

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

catena-Poly[[aquabis(pyridine- κN)copper(II)]-µ-2,2'-(p-phenylenedioxy)diacetato- $\kappa^2 O:O'$

Xiu-Mei Zhang^a and Ya-Feng Li^{b*}

^aDepartment of X-ray, First Hospital, Jilin University, Changchun 130021, People's Republic of China, and ^bSchool of Chemical Engineering, Changchun University of Technology, Changchun 130012, People's Republic of China Correspondence e-mail: fly012345@sohu.com

Received 6 September 2010; accepted 12 September 2010

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.009 Å; R factor = 0.071; wR factor = 0.123; data-to-parameter ratio = 12.4.

In the title compound, $[Cu(C_{10}H_8O_6)(C_5H_5N)_2(H_2O)]_n$, the Cu atom is five-coordinated by two O atoms from two carboxylate groups of two different 2,2'-(p-phenylenedioxy)diacetate ligands, two N atoms from two pyridine molecules and one water O atom. The geometry is squarepyramidal with the water O atom occupying the apical position. The carboxylate group bridges adjacent Cu atoms, forming an infinite zigzag chain extending parallel to [001]. The chains are linked into layers by $O-H \cdots O$ hydrogen bonds. The Cu and water O atoms lie on special positions of site symmetry 2.

Related literature

For the isotypic zinc analog, see: Hong et al. (2005).

Experimental

Crystal data $[Cu(C_{10}H_8O_6)(C_5H_5N)_2(H_2O)]$

 $M_r = 463.93$

Z = 4

Monoclinic, $C2/c$	Z = 4
a = 15.363 (4) Å	Mo $K\alpha$ radiation
b = 6.0888 (12) Å	$\mu = 1.14 \text{ mm}^{-1}$
c = 21.896 (6) Å	T = 298 K
$\beta = 103.67 (3)^{\circ}$	$0.12 \times 0.11 \times 0.09 \text{ mm}$
V = 1990.2 (8) Å ³	
Data collection	
Rigaku R-AXIS RAPID diffractometer	7227 measured reflections 1737 independent reflections
Absorption correction: multi-scan	1096 reflections with $I > 2\sigma(I)$
(ABSCOR; Higashi, 1995)	$R_{\rm int} = 0.119$
$T_{\min} = 0.875, \ T_{\max} = 0.907$	
Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.071$	H atoms treated by a mixture
$wR(F^2) = 0.123$	independent and constraine
S = 1.08	refinement

$R[F^2 > 2\sigma(F^2)] = 0.071$	H atoms treated by a mixture of		
$wR(F^2) = 0.123$	independent and constrained		
S = 1.08	refinement		
1737 reflections	$\Delta \rho_{\rm max} = 0.32 \text{ e } \text{\AA}^{-3}$		
140 parameters	$\Delta \rho_{\rm min} = -0.38 \text{ e } \text{\AA}^{-3}$		

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O1W-H1A\cdots O2^{i}$	0.81 (6)	1.87 (6)	2.677 (5)	174 (7)
Symmetry code: (i) $-x$,	$y + 1, -z + \frac{1}{2}$			

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/ MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2000); software used to prepare material for publication: SHELXL97.

This project was sponsored by the Scientific Research Foundation for Returned Overseas Chinese Scholars, Chinese Education Ministry (20071108) and the Scientific Research Foundation for the Returned Overseas Team, Chinese Education Ministry.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG5029).

References

Brandenburg, K. (2000). DIAMOND. Crystal Impact GbR, Bonn, Germany. Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Hong, X.-L., Li, Y.-Z. & Bai, J.-F. (2005). Acta Cryst. E61, m1863-m1865. Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2010). E66, m1283 [doi:10.1107/S1600536810036469]

catena-Poly[[aquabis(pyridine- κN)copper(II)]- μ -2,2'-(*p*-phenylenedioxy)-diacetato- $\kappa^2 O$:O']

Xiu-Mei Zhang and Ya-Feng Li

S1. Comment

The metal-organic framework, which is formed by carboxylate ligand as the strut and transition metal as the node, has recently attracted more attentions owing to the potential applications of catalyst and H-storage. In this paper, flexible ligand-BDOA as the strut bridges the Cu cations to result in the formation of infinite zigzag chain of $[Cu(py)_2(H_2O)BDOA]_n$.

