

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(*E*)-1-(2,5-Dichloro-3-thienyl)-3-(3,4dimethoxyphenyl)prop-2-en-1-one

William T. A. Harrison,^a* C. S. Chidan Kumar,^b H. S. Yathirajan,^b A. N. Mayekar^{b,c} and B. Narayana^d

^aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, ^bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, ^cSeQuent Scientific Limited, New Mangalore 575 011, India, and ^dDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, India

Correspondence e-mail: w.harrison@abdn.ac.uk

Received 6 August 2010; accepted 31 August 2010

Key indicators: single-crystal X-ray study; T = 120 K; mean σ (C–C) = 0.004 Å; *R* factor = 0.048; *wR* factor = 0.113; data-to-parameter ratio = 17.7.

In the title compound, $C_{15}H_{12}Cl_2O_3S$, the prop-2-en-1-one (enone) fragment is almost planar $[C-C-C-O = 2.2 (4)^\circ]$ and it subtends dihedral angles of 11.9 (2) and 11.0 (2)° with the thiophene and benzene rings, respectively. The dihedral angle between the aromatic rings is 3.47 (16)°. In the crystal, weak $C-H\cdots O$ and $C-H\cdots Cl$ interactions link the molecules, leading to $R_2^2(14)$, $R_2^2(24)$ and C(11) supramolecular motifs occurring within the three-dimensional network. Weak aromatic $\pi-\pi$ stacking [centroid–centroid separations = 3.6823 (15) and 3.8722 (15) Å] may also help to consolidate the packing.

Related literature

For a related structure and background references, see: Jasinski *et al.* (2010). For reference structural data, see: Allen *et al.* (1987).

Experimental

Crystal data C₁₅H₁₂Cl₂O₃S

 $M_{r} = 343.21$

Monoclinic, $P2_1/n$	
a = 8.9331 (2) Å	
b = 8.9997 (2) Å	
c = 18.8210 (5) Å	
$\beta = 100.181 \ (1)^{\circ}$	
V = 1489.29 (6) Å ³	

Data collection

Nonius KappaCCD diffractometer	22032 measured reflections
Absorption correction: multi-scan	3424 independent reflections
[SADABS (Bruker, 2003) and	2834 reflections with $I > 2\sigma(I)$
Blessing (1995)]	$R_{\rm int} = 0.056$
$T_{\min} = 0.873, T_{\max} = 0.944$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.048$	193 parameters
$wR(F^2) = 0.113$	H-atom parameters constrained
S = 1.10	$\Delta \rho_{\rm max} = 0.72 \text{ e} \text{ Å}^{-3}$
3424 reflections	$\Delta \rho_{\rm min} = -0.41 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C3-H3\cdots O3^{i}$	0.95	2.53	3.227 (3)	130
C12−H12···O1 ⁱⁱ	0.95	2.55	3.441 (3)	157
$C14 - H14A \cdots O3^{iii}$	0.98	2.53	3.474 (3)	161
$C15-H15B\cdots Cl1^{iv}$	0.98	2.82	3.647 (3)	142

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{3}{2}$; (iii) $x + \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$; (iv) -x, -y + 1, -z + 1.

Data collection: *COLLECT* (Nonius, 1998); cell refinement: *COLLECT*; data reduction: *DENZO* (Otwinowski & Minor, 1997); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *publCIF* (Westrip, 2010).

CSC thanks the University of Mysore for providing research facilities. HSY thanks the University of Mysore for sanctioning sabbatical leave.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG5014).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Jasinski, J. P., Pek, A. E., Chidan Kumar, C. S., Yathirajan, H. S. & Mayekar, A. N. (2010). Acta Cryst. E66, 01717.
- Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

organic compounds

Mo $K\alpha$ radiation

 $0.24 \times 0.12 \times 0.10 \text{ mm}$

 $\mu = 0.58 \text{ mm}^-$

T = 120 K

supporting information

Acta Cryst. (2010). E66, o2479 [doi:10.1107/S1600536810035142]

(*E*)-1-(2,5-Dichloro-3-thienyl)-3-(3,4-dimethoxyphenyl)prop-2-en-1-one

William T. A. Harrison, C. S. Chidan Kumar, H. S. Yathirajan, A. N. Mayekar and B. Narayana

S1. Comment

The title compound, (I), (Fig. 1), was prepared as part of our ongoing structural studies (Jasinski *et al.*, 2010) of chalcone-like compounds, in which substituted aromatic ring systems are linked by a prop-2-en-1-one bridge.

