Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Piperazine-1,4-diium bis(2-carboxy-1Hpyrazole-4-carboxylate) tetrahydrate

Xin-Hui Zhou

Key Laboratory for Organic Electronics & Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NUPT), Nanjing 210046, People's Republic of China Correspondence e-mail: iamxhzhou@njupt.edu.cn

Received 8 September 2010; accepted 13 September 2010

Key indicators: single-crystal X-ray study; T = 291 K; mean σ (C–C) = 0.003 Å; R factor = 0.059; wR factor = 0.147; data-to-parameter ratio = 11.5.

The asymmetric unit of the title compound, $C_4H_{12}N_2^{2+}$.-2C₅H₃N₂O₄^{-.4}H₂O, comprises one-half of a piperazine-1,4diium cation, which lies on an inversion centre, a 2-carboxy-1H-pyrazole-4-carboxylate anion and two water molecules. An extensive network of intermolecular O-H···O. N- $H \cdots O, N - H \cdots N$ and $C - H \cdots O$ hydrogen bonds between the cations, anions and water molecules leads to a threedimensional supramolecular framework.

Related literature

For 3,5-pyrazoledicarboxylic acid, see: King et al. (2003); Pan et al. (2001). For reference structural data, see: Li & Su (2007); Reviriego et al. (2006).

Experimental

Crystal data $C_4H_{12}N_2 \cdot 2C_5H_3N_2O_4 \cdot 4H_2O$ V = 1001.2 (3) Å³ $M_r = 470.41$ Z = 2Monoclinic, $P2_1/c$ Mo $K\alpha$ radiation a = 8.3363 (13) Å $\mu = 0.14 \text{ mm}^{-1}$ b = 16.246 (3) Å T = 291 Kc = 7.3930 (11) Å 0.15 \times 0.14 \times 0.12 mm $\beta = 90.812 (3)^{\circ}$

Data collection

Bruker SMART APEX CCD

diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2000) $T_{\min} = 0.980, T_{\max} = 0.984$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.059$	H atoms treated by a mixture of
$wR(F^2) = 0.147$	independent and constrained
S = 1.10	refinement
1946 reflections	$\Delta \rho_{\rm max} = 0.41 \text{ e } \text{\AA}^{-3}$
169 parameters	$\Delta \rho_{\rm min} = -0.23 \text{ e} \text{ Å}^{-3}$

5265 measured reflections

 $R_{\rm int} = 0.051$

1946 independent reflections

1524 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1 - H1 \cdots O5^{i}$	0.84 (3)	1.93 (3)	2.746 (3)	167 (3)
O2−H2···O4 ⁱⁱ	0.87 (3)	1.65 (3)	2.520 (2)	175 (3)
$N3-H3A\cdots O4$	0.88 (3)	2.36 (3)	2.918 (3)	121 (2)
$N3 - H3A \cdot \cdot \cdot N2$	0.88 (3)	2.01 (3)	2.865 (3)	162 (3)
$N3 - H3B \cdot \cdot \cdot O3^{iii}$	0.88 (3)	2.20 (3)	2.999 (3)	150 (3)
$O5 - H5B \cdots O6$	0.85 (4)	2.00 (4)	2.831 (3)	166 (3)
$O5-H5A\cdots O6^{iv}$	0.92(4)	1.96 (4)	2.833 (3)	157 (3)
$O6-H6C\cdots O3^{v}$	0.93 (3)	1.85 (3)	2.779 (3)	173 (3)
$O6-H6D\cdots O3^{vi}$	0.76 (3)	2.14 (3)	2.858 (3)	158 (4)
$C6-H6B\cdots O5^{vii}$	0.97	2.53	3.348 (4)	142
$C7 - H7A \cdots O1^{viii}$	0.97	2.53	3.091 (3)	117

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2008); software used to prepare material for publication: SHELXTL.

This research was supported financially by Nanjing University of Posts and Telecommunications (grant No. NY209032).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2361).

References

Brandenburg, K. (2008). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2000). SMART, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

King, P., Clèrac, R., Anson, C. E., Coulon, C. & Powell, A. K. (2003). Inorg. Chem. 42, 3492-3500.

Li, Z.-H. & Su, K.-M. (2007). Acta Cryst. E63, 04744.

