

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-Benzoyl-3,3-dibutylthiourea

N. Gunasekaran,^a R. Karvembu,^a[‡] Seik Weng Ng^b and Edward R. T. Tiekink^b*

^aDepartment of Chemistry, National Institute of Technology, Tiruchirappalli 620 015, India, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malavsia

Correspondence e-mail: edward.tiekink@gmail.com

Received 13 September 2010; accepted 16 September 2010

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.034; wR factor = 0.092; data-to-parameter ratio = 20.1.

The title molecule, C₁₆H₂₄N₂OS, is twisted about the central N(H)-C bond with a C-N(H)-C-N torsion angle of $-62.67 (15)^{\circ}$. The carbonyl group is twisted out of the plane of the benzene ring, forming a C-C-C=O torsion angle of $-25.06 (17)^{\circ}$. In the crystal, molecules related by centres of symmetry are linked by pairs of intermolecular N-H···S hydrogen bonds, forming eight-membered {···HNCS}₂ synthons. These are further connected by weak via C- $H \cdots O$ contacts, forming a two-dimensional array in the bc plane.

Related literature

For pharmaceutical applications of thiourea derivatives, see: Binzet et al. (2009); Lipowska et al. (1996). For the coordination potential of thiourea derivatives, see: Henderson et al. (2002); Hallale et al. (2005). For the use of ruthenium(III) complexes of thioureas as catalysts, see: Gunasekaran & Karvembu (2010). For related structures, see: Gunasekaran et al. (2010a,b).

Experimental

Crystal data	
$C_{16}H_{24}N_2OS$	a = 10.3213 (7) Å
$M_r = 292.43$	b = 15.7043 (11) Å
Monoclinic, $P2_1/c$	c = 10.0992 (7) Å

‡ Additional correspondence author, e-mail: kar@nitt.edu.

Data collection

Bruker SMART APEX
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\rm min} = 0.925, T_{\rm max} = 0.971$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.034$ H atoms treated by a mixture of $wR(F^2) = 0.092$ S = 1.03 $\Delta \rho_{\rm max} = 0.31$ e Å⁻³ 3725 reflections $\Delta \rho_{\rm min} = -0.26~{\rm e}~{\rm \AA}^{-3}$ 185 parameters 1 restraint

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1-H1n\cdots S1^{i}$	0.85 (1)	2.64 (1)	3.4547 (11)	160 (1)
C2−H2a···O1 ⁱⁱ	0.95	2.47	3.4102 (16)	173
C14−H14b···O1 ⁱⁱⁱ	0.99	2.58	3.3559 (16)	136
Symmetry codes: (i $x, -y + \frac{3}{2}, z + \frac{1}{2}$.) $-x + 1, -y$	y + 1, -z + 1;	(ii) $-x + 1, -y$	+1, -z; (iii)

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

NG thanks the NITT for a Fellowship. The authors also thank the University of Malaya for support of the crystallographic facility.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5132).

References

- Binzet, G., Kulcu, N., Florke, U. & Arslan, H. (2009). J. Coord. Chem. 62, 3454-3462
- Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Gunasekaran, N. & Karvembu, R. (2010). Inorg. Chem. Commun. 13, 952-955.

- Gunasekaran, N., Karvembu, R., Ng, S. W. & Tiekink, E. R. T. (2010a). Acta Cryst. E66, o2113.
- Gunasekaran, N., Karvembu, R., Ng, S. W. & Tiekink, E. R. T. (2010b). Acta Cryst. E66, o2572-o2573.
- Hallale, O., Bourne, S. A. & Koch, K. R. (2005). CrystEngComm, 7, 161-166. Henderson, W., Nicholson, B. K., Dinger, B. M. & Bennett, R. L. (2002). Inorg.
- Chim. Acta, 338, 210-218. Lipowska, M., Hayes, B. L., Hansen, L., Taylor, A. Jr & Marzilli, L. G. (1996).
- Inorg. Chem. 35, 4227-4231.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

 $\mu = 0.20 \text{ mm}^{-1}$

 $0.40 \times 0.40 \times 0.15 \text{ mm}$

15120 measured reflections

3725 independent reflections 3204 reflections with $I > 2\sigma(I)$

independent and constrained

T = 100 K

 $R_{\rm int} = 0.036$

refinement

supporting information

Acta Cryst. (2010). E66, o2601 [doi:10.1107/S1600536810037177]