The asymmetrical unit of $[Cu(py)_2(H_2O)BDOA]_n$ (py=pyridine, BDOA=benzene-1,4-dioxyacetate) which is isostructural with of $[Zn(py)_2(H_2O)BDOA]_n$ (Hong, *et al.*, 2005), is composed of one half of Cu cation, one half of BDOA, one half of water molecule and one pyridine molecule (Fig.1). Five-coordinated Cu cation lies in the basal position of pyramid constructed by two O atoms from two carboxyl groups of two different BDOA, two nitrogen atoms of two pyridines and one water oxygen atom situated at the apical position. The bond distances of Cu—N, Cu—O and Cu —Ow are 2.109 (23) Å, 1.965 (35) Å and 2.192 (6) Å, respectively. The bond angles of O—Cu—O and N—Cu—O are 179.85 (14)° and 167.68 (18)°, respectively. Cu and water oxygen lie at 2-fold axis and BDOA at the inversion center.

The monodentate μ_2 -BDOA bridges the adjacent Cu cations to form the infinite zigzag chain along (001) direction. The H-bonds of Ow—H···O (free oxygen of carboxyl) link the adjacent chains to two-dimensional layer (*bc* planar), which is packed by the ver dan Waals force (Fig.2).

S2. Experimental

(I) was synthesized under hydrothermal condition. In a typically route, H_2BDOA (0.22 g, 1 mmol) was dissolved in 10 ml deionized water under stirring, and then pyridine (1.6 ml, 20 mmol) and Cu(Ac)₂·3H₂O (0.235 g, 1 mmol) were added to a blue solution. After continuously stirred for 1 h, the solution with the molar ratio of H₂BDOA: 20py: Cu(Ac)₂·3H₂O: 555H₂O was transferred into 23 ml autoclave and heated at 438 K for 5 days. After naturally cooling to room temperature, blue block product was collected by filtration as a single phase.

S3. Refinement

Water H atoms were located in a difference Fourier map and were refined with O—H = 0.82 (2) Å, H···H = 1.37 (2) Å and $U_{iso}(H) = 1.2Ueq(O)$. The remaining H-atoms were placed in calculated positions (C—H (phenyl and pyridine ring) = 0.93 Å, C—H (methylene) = 0.97 Å) and were included in the refinement in the riding-model approximation, with U(H) = 1.2Ueq(C).

Figure 1

The unit cell of (I), showing the atomic labelling scheme and displacement ellipsoids at the 50% probability level. [Symmetry codes: (i) -x, y, 0.5 - z; (ii) -x, 1 - y, -z.]

Figure 2

The ball-stick plot of (I), displaying the zigzag chain along (001) direction composed of briging the Cu cation with monodentate μ_2 -BDOA. Cu is shown in the cyan, O in red, N in blue and C in grey.

catena-Poly[[aquabis(pyridine- κN)copper(II)]- μ - 2,2'-(p-phenylenedioxy)diacetato- $\kappa^2 O:O'$]

F(000) = 956

 $\theta = 3.6 - 25^{\circ}$ $\mu = 1.14 \text{ mm}^{-1}$

T = 298 K

Block, blue

 $D_{\rm x} = 1.548 {\rm Mg} {\rm m}^{-3}$

 $0.12 \times 0.11 \times 0.09 \text{ mm}$

Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 2000 reflections

Crystal data

 $[Cu(C_{10}H_8O_6)(C_5H_5N)_2(H_2O)]$ $M_r = 463.93$ Monoclinic, C2/cHall symbol: -C 2yc a = 15.363 (4) Åb = 6.0888 (12) Åc = 21.896 (6) Å $\beta = 103.67 (3)^{\circ}$ V = 1990.2 (8) Å³ Z = 4