Pan, L., Ching, N., Huang, X. Y. & Li, J. (2001). Chem. Eur. J. 7, 4431-4437. Reviriego, F., Rodriguez-Franco, M. I., Navarro, P., García-España, E., Liu-

González, M., Verdejo, B. & Domènech, A. (2006). J. Am. Chem. Soc. 128, 16458-16459.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2010). E66, o2578 [doi:10.1107/S160053681003655X]

Piperazine-1,4-diium bis(2-carboxy-1H-pyrazole-4-carboxylate) tetrahydrate

Xin-Hui Zhou

S1. Comment

Hydrogen bonding, as the strongest and most directional intermolecular force, has been intensively investigated in organic crystalline solids. The ligand, 3,5-pyrazoledicarboxylic acid, known both as a multiple proton donor and acceptor, has six potential hydrogen-bond sites involving both the nitrogen atoms of the pyrazole ring and all of the carboxylate O atoms. and it can form mono-, di- and trianionic ligand species through deprotonation (King *et al.* 2003; Pan *et al.* 2001).

We report here the synthesis and structure of piperazine-1,4-diium bis(2-carboxy-1*H*-pyrazole-4-carboxylate) tetrahydrate, as shown in Fig.1, which was obtained from a solution of 3,5-pyrazoledicarboxylic acid, Cd(NO₃)₂.4H₂O and piperazine. Bond distances and angles are normal (Li & Su, 2007; Reviriego *et al.* 2006). The asymmetric unit of the title compound comprises one half of the piperazine-1,4-diium cation, which lies about an inversion centre, a 2-carb-oxy-1*H*-pyrazole-4-carboxylate anion and two water molecules. In the crystal structure molecules are interlinked by hydrogen bonds (Table 1 and Fig. 2). The 2-carboxy-1*H*-pyrazole-4-carboxylate anoins are interconnected with each other through the O2—H2···O4ⁱⁱⁱ hydrogen bonds. The 2-carboxy-1*H*-pyrazole-4-carboxylate anions are connected with the piperazine-1,4-diium cations through the N3—H3A···O4, N3—H3A···N2, N3—H3B···O3^{iv} and C7—H7A···O1^{viii} hydrogen bonds to form the three-dimensional supramolecular framework.

S2. Experimental

A mixture of 3,5-pyrazoledicarboxylic acid (0.2 mmol, 34.8 mg), $Cd(NO_3)_2.4H_2O$ (0.1 mmol, 30.8 mg), piperazine (0.2 mmol, 17.2 mg) and H_2O (8 ml) was sealed in a 15 ml Teflon-lined bomb and heated at 150°C for 5 days. The reaction mixture was slowly cooled to room temperature to obtain the colorless block crystals of (I) suitable for X-ray diffraction analysis.

S3. Refinement

Hydrogen atoms bonded to the carbon atoms were placed in calculated positions and refined as riding mode, with C—H = 0.93 Å for aromatic H atom, 0.97 Å for methylene H atoms, respectively, and $U_{iso}(H) = 1.2U_{eq}(C)$. The H atoms on the O and N atoms were located in difference Fourier map with their bond lengths freely refined and $U_{iso}(H) = 1.2U_{eq}(O \text{ or } N)$.

Figure 1

The molecular structure of the title compound with 30% probability displacement ellipsoids. H atoms are shown as small spheres of arbitrary radii. [Symmetry code; (i) 1 - x, 1 - y, -z.]

Figure 2

A view of the crystal packing. Hydrogen bonds are indicated by green dashed lines.

Piperazine-1,4-diium bis(2-carboxy-1*H*-pyrazole-4-carboxylate) tetrahydrate

Crystal data	
$C_4H_{12}N_2 \cdot 2C_5H_3N_2O_4 \cdot 4H_2O$	V = 1001.2 (3) Å ³
$M_r = 470.41$	Z = 2
Monoclinic, $P2_1/c$	F(000) = 496
Hall symbol: -P 2ybc	$D_{\rm x} = 1.560 {\rm ~Mg} {\rm ~m}^{-3}$
a = 8.3363 (13) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
b = 16.246 (3) Å	Cell parameters from 1373 reflections
c = 7.3930 (11) Å	$\theta = 2.7 - 24.0^{\circ}$
$\beta = 90.812 (3)^{\circ}$	$\mu = 0.14 \mathrm{~mm^{-1}}$