1-Benzoyl-3,3-dibutylthiourea

N. Gunasekaran, R. Karvembu, Seik Weng Ng and Edward R. T. Tiekink

S1. Comment

Thiourea and its derivatives have important pharmaceutical applications (Binzet *et al.*, 2009; Lipowska *et al.*, 1996). These species are also considered as versatile and attractive ligands due to their coordination ability to a wide range of metal centres, either as neutral ligands, or as mono- or di-anions (Henderson *et al.*, 2002; Hallale *et al.*, 2005). Their coordination complexes can also exhibit useful properties. As an example of a recent application, ruthenium(III) complexes containing these ligands have recently been used as catalysts for oxidation of alcohols to carbonyl compounds (Gunasekaran & Karvembu, 2010). In continuation of structural studies of these molecules (Gunasekaran *et al.*, 2010*a*), (I), the crystal structure of the title compound was carried out.

In (I), the molecule is twisted about the central N1—C8 bond as reflected in the value of the C7—N1—C8—S1 torsion angle of 119.81 (11) ° and C7—N1—C8—N2 of -62.67 (15) ° (see Fig. 1). The carbonyl group is twisted out of the plane of the benzene ring to which it is attached [the C2—C1—C7—O1 dihedral angle = -25.06 (17) °], and the butyl groups lie on opposite sides of the mean plane formed by the N₂S atoms.

The most prominent intermolecular interactions are of the type N—H···S, occurring between centrosymmetrically related molecules to form an eight-membered {···HNCS}₂ synthon, Table 1. The dimeric aggregates are linked into a 2-D array *via* C—H···O contacts, Fig. 2 and Table 1. The layers thus formed stack along the *a* axis, Fig. 3.

S2. Experimental

A solution of benzoyl chloride (0.7029 g, 5 mmol) in acetone (50 ml) was added drop wise to a suspension of potassium thiocyanate (0.4859 g, 5 mmol) in anhydrous acetone (50 ml). The reaction mixture was heated under reflux for 45 min and then cooled to room temperature. A solution of dibutyl amine (0.6462 g, 5 mmol) in acetone (30 ml) was added and the resulting mixture was stirred for 2 h. Hydrochloric acid (0.1 N, 300 ml) was added and the resulting white solid was filtered, washed with water and dried *in vacuo*. Single crystals of (I) for X-ray diffraction were grown at room temperature from its acetone solution. *M*. pt. 358–360 K; Yield 76%. FT—IR (KBr) v(N—H) 3174, v(C=O) 1688, v(C=S) 1243 cm⁻¹.

S3. Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.99 Å) and were included in the refinement in the riding model approximation, with $U_{iso}(H)$ set to 1.2 to $1.5U_{equiv}(C)$. The N-bound H-atom was located in a difference Fourier map, and was refined with a distance restraint of N–H 0.86±0.01 Å; the U_{iso} value was freely refined.

Figure 1

The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

Figure 2

View of the 2-D array in (I). The N–H···S hydrogen bonding and C–H···O contacts are shown as orange and blue dashed lines, respectively.

Figure 3

Unit-cell contents shown in projection down the *a* axis in (I) showing the stacking of layers. The N–H···S hydrogen bonding and C–H···O contacts are shown as orange and blue dashed lines, respectively.

1-Benzoyl-3,3-dibutylthiourea

Crystal data	
$C_{16}H_{24}N_2OS$	$V = 1617.91 (19) Å^3$
$M_r = 292.43$	Z = 4
Monoclinic, $P2_1/c$	F(000) = 632
Hall symbol: -P 2ybc	$D_{\rm x} = 1.201 {\rm Mg} {\rm m}^{-3}$
a = 10.3213 (7) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
b = 15.7043 (11) Å	Cell parameters from 5696 reflections
c = 10.0992 (7) Å	$\theta = 4.4 - 28.3^{\circ}$
$\beta = 98.751 \ (1)^{\circ}$	$\mu=0.20~\mathrm{mm^{-1}}$

