

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1,1'-(*p*-Phenylenedimethylene)dipyridinium bis(hexafluoridophosphate)

Munirah Sufiyah Abdul Rahim, Yatimah Alias and Seik Weng Ng*

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 9 September 2010; accepted 22 September 2010

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.029; wR factor = 0.088; data-to-parameter ratio = 14.1.

The title salt, $C_{18}H_{18}N_2^{2^+}\cdot 2PF_6^-$, exists as non-interacting cations and anions. In the cation, the pyridine and phenylene rings are aligned at 62.9 (1)°; the pyridine ring lies on a special position of *m* site symmetry and the phenylene ring on a special position of 2/m site symmetry. The angle at the methylene C atom is 112.8 (1)°. The anion lies on a special position of *m* site symmetry; four F atoms lie on this mirror plane.

Related literature

For the tetraphenylborate salt, see: Wu *et al.* (2007) and for the tetracyanoquinodimethanide salt, see: Ashwell *et al.* (1975); Hudson & Robson (2009).

Experimental

Crystal data

 $C_{18}H_{18}N_2^{2+}\cdot 2PF_6^{-}$ $M_r = 552.28$ Orthorhombic, *Pbam* a = 11.1013 (11) Å b = 12.6742 (12) Åc = 7.3483 (7) Å

Data collection

Bruker SMART APEX6200diffractometer1280Absorption correction: multi-scan1121(SADABS; Sheldrick, 1996) R_{int} $T_{min} = 0.908, T_{max} = 0.968$ $R_{max} = 0.968$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.029$ $wR(F^2) = 0.088$ S = 1.051280 reflections $V = 1033.91 (17) Å^{3}$ Z = 2 Mo K\alpha radiation $\mu = 0.33 \text{ mm}^{-1}$ T = 100 K $0.30 \times 0.20 \times 0.10 \text{ mm}$

6200 measured reflections 1280 independent reflections 1121 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.028$

91 parameters H-atom parameters constrained $\Delta \rho_{max} = 0.33$ e Å⁻³ $\Delta \rho_{min} = -0.44$ e Å⁻³

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2010).

We thank the University of Malaya (grant No. TA010/ 2010 A) for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2207).

References

Ashwell, G. J., Wallwork, S. C., Baker, S. R. & Berthier, P. I. C. (1975). Acta Cryst. B31, 1174–1178.

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Hudson, T. A. & Robson, R. (2009). Cryst. Growth Des. 9, 1658-1662.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Wu, Y.-J., Liu, X.-C., Du, C.-X. & Niu, Y.-Y. (2007). Acta Cryst. E63, 03457.

supporting information

Acta Cryst. (2010). E66, o2653 [doi:10.1107/S1600536810037992]

1,1'-(p-Phenylenedimethylene)dipyridinium bis(hexafluoridophosphate)

Munirah Sufiyah Abdul Rahim, Yatimah Alias and Seik Weng Ng

S1. Comment

The structure of the 1,1'-(4-dimethylphenylene)dipyridinium cation has been reported in a number of examples (Ashwell *et al.*, 1975; Hudson & Robson, 2009; Wu *et al.*, 2007). We ourselves have reported other examples. The title hexafluoro-phosphate (Scheme I, Fig. 1) exists as non-interacting cations and anions. In the cation, the pyridyl and phenylene rings are aligned at 62.9 (1) °. The angle at the methylene C atom is 112.8 (1) °. The anion lies on a mirror plane such that four F atoms lie within the mirror plane.

S2. Experimental

 α, α' -Dibromo-*p*-xylene (5.28 g, 20 mmol) was dissolved in acetonitrile (30 ml) and to the solution was added pyridine (2.96 g, 40 mmol). The solution was heated for 2 h. The solid product was recrystallized from a methanol/ethanol mixture to afford 1,1'-(4-dimethylphenylene)dipyridinium bromide. The bromide ion was exchanged by the hexafluorophosphate ion by reaction of the salt (1 mmol) with ammonium hexafluorophosphate (2 mmol) in water. The reactants were mixed in water for 2 h to give a solid material. This was collected and recrystallized from acetonitrile.

S3. Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.99 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C).