The prop-2-en-1-one fragment in (I) is almost planar $[C7-C8-C9-O3 = 2.2 (4)^{\circ}]$ and it subtends dihedral angles of 11.9 (2) and 11.0 (2)° with the thiophene and benzene rings, respectively. The dihedral angle between the aromatic rings is 3.47 (16)°. The carbon atoms of the methoxy groups are close to co-planar with their attached benzene ring [displacements of 0.033 (5) and 0.100 (5)Å for C14 and C15, respectively]. Otherwise, the bond lengths for (I) fall within their expected ranges (Allen *et al.*, 1987) and are similar to those in a related structure (Jasinski *et al.*, 2010).

In the crystal, three weak C—H···O and one C—H···Cl interactions (Table 1) link the molecules. Considered individually, they generate the following motifs: the C3—H3 bond generates inversion dimers containing $R_2^2(14)$ rings, whereas the C12—H12 bond leads to C(11) chains propagating in [010]. The methyl-H bonds lead to inversion-generated $R_2^2(24)$ loops (for C15—H15B) and C(11) chains (for C14—H14A). Taken together, these four interactions generate a three-dimensional network. Weak aromatic π - π stacking [centroid-centroid separations = 3.6823 (15) and 3.8722 (15) Å] may also help to consolidate the packing.

S2. Experimental

2,5-Dichloro-3-acetylthiophene was obtained as a gift sample from SeQuent Scientific ltd., New Mangalore, India. 1-(2,5-Dichlorothiophen-3-yl)ethanone (1.95 g, 0.01 mol) was mixed with 3,4-dimethoxybenzaldehyde (1.66 g, 0.01 mol) and dissolved in ethanol (30 ml). To this, 3 ml of 50% KOH was added. The reaction mixture was stirred for 6 h. The resulting crude solid was filtered, washed successively with distilled water and finally recrystallized from ethanol (95%) to give the pure chalcone. Irregular yellow crystals of (I) were obtained by the slow evaporation of DMF solution (m.p.: 389–391 K).

S3. Refinement

The hydrogen atoms were geometrically placed (C—H = 0.95–0.98 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(methyl C)$. A rotating group model was applied to the methyl group.

Figure 1

View of the molecular structure of (I) showing 50% displacement ellipsoids (arbitrary spheres for the H atoms).

(E)-1-(2,5-Dichloro-3-thienyl)-3-(3,4-dimethoxyphenyl)prop-2-en-1-one

Crystal data	
$C_{15}H_{12}Cl_2O_3S$	F(000) = 704
$M_r = 343.21$	$D_{\rm x} = 1.531 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/n$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 20728 reflections
a = 8.9331(2) Å	$\theta = 2.9 - 27.5^{\circ}$
b = 8.9997 (2) Å	$\mu = 0.58 \text{ mm}^{-1}$
c = 18.8210(5) Å	T = 120 K
$\beta = 100.181 (1)^{\circ}$	Fragment, yellow
V = 1489.29 (6) A ³	$0.24 \times 0.12 \times 0.10 \text{ mm}$
Z = 4	
Data collection	
Nonius KappaCCD	22032 measured reflections
diffractometer	3424 independent reflections
Radiation source: fine-focus sealed tube	2834 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.056$
ω and φ scans	$\theta_{\rm max} = 27.6^\circ, \ \theta_{\rm min} = 3.2^\circ$
Absorption correction: multi-scan	$h = -11 \rightarrow 11$
[SADABS (Bruker, 2003) and Blessing (1995)]	$k = -11 \rightarrow 11$
$T_{\min} = 0.873, \ T_{\max} = 0.944$	$l = -24 \rightarrow 24$
Refinement	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.048$	H-atom parameters constrained
$wR(F^2) = 0.113$	$w = 1/[\sigma^2(F_o^2) + (0.034P)^2 + 1.9239P]$
S = 1.10	where $P = (F_o^2 + 2F_c^2)/3$
3424 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
193 parameters	$\Delta \rho_{\rm max} = 0.72 \text{ e } \text{\AA}^{-3}$