T = 100 KBlock, colourless

Data collection

15120 measured reflections 3725 independent reflections
3204 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.036$
$\theta_{\rm max} = 27.5^\circ, \ \theta_{\rm min} = 2.0^\circ$
$h = -12 \rightarrow 13$
$k = -20 \rightarrow 20$
$l = -13 \rightarrow 12$
Secondary atom site location: difference Fo
map
Hydrogen site location: inferred from
neighbouring sites
H atoms treated by a mixture of independent
and constrained refinement
$w = 1/[\sigma^2(F_o^2) + (0.0441P)^2 + 0.602P]$

1 restraint

Primary atom site location: structure-invariant direct methods

$0.40 \times 0.40 \times 0.15 \text{ mm}$

ourier ıt $= 1/[\sigma^2(F_0^2) + (0.0441P)^2 + 0.602P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.31 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -0.26 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor w*R* and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

q
(10)
(2)
(2)
•)*
(2)
(2)
(3)
(3)
(3)
(3)
() () ()

TT C A	1 0014	0.5(0)	0.4010	0.020*
H5A	1.0014	0.5624	0.4010	0.030*
C6	0.80499 (13)	0.57064 (8)	0.33523 (13)	0.0205 (3)
H6A	0.7853	0.6060	0.4059	0.025*
C7	0.56729 (12)	0.57488 (7)	0.22861 (12)	0.0159 (2)
C8	0.40510 (12)	0.62549 (8)	0.36472 (12)	0.0164 (2)
C9	0.23215 (13)	0.72865 (8)	0.29594 (13)	0.0205 (3)
H9A	0.2320	0.7916	0.2996	0.025*
H9B	0.1944	0.7070	0.3739	0.025*
C10	0.14839 (12)	0.69899 (8)	0.16698 (13)	0.0202 (3)
H10A	0.1403	0.6362	0.1687	0.024*
H10B	0.1926	0.7144	0.0899	0.024*
C11	0.01211 (14)	0.73842 (9)	0.14782 (14)	0.0274 (3)
H11A	-0.0298	0.7261	0.2276	0.033*
H11B	0.0202	0.8010	0.1407	0.033*
C12	-0.07515 (14)	0.70524 (10)	0.02386 (14)	0.0282 (3)
H12A	-0.1617	0.7321	0.0166	0.042*
H12B	-0.0845	0.6434	0.0308	0.042*
H12C	-0.0356	0.7189	-0.0558	0.042*
C13	0.45409 (13)	0.75523 (8)	0.24042 (12)	0.0194 (3)
H13A	0.4005	0.7903	0.1711	0.023*
H13B	0.5153	0.7208	0.1959	0.023*
C14	0.53205 (13)	0.81332 (8)	0.34351 (13)	0.0218 (3)
H14A	0.5934	0.7786	0.4065	0.026*
H14B	0.4713	0.8425	0.3956	0.026*
C15	0.60954 (14)	0.87993 (8)	0.27769 (14)	0.0247 (3)
H15A	0.5473	0.9163	0.2184	0.030*
H15B	0.6574	0.9168	0.3483	0.030*
C16	0.70717 (14)	0.84140 (9)	0.19606 (14)	0.0265 (3)
H16A	0.7538	0.8871	0.1570	0.040*
H16B	0.6603	0.8061	0.1242	0.040*
H16C	0.7703	0.8062	0.2544	0.040*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.01575 (16)	0.02258 (17)	0.02072 (17)	0.00138 (11)	0.00475 (12)	0.00432 (12)
01	0.0204 (5)	0.0224 (4)	0.0150 (4)	-0.0002(3)	-0.0014 (4)	-0.0001 (3)
N1	0.0144 (5)	0.0204 (5)	0.0133 (5)	0.0021 (4)	0.0010 (4)	0.0027 (4)
N2	0.0170 (5)	0.0197 (5)	0.0162 (5)	0.0014 (4)	0.0007 (4)	0.0015 (4)
C1	0.0165 (6)	0.0178 (6)	0.0169 (6)	-0.0016 (4)	0.0042 (5)	0.0036 (4)
C2	0.0238 (7)	0.0202 (6)	0.0207 (6)	-0.0016 (5)	0.0048 (5)	0.0000 (5)
C3	0.0292 (8)	0.0245 (7)	0.0310 (8)	0.0039 (6)	0.0121 (6)	-0.0009 (6)
C4	0.0199 (7)	0.0292 (7)	0.0372 (8)	0.0061 (5)	0.0102 (6)	0.0093 (6)
C5	0.0179 (7)	0.0312 (7)	0.0258 (7)	-0.0025 (5)	0.0010 (5)	0.0064 (6)
C6	0.0191 (6)	0.0247 (6)	0.0178 (6)	-0.0020 (5)	0.0038 (5)	0.0020 (5)
C7	0.0174 (6)	0.0143 (5)	0.0160 (6)	-0.0028 (4)	0.0026 (5)	0.0009 (4)
C8	0.0146 (6)	0.0199 (6)	0.0140 (6)	0.0005 (4)	-0.0001 (4)	-0.0013 (4)
C9	0.0199 (6)	0.0220 (6)	0.0191 (6)	0.0066 (5)	0.0015 (5)	0.0000 (5)