Figure 1

Thermal ellipsoid plot (Barbour, 2001) of $C_{18}H_{18}N_2^{2+}$ 2PF₆⁻ at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

1,1'-(p-Phenylenedimethylene)dipyridinium bis(hexafluoridophosphate)

Crystal	data
0. 90.000	

 $C_{18}H_{18}N_2^{2+}\cdot 2PF_6^{-}$ $M_r = 552.28$ Orthorhombic, *Pbam* Hall symbol: -P 2 2ab a = 11.1013 (11) Å b = 12.6742 (12) Å c = 7.3483 (7) Å $V = 1033.91 (17) Å^3$ Z = 2

Data collection

Bruker SMART APEX diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.908, T_{\max} = 0.968$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.029$ $wR(F^2) = 0.088$ S = 1.05 F(000) = 556 $D_x = 1.774 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2836 reflections $\theta = 2.8-28.2^{\circ}$ $\mu = 0.33 \text{ mm}^{-1}$ T = 100 KBlock, colorless $0.30 \times 0.20 \times 0.10 \text{ mm}$

6200 measured reflections 1280 independent reflections 1121 reflections with $I > 2\sigma(I)$ $R_{int} = 0.028$ $\theta_{max} = 27.5^{\circ}, \ \theta_{min} = 2.4^{\circ}$ $h = -14 \rightarrow 14$ $k = -12 \rightarrow 16$ $l = -9 \rightarrow 8$

1280 reflections91 parameters0 restraintsPrimary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier	$w = 1/[\sigma^2(F_o^2) + (0.0505P)^2 + 0.3897P]$
map	where $P = (F_o^2 + 2F_c^2)/3$
Hydrogen site location: inferred from	$(\Delta/\sigma)_{\rm max} < 0.001$
neighbouring sites	$\Delta \rho_{\rm max} = 0.33 \text{ e} \text{ Å}^{-3}$
H-atom parameters constrained	$\Delta \rho_{\rm min} = -0.44 \text{ e} \text{ Å}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
P1	0.25173 (4)	0.14923 (4)	0.0000	0.01624 (16)	
F1	0.25218 (7)	0.14917 (6)	0.21872 (11)	0.0238 (2)	
F2	0.31281 (13)	0.26387 (9)	0.0000	0.0351 (3)	
F3	0.12080 (10)	0.20151 (10)	0.0000	0.0281 (3)	
F4	0.19348 (10)	0.03444 (8)	0.0000	0.0238 (3)	
F5	0.38395 (10)	0.09687 (10)	0.0000	0.0282 (3)	
N1	0.00180 (13)	0.29642 (11)	0.5000	0.0151 (3)	
C1	0.17001 (16)	0.45395 (14)	0.5000	0.0227 (4)	
H1	0.2269	0.5100	0.5000	0.027*	
C2	0.12837 (12)	0.41294 (11)	0.3374 (2)	0.0231 (3)	
H2	0.1579	0.4391	0.2247	0.028*	
C3	0.04351 (11)	0.33362 (10)	0.34067 (18)	0.0192 (3)	
Н3	0.0143	0.3050	0.2296	0.023*	
C4	-0.09367 (16)	0.21325 (14)	0.5000	0.0203 (4)	
H4A	-0.1451	0.2225	0.3911	0.024*	0.50
H4B	-0.1451	0.2225	0.6089	0.024*	0.50
C5	-0.04278 (15)	0.10309 (13)	0.5000	0.0153 (4)	
C6	-0.02152 (11)	0.05152 (10)	0.66385 (17)	0.0181 (3)	
H6	-0.0364	0.0867	0.7758	0.022*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
P1	0.0184 (3)	0.0162 (3)	0.0141 (3)	-0.00093 (16)	0.000	0.000
F1	0.0274 (4)	0.0300 (5)	0.0140 (4)	-0.0014 (3)	-0.0013 (3)	-0.0022 (3)
F2	0.0502 (8)	0.0217 (6)	0.0333 (7)	-0.0156 (6)	0.000	0.000
F3	0.0272 (6)	0.0346 (7)	0.0224 (6)	0.0125 (5)	0.000	0.000
F4	0.0309 (6)	0.0196 (5)	0.0210 (6)	-0.0068 (5)	0.000	0.000
F5	0.0189 (6)	0.0400 (7)	0.0255 (6)	0.0042 (5)	0.000	0.000
N1	0.0150 (6)	0.0115 (6)	0.0187 (7)	0.0018 (5)	0.000	0.000
C1	0.0148 (8)	0.0134 (8)	0.0398 (11)	0.0014 (6)	0.000	0.000
C2	0.0222 (6)	0.0212 (6)	0.0260 (7)	0.0022 (5)	0.0048 (5)	0.0064 (5)
C3	0.0220 (6)	0.0197 (6)	0.0161 (6)	0.0030 (5)	-0.0002(5)	0.0003 (5)
C4	0.0148 (8)	0.0136 (8)	0.0323 (10)	-0.0005 (6)	0.000	0.000
C5	0.0129 (7)	0.0130 (8)	0.0201 (9)	-0.0020 (6)	0.000	0.000
C6	0.0215 (6)	0.0167 (6)	0.0159 (6)	-0.0027 (5)	0.0021 (5)	-0.0021 (5)