0 restraints

Primary atom site location: structure-invariant

direct methods Secondary atom site location: difference Fourier

Acta Cryst. (2010). E66, o2479

sup-2

 $\Delta \rho_{\rm max} = 0.72 \text{ e} \text{ Å}^{-1}$ $\Delta \rho_{\rm min} = -0.41 \ {\rm e} \ {\rm \AA}^{-3}$ Extinction correction: SHELXL97 (Sheldrick, 2008), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ Extinction coefficient: 0.011 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.4943 (3)	0.2226 (3)	0.72975 (12)	0.0218 (5)	
C2	0.5681 (3)	0.2506 (3)	0.67246 (14)	0.0253 (5)	
H2	0.6632	0.2050	0.6705	0.030*	
C3	0.5013 (3)	0.3471 (3)	0.61723 (14)	0.0273 (5)	
H3	0.5512	0.3644	0.5774	0.033*	
C4	0.3644 (3)	0.4175 (3)	0.61939 (13)	0.0248 (5)	
C5	0.2908 (3)	0.3901 (3)	0.67817 (13)	0.0227 (5)	
H5	0.1977	0.4388	0.6809	0.027*	
C6	0.3533 (3)	0.2927 (3)	0.73192 (12)	0.0207 (5)	
C7	0.2948 (3)	0.5123 (3)	0.55890 (14)	0.0269 (5)	
H7	0.3459	0.5142	0.5187	0.032*	
C8	0.1686 (3)	0.5971 (3)	0.55235 (13)	0.0232 (5)	
H8	0.1154	0.6027	0.5918	0.028*	
C9	0.1115 (3)	0.6799 (3)	0.48719 (13)	0.0230 (5)	
C10	-0.0865 (3)	0.8706 (3)	0.43372 (13)	0.0217 (5)	
C11	-0.0291 (3)	0.7698 (3)	0.48589 (12)	0.0213 (5)	
C12	-0.1241 (3)	0.7591 (3)	0.53941 (13)	0.0265 (5)	
H12	-0.1035	0.6955	0.5803	0.032*	
C13	-0.2457 (3)	0.8490 (3)	0.52538 (14)	0.0298 (6)	
C14	0.6852 (3)	0.0533 (3)	0.78546 (16)	0.0382 (7)	
H14A	0.7073	-0.0128	0.8274	0.057*	
H14B	0.7672	0.1264	0.7875	0.057*	
H14C	0.6776	-0.0053	0.7411	0.057*	
C15	0.1441 (3)	0.3186 (3)	0.79360 (15)	0.0317 (6)	
H15A	0.1087	0.2819	0.8368	0.047*	
H15B	0.0709	0.2905	0.7505	0.047*	
H15C	0.1532	0.4270	0.7960	0.047*	
01	0.5440 (2)	0.1289 (2)	0.78610 (9)	0.0284 (4)	
O2	0.28886 (19)	0.25494 (19)	0.78990 (9)	0.0265 (4)	
03	0.1727 (2)	0.6738 (2)	0.43354 (10)	0.0417 (5)	
S 1	-0.25196 (7)	0.95280 (7)	0.44816 (4)	0.02811 (19)	
C11	-0.01562 (8)	0.92675 (7)	0.35926 (3)	0.03212 (19)	
C12	-0.38786 (8)	0.86816 (11)	0.57543 (4)	0.0513 (3)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0237 (11)	0.0212 (12)	0.0189 (11)	-0.0020 (9)	-0.0004 (9)	-0.0012 (9)
C2	0.0203 (11)	0.0268 (13)	0.0298 (13)	-0.0032 (10)	0.0076 (10)	-0.0045 (10)
C3	0.0309 (13)	0.0281 (13)	0.0250 (13)	-0.0083 (11)	0.0105 (10)	0.0000 (10)
C4	0.0299 (13)	0.0216 (12)	0.0238 (12)	-0.0040 (10)	0.0073 (10)	0.0007 (10)
C5	0.0266 (12)	0.0204 (12)	0.0213 (12)	-0.0007 (9)	0.0050 (10)	-0.0023 (9)
C6	0.0256 (11)	0.0190 (11)	0.0182 (11)	-0.0033 (9)	0.0056 (9)	-0.0021 (9)
C7	0.0264 (12)	0.0298 (14)	0.0260 (13)	-0.0011 (10)	0.0084 (10)	0.0025 (10)
C8	0.0204 (11)	0.0237 (12)	0.0267 (12)	0.0006 (9)	0.0074 (10)	-0.0039 (10)
C9	0.0220 (11)	0.0271 (13)	0.0208 (12)	0.0034 (10)	0.0062 (9)	-0.0009 (10)
C10	0.0195 (11)	0.0242 (12)	0.0211 (12)	0.0005 (9)	0.0025 (9)	-0.0032 (9)
C11	0.0213 (11)	0.0247 (12)	0.0180 (11)	0.0003 (9)	0.0040 (9)	-0.0030 (9)
C12	0.0261 (12)	0.0357 (14)	0.0181 (12)	0.0048 (11)	0.0051 (10)	-0.0003 (10)
C13	0.0265 (12)	0.0410 (15)	0.0232 (13)	0.0034 (11)	0.0077 (10)	-0.0050 (11)
C14	0.0296 (14)	0.0439 (17)	0.0400 (16)	0.0158 (12)	0.0033 (12)	0.0039 (13)
C15	0.0320 (13)	0.0358 (15)	0.0307 (14)	0.0038 (11)	0.0152 (11)	-0.0037 (11)
O1	0.0297 (9)	0.0313 (10)	0.0242 (9)	0.0095 (8)	0.0045 (7)	0.0036 (7)
O2	0.0308 (9)	0.0277 (9)	0.0230 (9)	0.0043 (7)	0.0106 (7)	0.0036 (7)
O3	0.0426 (11)	0.0582 (14)	0.0277 (10)	0.0238 (10)	0.0159 (9)	0.0103 (9)
S 1	0.0233 (3)	0.0303 (4)	0.0296 (3)	0.0064 (3)	0.0016 (2)	-0.0019 (3)
Cl1	0.0378 (4)	0.0324 (4)	0.0278 (3)	-0.0019 (3)	0.0102 (3)	0.0059 (3)
C12	0.0363 (4)	0.0820(6)	0.0411 (4)	0.0219 (4)	0.0215 (3)	0.0036 (4)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