supporting information

C10	0.0190 (6)	0.0241 (6)	0.0171 (6)	0.0036 (5)	0.0016 (5)	0.0003 (5)
C11	0.0239 (7)	0.0314 (7)	0.0248 (7)	0.0096 (6)	-0.0025 (5)	-0.0028 (6)
C12	0.0210 (7)	0.0386 (8)	0.0238 (7)	0.0056 (6)	-0.0008 (5)	0.0007 (6)
C13	0.0229 (6)	0.0174 (6)	0.0176 (6)	-0.0008 (5)	0.0019 (5)	0.0023 (5)
C14	0.0217 (7)	0.0247 (6)	0.0190 (6)	0.0007 (5)	0.0028 (5)	-0.0045 (5)
C15	0.0270 (7)	0.0216 (6)	0.0247 (7)	-0.0026 (5)	0.0013 (5)	-0.0051 (5)
C16	0.0227 (7)	0.0313 (7)	0.0253 (7)	-0.0010 (6)	0.0029 (6)	0.0025 (6)
C16	0.0227 (7)	0.0313 (7)	0.0253 (7)	-0.0010 (6)	0.0029 (6)	0.0025 (6)

Geometric parameters (Å, °)

S1—C8	1.6843 (13)	С9—Н9В	0.9900
O1—C7	1.2144 (15)	C10-C11	1.5221 (18)
N1—C7	1.3955 (16)	C10—H10A	0.9900
N1—C8	1.4102 (16)	C10—H10B	0.9900
N1—H1n	0.854 (9)	C11—C12	1.5188 (19)
N2—C8	1.3259 (16)	C11—H11A	0.9900
N2—C9	1.4675 (16)	C11—H11B	0.9900
N2—C13	1.4790 (16)	C12—H12A	0.9800
C1—C6	1.3938 (18)	C12—H12B	0.9800
C1—C2	1.3953 (18)	C12—H12C	0.9800
C1—C7	1.4915 (17)	C13—C14	1.5194 (17)
C2—C3	1.3861 (19)	C13—H13A	0.9900
C2—H2A	0.9500	C13—H13B	0.9900
C3—C4	1.387 (2)	C14—C15	1.5289 (19)
С3—НЗА	0.9500	C14—H14A	0.9900
C4—C5	1.387 (2)	C14—H14B	0.9900
C4—H4A	0.9500	C15—C16	1.5212 (19)
C5—C6	1.3896 (19)	C15—H15A	0.9900
С5—Н5А	0.9500	C15—H15B	0.9900
С6—Н6А	0.9500	C16—H16A	0.9800
C9—C10	1.5225 (18)	C16—H16B	0.9800
С9—Н9А	0.9900	C16—H16C	0.9800
C7—N1—C8	122.03 (10)	C9—C10—H10B	109.2
C7—N1—H1n	112.7 (11)	C11-C10-H10B	109.2
C8—N1—H1n	114.3 (11)	H10A—C10—H10B	107.9
C8—N2—C9	121.01 (11)	C12—C11—C10	112.69 (12)
C8—N2—C13	124.66 (11)	C12—C11—H11A	109.1
C9—N2—C13	114.30 (10)	C10-C11-H11A	109.1
C6—C1—C2	119.95 (12)	C12—C11—H11B	109.1
C6—C1—C7	122.14 (11)	C10-C11-H11B	109.1
C2—C1—C7	117.80 (11)	H11A—C11—H11B	107.8
C3—C2—C1	119.57 (13)	C11—C12—H12A	109.5
C3—C2—H2A	120.2	C11—C12—H12B	109.5
C1—C2—H2A	120.2	H12A—C12—H12B	109.5
C4—C3—C2	120.37 (13)	C11—C12—H12C	109.5
С4—С3—Н3А	119.8	H12A—C12—H12C	109.5
С2—С3—НЗА	119.8	H12B—C12—H12C	109.5