Geometric parameters (Å, °)

P1—F4	1.5921 (11)	C1—H1	0.9500
P1—F3	1.5975 (12)	C2—C3	1.3779 (18)
P1—F2	1.6034 (12)	C2—H2	0.9500
P1—F1 ⁱ	1.6072 (8)	С3—Н3	0.9500
P1—F1	1.6072 (8)	C4—C5	1.506 (2)
P1—F5	1.6107 (12)	C4—H4A	0.9900
N1—C3 ⁱⁱ	1.3444 (15)	C4—H4B	0.9900
N1—C3	1.3444 (15)	C5—C6	1.3902 (15)
N1—C4	1.495 (2)	C5—C6 ⁱⁱ	1.3902 (15)
C1—C2	1.3828 (18)	C6—C6 ⁱⁱⁱ	1.391 (2)
C1—C2 ⁱⁱ	1.3828 (18)	С6—Н6	0.9500
F4—P1—F3	90.54 (7)	C2 ⁱⁱ —C1—H1	120.2
F4—P1—F2	178.95 (7)	C3—C2—C1	119.18 (14)
F3—P1—F2	90.51 (7)	C3—C2—H2	120.4
$F4 - P1 - F1^{i}$	90.05 (3)	C1—C2—H2	120.4
$F3 - P1 - F1^i$	90.17 (3)	N1—C3—C2	120.45 (13)
$F2 - P1 - F1^i$	89.95 (3)	N1—C3—H3	119.8
F4—P1—F1	90.05 (3)	С2—С3—Н3	119.8
F3—P1—F1	90.17 (3)	N1—C4—C5	112.81 (14)
F2—P1—F1	89.95 (3)	N1—C4—H4A	109.0
F1 ⁱ —P1—F1	179.64 (7)	C5—C4—H4A	109.0
F4—P1—F5	89.64 (7)	N1—C4—H4B	109.0
F3—P1—F5	179.82 (7)	C5—C4—H4B	109.0
F2—P1—F5	89.31 (7)	H4A—C4—H4B	107.8
F1 ⁱ —P1—F5	89.83 (3)	C6—C5—C6 ⁱⁱ	120.02 (16)
F1—P1—F5	89.83 (3)	C6—C5—C4	119.97 (8)
C3 ⁱⁱ —N1—C3	121.11 (16)	C6 ⁱⁱ —C5—C4	119.97 (8)
C3 ⁱⁱ —N1—C4	119.44 (8)	C5—C6—C6 ⁱⁱⁱ	119.99 (8)
C3—N1—C4	119.44 (8)	С5—С6—Н6	120.0
C2—C1—C2 ⁱⁱ	119.60 (17)	Сб ^{ііі} —С6—Н6	120.0
C2—C1—H1	120.2		
C2 ⁱⁱ —C1—C2—C3	1.7 (3)	C3—N1—C4—C5	90.39 (12)
C3 ⁱⁱ —N1—C3—C2	-1.6 (2)	N1—C4—C5—C6	91.26 (13)
C4—N1—C3—C2	177.67 (13)	N1-C4-C5-C6 ⁱⁱ	-91.26 (13)
C1-C2-C3-N1	-0.1 (2)	C6 ⁱⁱ —C5—C6—C6 ⁱⁱⁱ	0.3 (3)
C3 ⁱⁱ —N1—C4—C5	-90.39 (12)	C4—C5—C6—C6 ⁱⁱⁱ	177.77 (16)

Symmetry codes: (i) *x*, *y*, *-z*; (ii) *x*, *y*, *-z*+1; (iii) *-x*, *-y*, *z*.