 (6)
N2	0.0642 (12)	0.0368 (9)	0.0302 (9)	0.0026 (8)	0.0033 (8)	-0.0042 (7)
N3	0.0558 (12)	0.0405 (10)	0.0487 (11)	-0.0059 (9)	-0.0055 (9)	0.0065 (8)
C1	0.0627 (14)	0.0457 (12)	0.0266 (9)	-0.0026 (10)	0.0012 (9)	-0.0006 (8)
C2	0.0534 (12)	0.0381 (11)	0.0297 (9)	0.0067 (9)	0.0044 (8)	-0.0019 (8)
C3	0.0510 (12)	0.0356 (10)	0.0279 (9)	0.0016 (8)	-0.0038 (8)	0.0012 (7)
C4	0.0549 (13)	0.0390 (11)	0.0391 (11)	0.0050 (9)	0.0086 (9)	0.0025 (9)
C5	0.0452 (11)	0.0335 (10)	0.0347 (10)	0.0013 (8)	-0.0006 (8)	0.0037 (8)
C6	0.0545 (14)	0.0615 (16)	0.0476 (13)	-0.0111 (12)	-0.0074 (10)	-0.0048 (11)
C11	0.0468 (4)	0.0427 (4)	0.0425 (4)	-0.0003 (2)	-0.0022 (2)	-0.0002 (2)
O4	0.126 (2)	0.0840 (18)	0.0799 (17)	0.0238 (15)	-0.0504 (17)	-0.0069 (13)
05	0.0761 (16)	0.097 (2)	0.137 (3)	-0.0317 (15)	0.0297 (16)	-0.0074 (18)
O6	0.137 (3)	0.106 (2)	0.0864 (19)	-0.013 (2)	0.0566 (19)	0.0002 (16)
O7	0.157 (3)	0.0654 (16)	0.129 (2)	0.0509 (17)	-0.084 (2)	-0.0367 (15)

Geometric parameters (Å, °)

01—C1	1.431 (3)	C1—H1B	0.9700
01—H1	0.8881	C2—H2A	0.9700
O2—N3	1.222 (3)	C2—H2B	0.9700
O3—N3	1.227 (3)	C3—C6	1.475 (3)
N1—C3	1.341 (3)	C4—C5	1.348 (3)
N1—C5	1.390 (3)	C4—H4A	0.9300
N1—C2	1.479 (3)	C6—H6A	0.9600
N2—C3	1.336 (3)	C6—H6B	0.9600
N2—C4	1.353 (3)	С6—Н6С	0.9600
N2—H2	0.8328	Cl1—O4	1.410 (3)
N3—C5	1.434 (3)	Cl1—O7	1.411 (2)
C1—C2	1.518 (3)	Cl1—O5	1.420 (3)
C1—H1A	0.9700	Cl1—O6	1.427 (3)
C101H1	106.3	N2N1	108 12 (19)
$C_{1} = 0_{1} = 1_{11}$ $C_{3} = N_{1} = C_{5}$	106.50 (17)	$N_2 - C_3 - C_6$	1247(2)
C3—N1—C2	124.35 (18)	N1-C3-C6	127.2 (2)

C5—N1—C2	129.02 (18)	C5—C4—N2	105.7 (2)
C3—N2—C4	110.65 (18)	C5—C4—H4A	127.2
C3—N2—H2	123.8	N2—C4—H4A	127.2
C4—N2—H2	125.3	C4—C5—N1	109.1 (2)
O2—N3—O3	125.3 (2)	C4—C5—N3	124.9 (2)
O2—N3—C5	118.6 (2)	N1—C5—N3	126.03 (19)
O3—N3—C5	116.1 (2)	С3—С6—Н6А	109.5
O1—C1—C2	112.96 (18)	С3—С6—Н6В	109.5
O1—C1—H1A	109.0	H6A—C6—H6B	109.5
C2—C1—H1A	109.0	С3—С6—Н6С	109.5
O1—C1—H1B	109.0	H6A—C6—H6C	109.5
C2—C1—H1B	109.0	H6B—C6—H6C	109.5
H1A—C1—H1B	107.8	O4—Cl1—O7	110.68 (15)
N1—C2—C1	113.07 (18)	O4—Cl1—O5	111.2 (2)
N1—C2—H2A	109.0	O7—Cl1—O5	112.8 (2)
C1—C2—H2A	109.0	O4—Cl1—O6	109.3 (2)
N1—C2—H2B	109.0	O7—Cl1—O6	108.2 (2)
C1—C2—H2B	109.0	O5—Cl1—O6	104.49 (19)
H2A—C2—H2B	107.8		

Hydrogen-bond geometry (Å, °)

D—H	Н…А	D···A	D—H···A
0.89	2.02	2.860 (4)	157
0.83	1.98	2.803 (3)	169
0.97	2.52	3.126 (3)	121
0.96	2.52	3.441 (4)	161
	<i>D</i> —H 0.89 0.83 0.97 0.96	D—H H…A 0.89 2.02 0.83 1.98 0.97 2.52 0.96 2.52	DH H···A D···A 0.89 2.02 2.860 (4) 0.83 1.98 2.803 (3) 0.97 2.52 3.126 (3) 0.96 2.52 3.441 (4)

Symmetry code: (i) x, -y+3/2, z+1/2.