C3—C4—C5	120.29 (13)	N2-C13-C14	111.42 (10)
C3—C4—H4A	119.9	N2—C13—H13A	109.3
C5—C4—H4A	119.9	C14—C13—H13A	109.3
C4—C5—C6	119.73 (13)	N2—C13—H13B	109.3
С4—С5—Н5А	120.1	C14—C13—H13B	109.3
С6—С5—Н5А	120.1	H13A—C13—H13B	108.0
C5—C6—C1	120.08 (13)	C13—C14—C15	111.74 (11)
С5—С6—Н6А	120.0	C13—C14—H14A	109.3
С1—С6—Н6А	120.0	C15—C14—H14A	109.3
O1—C7—N1	122.67 (11)	C13—C14—H14B	109.3
O1—C7—C1	122.54 (11)	C15—C14—H14B	109.3
N1—C7—C1	114.77 (10)	H14A—C14—H14B	107.9
N2—C8—N1	116.41 (11)	C16—C15—C14	113.39 (11)
N2—C8—S1	124.81 (10)	C16—C15—H15A	108.9
N1—C8—S1	118.73 (9)	C14—C15—H15A	108.9
N2—C9—C10	110.64 (10)	C16—C15—H15B	108.9
N2—C9—H9A	109.5	C14—C15—H15B	108.9
С10—С9—Н9А	109.5	H15A—C15—H15B	107.7
N2—C9—H9B	109.5	C15—C16—H16A	109.5
С10—С9—Н9В	109.5	C15—C16—H16B	109.5
Н9А—С9—Н9В	108.1	H16A—C16—H16B	109.5
C9—C10—C11	112.19 (11)	C15—C16—H16C	109.5
C9—C10—H10A	109.2	H16A—C16—H16C	109.5
C11—C10—H10A	109.2	H16B—C16—H16C	109.5
C6—C1—C2—C3	1.20 (19)	C9—N2—C8—N1	172.80 (10)
C7—C1—C2—C3	177.48 (11)	C13—N2—C8—N1	-9.26 (17)
C1—C2—C3—C4	-1.2 (2)	C9—N2—C8—S1	-9.85 (17)
C2—C3—C4—C5	0.4 (2)	C13—N2—C8—S1	168.09 (9)
C3—C4—C5—C6	0.4 (2)	C7—N1—C8—N2	-62.67 (15)
C4—C5—C6—C1	-0.3 (2)	C7—N1—C8—S1	119.81 (11)
C2-C1-C6-C5	-0.46 (19)	C8—N2—C9—C10	-93.34 (14)
C7—C1—C6—C5	-176.57 (12)	C13—N2—C9—C10	88.52 (13)
C8—N1—C7—O1	2.17 (18)	N2-C9-C10-C11	-173.07 (11)
C8—N1—C7—C1	-179.45 (11)	C9—C10—C11—C12	-176.53 (12)
C6—C1—C7—O1	151.14 (12)	C8—N2—C13—C14	-82.29 (15)
C2-C1-C7-O1	-25.06 (17)	C9—N2—C13—C14	95.77 (12)
C6—C1—C7—N1	-27.25 (16)	N2-C13-C14-C15	-173.16 (10)
C2-C1-C7-N1	156.56 (11)	C13-C14-C15-C16	-59.57 (15)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
N1—H1 <i>n</i> ···S1 ⁱ	0.85 (1)	2.64 (1)	3.4547 (11)	160 (1)
C2—H2a···O1 ⁱⁱ	0.95	2.47	3.4102 (16)	173
C14—H14b…O1 ⁱⁱⁱ	0.99	2.58	3.3559 (16)	136

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y+1, -z; (iii) x, -y+3/2, z+1/2.