Data collection

Rigaku R-AXIS RAPID diffractometer	7227 measured reflections 1737 independent reflections
Radiation source: fine-focus sealed tube	1096 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.119$
Detector resolution: 10.00 pixels mm ⁻¹	$\theta_{\rm max} = 25.0^\circ, \ \theta_{\rm min} = 3.6^\circ$
ω scans	$h = -18 \rightarrow 18$
Absorption correction: multi-scan	$k = -7 \rightarrow 6$
(ABSCOR; Higashi, 1995)	$l = -25 \rightarrow 25$
$T_{\min} = 0.875, \ T_{\max} = 0.907$	
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.071$	Hydrogen site location: inferred from
$wR(F^2) = 0.123$	neighbouring sites
S = 1.08	H atoms treated by a mixture of independent
1737 reflections	and constrained refinement
140 parameters	$w = 1/[\sigma^2(F_0^2) + (0.0254P)^2 + 4.0919P]$

 $w = 1/[\sigma^2(F_0^2) + (0.0254P)^2 + 4.0919P]$ where $P = (F_0^2 + 2F_c^2)/3$ Primary atom site location: structure-invariant $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.32 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.38 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

direct methods

0 restraints

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor w*R* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cu1	0.0000	1.02668 (15)	0.2500	0.0480 (4)
01	-0.0864 (2)	1.0271 (7)	0.16798 (16)	0.0584 (10)
02	-0.0691 (3)	0.6662 (7)	0.15674 (17)	0.0679 (12)

O3	-0.1479 (3)	0.6794 (7)	0.03254 (17)	0.0656 (12)
C1	-0.0948 (4)	0.8473 (11)	0.1365 (2)	0.0506 (15)
C2	-0.1406 (4)	0.8781 (10)	0.0675 (2)	0.0581 (16)
H2A	-0.2001	0.9377	0.0643	0.070*
H2B	-0.1070	0.9840	0.0493	0.070*
C3	-0.0715 (4)	0.5975 (10)	0.0191 (2)	0.0528 (15)
C4	0.0125 (4)	0.6894 (10)	0.0344 (3)	0.0618 (17)
H4	0.0218	0.8182	0.0579	0.074*
C5	-0.0824 (4)	0.4048 (10)	-0.0158 (3)	0.0605 (17)
Н5	-0.1385	0.3387	-0.0266	0.073*
N1	0.0988 (3)	0.9911 (8)	0.20420 (18)	0.0503 (12)
C6	0.1565 (4)	0.8241 (10)	0.2156 (3)	0.0571 (16)
H6	0.1512	0.7228	0.2463	0.068*
C7	0.2226 (4)	0.7939 (11)	0.1847 (3)	0.0681 (18)
H7	0.2605	0.6731	0.1937	0.082*
C8	0.2327 (4)	0.9417 (13)	0.1405 (3)	0.0713 (19)
H8	0.2787	0.9270	0.1198	0.086*
C9	0.1732 (5)	1.1140 (12)	0.1271 (3)	0.075 (2)
Н9	0.1771	1.2156	0.0962	0.090*
C10	0.1086 (4)	1.1333 (10)	0.1598 (3)	0.0659 (18)
H10	0.0693	1.2514	0.1508	0.079*
O1W	0.0000	1.3867 (10)	0.2500	0.085 (2)
H1A	0.023 (5)	1.463 (10)	0.280 (3)	0.102*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.0449 (6)	0.0454 (6)	0.0508 (6)	0.000	0.0055 (4)	0.000
01	0.047 (2)	0.067 (3)	0.055 (2)	0.003 (2)	0.0017 (18)	-0.007(2)
O2	0.082 (3)	0.057 (3)	0.059 (3)	0.000 (2)	0.006 (2)	0.007 (2)
O3	0.052 (3)	0.080(3)	0.062 (2)	-0.005 (2)	0.009 (2)	-0.016 (2)
C1	0.040 (4)	0.069 (5)	0.042 (3)	-0.005 (3)	0.008 (3)	0.001 (3)
C2	0.055 (4)	0.064 (4)	0.052 (3)	0.004 (3)	0.005 (3)	-0.001 (3)
C3	0.043 (4)	0.070 (4)	0.042 (3)	-0.001 (3)	0.004 (3)	-0.002(3)
C4	0.057 (5)	0.065 (4)	0.060 (4)	-0.010 (3)	0.008 (3)	-0.015 (3)
C5	0.042 (4)	0.072 (4)	0.067 (4)	-0.012 (3)	0.013 (3)	-0.006 (3)
N1	0.042 (3)	0.057 (3)	0.048 (3)	-0.005 (3)	0.004 (2)	0.001 (2)
C6	0.051 (4)	0.062 (4)	0.057 (4)	0.005 (3)	0.010 (3)	0.011 (3)
C7	0.054 (5)	0.073 (5)	0.081 (5)	0.005 (4)	0.024 (4)	0.006 (4)
C8	0.049 (4)	0.103 (6)	0.066 (4)	-0.026 (4)	0.020 (3)	-0.020 (4)
C9	0.063 (5)	0.093 (5)	0.070 (4)	-0.018 (4)	0.018 (4)	0.017 (4)
C10	0.053 (4)	0.069 (4)	0.070 (4)	-0.004 (3)	0.004 (3)	0.015 (4)
O1W	0.114 (6)	0.041 (4)	0.078 (5)	0.000	-0.021 (4)	0.000