C1—01	1.367 (3)	C9—C11	1.491 (3)	
C1—C2	1.383 (3)	C10—C11	1.368 (3)	
C1—C6	1.415 (3)	C10—C11	1.713 (2)	
C2—C3	1.404 (4)	C10—S1	1.717 (2)	
С2—Н2	0.9500	C11—C12	1.430 (3)	
C3—C4	1.385 (4)	C12—C13	1.343 (4)	
С3—Н3	0.9500	C12—H12	0.9500	
C4—C5	1.405 (3)	C13—Cl2	1.718 (3)	
C4—C7	1.470 (3)	C13—S1	1.720 (3)	
С5—С6	1.380 (3)	C14—O1	1.435 (3)	
С5—Н5	0.9500	C14—H14A	0.9800	
С6—О2	1.364 (3)	C14—H14B	0.9800	
С7—С8	1.348 (3)	C14—H14C	0.9800	
С7—Н7	0.9500	C15—O2	1.427 (3)	
С8—С9	1.448 (3)	C15—H15A	0.9800	
С8—Н8	0.9500	C15—H15B	0.9800	
С9—ОЗ	1.231 (3)	C15—H15C	0.9800	
O1—C1—C2	125.7 (2)	C11—C10—C11	129.58 (18)	
O1—C1—C6	114.9 (2)	C11—C10—S1	113.31 (18)	
C2-C1-C6	119.4 (2)	Cl1—C10—S1	117.10 (14)	