Geometric parameters (Å, °)

Cul—Ol	1.964 (3)	C4—H4	0.9300
Cu1—O1 ⁱ	1.964 (3)	C5—C4 ⁱⁱ	1.362 (8)

Cu1—N1	2.019 (4)	С5—Н5	0.9300
Cu1—N1 ⁱ	2.019 (4)	N1—C6	1.333 (7)
Cu1—O1W	2.192 (6)	N1-C10	1.338 (7)
01	1.284 (6)	C6—C7	1.359 (8)
02-C1	1 219 (6)	С6—Н6	0.9300
03-C3	1 370 (6)	C7-C8	1 357 (8)
03-C2	1 422 (6)	C7—H7	0.9300
$C_1 - C_2$	1.122(0) 1.520(7)	C8 - C9	1 377 (9)
$C_1 C_2$	0.9700		0.0300
C2_H2B	0.9700	C9-C10	1 357 (8)
C_2 C_2 C_4	1 373 (7)	С9—Н9	0.9300
$C_3 = C_5$	1.373(7) 1 388 (8)	C10 H10	0.9300
C_{3}	1.366(6) 1.362(8)		0.9300
C4—C3	1.302 (8)	OIW—IIIA	0.81 (0)
O1—Cu1—O1 ⁱ	179.8 (3)	C5 ⁱⁱ —C4—H4	119.4
O1—Cu1—N1	88.32 (15)	C3—C4—H4	119.4
O1 ⁱ —Cu1—N1	91.70 (15)	C4 ⁱⁱ —C5—C3	121.3 (6)
O1—Cu1—N1 ⁱ	91.70 (15)	C4 ⁱⁱ —C5—H5	119.4
O1 ⁱ —Cu1—N1 ⁱ	88.32 (15)	С3—С5—Н5	119.4
N1—Cu1—N1 ⁱ	167.7 (3)	C6—N1—C10	116.5 (5)
O1—Cu1—O1W	89.92 (13)	C6—N1—Cu1	122.2 (4)
O1 ⁱ —Cu1—O1W	89.92 (13)	C10—N1—Cu1	121.3 (4)
N1—Cu1—O1W	96.16 (14)	N1—C6—C7	123.5 (6)
N1 ⁱ —Cu1—O1W	96.16 (14)	N1—C6—H6	118.3
C1-O1-Cu1	116.8 (4)	С7—С6—Н6	118.3
$C_{3} = O_{3} = C_{2}$	117.5 (5)	C8—C7—C6	119.4 (6)
02-C1-01	126.4 (5)	С8—С7—Н7	120.3
02-C1-C2	120.1(0) 120.4(5)	С6—С7—Н7	120.3
01 - C1 - C2	1131(5)	C7 - C8 - C9	118 3 (6)
03-C2-C1	113.0(5)	C7—C8—H8	120.8
$O_3 - C_2 - H_2 A$	109.0	C9 - C8 - H8	120.8
C1 - C2 - H2A	109.0	C_{10} C_{9} C_{8}	119.0 (6)
$O_3 = C_2 = H_2 B$	109.0	C_{10} C_{9} H_{9}	120.5