C1—C2—C3	119.4 (2)	C10-C11-C12	110.9 (2)
C1—C2—H2	120.3	C10—C11—C9	125.4 (2)
С3—С2—Н2	120.3	C12—C11—C9	123.7 (2)
C4—C3—C2	121.5 (2)	C13—C12—C11	112.4 (2)
С4—С3—Н3	119.2	C13—C12—H12	123.8
С2—С3—Н3	119.2	C11—C12—H12	123.8
C3—C4—C5	118.8 (2)	C12—C13—Cl2	127.1 (2)
C3—C4—C7	119.9 (2)	C12—C13—S1	113.43 (19)
C5—C4—C7	121.3 (2)	Cl2—C13—S1	119.47 (16)
C6—C5—C4	120.3(2)	01—C14—H14A	109.5
С6—С5—Н5	119.9	O1-C14-H14B	109.5
C4—C5—H5	119.9	$H_{14} - C_{14} - H_{14}B$	109.5
$0^{2}-C6-C5$	124 9 (2)	01-C14-H14C	109.5
02 - C6 - C1	124.9(2) 114.6(2)	$H_{14} - C_{14} - H_{14} C_{14}$	109.5
$C_{2} = C_{0} = C_{1}$	120.6(2)	H_{14B} C_{14} H_{14C}	109.5
C_{3} C_{7} C_{4}	120.0(2) 120.2(2)	Ω^2 C15 H15A	109.5
C_{0}^{8}	129.2(2)	$O_2 = C_{15} = H_{15} P_{15}$	109.5
C_{8} C_{7} H_{7}	115.4	$U_2 \rightarrow U_1 = U_1 $	109.5
$C_{4} = C_{1} = 117$	113.4	$\frac{1115}{115}$	109.5
$C_{1} = C_{2} = C_{2}$	122.1 (2)		109.5
$C = C = H \delta$	118.9	HISA-CIS-HISC	109.5
C9—C8—H8	118.9	HISB-CIS-HISC	109.5
03-09-08	122.1 (2)	C1—O1—C14	116.9 (2)
O3—C9—C11	120.4 (2)	C6—O2—C15	116.97 (19)
C8—C9—C11	117.5 (2)	C10—S1—C13	89.97 (12)
O1—C1—C2—C3	178.3 (2)	S1—C10—C11—C12	0.2 (3)
C6—C1—C2—C3	-0.5(4)	Cl1—C10—C11—C9	-2.3 (4)
C1—C2—C3—C4	1.3 (4)	S1—C10—C11—C9	179.10 (19)
C2—C3—C4—C5	-0.5 (4)	O3—C9—C11—C10	-12.1 (4)
C2—C3—C4—C7	-177.2 (2)	C8—C9—C11—C10	170.1 (2)
C3—C4—C5—C6	-1.1 (4)	O3—C9—C11—C12	166.6 (3)
C7—C4—C5—C6	175.6 (2)	C8—C9—C11—C12	-11.1 (4)
C4—C5—C6—O2	-177.8 (2)	C10-C11-C12-C13	0.4 (3)
C4—C5—C6—C1	1.9 (4)	C9—C11—C12—C13	-178.6 (2)
O1—C1—C6—O2	-0.3 (3)	C11—C12—C13—Cl2	179.3 (2)
C2-C1-C6-O2	178.7 (2)	C11—C12—C13—S1	-0.8(3)
O1—C1—C6—C5	179.9 (2)	C2-C1-O1-C14	0.1 (4)
C2-C1-C6-C5	-1.1 (3)	C6-C1-O1-C14	178.9 (2)
C3—C4—C7—C8	-175.4 (3)	C5—C6—O2—C15	1.8 (3)
C5—C4—C7—C8	8.0 (4)	C1—C6—O2—C15	-178.0(2)
C4—C7—C8—C9	-177.4 (2)	C11—C10—S1—C13	-0.5 (2)
С7—С8—С9—О3	2.2 (4)	Cl1—C10—S1—C13	-179.29 (16)
C7—C8—C9—C11	179.9 (2)	C12—C13—S1—C10	0.7 (2)
C11 - C10 - C11 - C12	178 78 (19)	C_{12} C_{13} S_{1} C_{10}	-17934(18)
	1,0,10 (17)		117.51(10)

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1/2, y+1/2, -z+3/2; (iii) x+1/2, -y+1/2, z+1/2; (iv) -x, -y+1, -z+1.