C1 - C2 - H2B	109.0	C8_C9_H9	120.5
$H_2A - C_2 - H_2B$	107.8	N1 - C10 - C9	120.5
03-03-04	127.1 (6)	N1-C10-H10	118.4
03-03-05	127.1(0) 1153(5)	C9-C10-H10	118.4
$C_{4} - C_{3} - C_{5}$	117.6 (6)	$C_{\mu} = C_{\mu} = C_{\mu$	125 (5)
C^{5ii} C^{4} C^{3}	121.1 (6)		125 (5)
05-04-05	121.1 (0)		
N1—Cu1—O1—C1	66.8 (4)	O1 ⁱ —Cu1—N1—C6	56.9 (4)
N1 ⁱ —Cu1—O1—C1	-100.9 (4)	N1 ⁱ —Cu1—N1—C6	-33.0 (4)
O1W—Cu1—O1—C1	162.9 (4)	O1W—Cu1—N1—C6	147.0 (4)
Cu1—O1—C1—O2	15.7 (8)	O1—Cu1—N1—C10	55.6 (4)
Cu1—O1—C1—C2	-163.2 (3)	Ol ⁱ —Cul—Nl—Cl0	-124.3 (4)
C3—O3—C2—C1	-73.6 (6)	N1 ⁱ —Cu1—N1—C10	145.9 (4)
O2—C1—C2—O3	-0.3 (8)	O1W—Cu1—N1—C10	-34.1 (4)
O1—C1—C2—O3	178.6 (5)	C10—N1—C6—C7	-0.1 (8)

supporting information

$C_{2} = 0_{3} = C_{3} = C_{4}$	-1.8(8)	Cu1—N1—C6—C7	178 8 (4)
$C_2 = C_3 = C_3 = C_5$	-1793(4)	N1 - C6 - C7 - C8	1,0.0(+) 1.3(10)
03-03-03-05	-177.2(5)	$C_{6} - C_{7} - C_{8} - C_{9}$	-22(9)
$C_{5} = C_{3} = C_{4} = C_{5}^{ii}$	0.3(9)	C7 - C8 - C9 - C10	2.2(9)
$03 - 03 - 05 - 04^{ii}$	177.5(5)	$C_{1} = C_{1} = C_{1$	-0.1(8)
$C4-C3-C5-C4^{ii}$	-0.3(9)	Cu1 - N1 - C10 - C9	-1790(5)
01-Cu1-N1-C6	-123.2(4)	C8-C9-C10-N1	-0.9(10)
	(-)		()

Symmetry codes: (i) -x, y, -z+1/2; (ii) -x, -y+1, -z.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
01 <i>W</i> —H1 <i>A</i> ···O2 ⁱⁱⁱ	0.81 (6)	1.87 (6)	2.677 (5)	174 (7)

Symmetry code: (iii) -x, y+1, -z+1/2.