T = 291 KBlock, white

Data collection

Bruker SMART APEX CCD diffractometer	5265 measured reflections 1946 independent reflections
Radiation source: fine-focus sealed tube	1524 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.051$
phi and ω scans	$\theta_{\rm max} = 26.0^\circ, \ \theta_{\rm min} = 2.4^\circ$
Absorption correction: multi-scan	$h = -10 \rightarrow 10$
(SADABS; Bruker, 2000)	$k = -13 \rightarrow 19$
$T_{\min} = 0.980, \ T_{\max} = 0.984$	$l = -8 \rightarrow 9$
Refinement	
Refinement on F^2	Secondary atom site location: difference F
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.059$	Hydrogen site location: inferred from
$wR(F^2) = 0.147$	neighbouring sites
S = 1.10	H atoms treated by a mixture of independe
1946 reflections	and constrained refinement
169 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0729P)^2]$
0 restraints	where $P = (F_o^2 + 2F_c^2)/3$

Primary atom site location: structure-invariant direct methods

$0.15 \times 0.14 \times 0.12 \text{ mm}$

ourier ent where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.41 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.23 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor w*R* and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	1.1506 (3)	0.78226 (15)	0.2962 (3)	0.0267 (6)	
C2	0.9861 (3)	0.77149 (14)	0.2216 (3)	0.0233 (6)	
C3	0.8727 (3)	0.82885 (15)	0.1741 (3)	0.0256 (6)	
H3	0.8827	0.8858	0.1785	0.031*	
C4	0.7391 (3)	0.78344 (14)	0.1178 (3)	0.0226 (5)	
C5	0.5785 (3)	0.81182 (15)	0.0528 (3)	0.0246 (6)	
C6	0.6653 (4)	0.51108 (17)	-0.0379 (5)	0.0455 (8)	
H6A	0.7149	0.4999	0.0790	0.055*	
H6B	0.7496	0.5242	-0.1223	0.055*	
C7	0.4237 (3)	0.56416 (16)	0.1024 (4)	0.0380 (7)	
H7A	0.3509	0.6107	0.1070	0.046*	
H7B	0.4666	0.5548	0.2233	0.046*	
N1	0.9196 (2)	0.69726 (13)	0.1933 (3)	0.0266 (5)	

H1	0.962 (3)	0.6522 (18)	0.220 (4)	0.032*	
N2	0.7696 (2)	0.70254 (12)	0.1296 (3)	0.0262 (5)	
N3	0.5556 (3)	0.58226 (14)	-0.0224 (3)	0.0399 (7)	
H3A	0.604 (4)	0.6268 (19)	0.020 (4)	0.048*	
H3B	0.514 (4)	0.5944 (18)	-0.130 (4)	0.048*	
01	1.2097 (2)	0.85001 (11)	0.3144 (3)	0.0454 (6)	
O2	1.2193 (2)	0.71272 (11)	0.3390 (3)	0.0360 (5)	
H2	1.311 (4)	0.7215 (17)	0.394 (4)	0.043*	
03	0.5431 (2)	0.88609 (10)	0.0779 (3)	0.0360 (5)	
O4	0.4901 (2)	0.75870 (11)	-0.0188 (3)	0.0358 (5)	
05	0.0107 (3)	0.53912 (14)	0.2765 (4)	0.0528 (7)	
H5A	-0.077 (5)	0.510(2)	0.316 (5)	0.063*	
H5B	0.093 (5)	0.539 (2)	0.346 (5)	0.063*	
06	0.2621 (2)	0.51492 (13)	0.5325 (3)	0.0476 (6)	
H6C	0.323 (4)	0.472 (2)	0.486 (5)	0.057*	
H6D	0.320 (4)	0.549 (2)	0.556 (5)	0.057*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0215 (13)	0.0285 (14)	0.0299 (15)	0.0002 (11)	-0.0059 (11)	0.0006 (11)
C2	0.0199 (12)	0.0226 (13)	0.0272 (14)	-0.0006 (10)	-0.0039 (10)	0.0002 (10)
C3	0.0205 (13)	0.0193 (12)	0.0369 (15)	-0.0020 (9)	-0.0056 (10)	-0.0016 (10)
C4	0.0189 (12)	0.0203 (12)	0.0286 (14)	0.0011 (10)	-0.0045 (10)	-0.0004 (10)
C5	0.0159 (12)	0.0228 (13)	0.0351 (15)	-0.0025 (10)	-0.0040 (10)	0.0030(11)
C6	0.0399 (17)	0.0443 (18)	0.052 (2)	-0.0078 (14)	0.0024 (14)	-0.0050 (15)
C7	0.0455 (17)	0.0286 (15)	0.0398 (17)	0.0027 (12)	-0.0021 (14)	-0.0035 (12)
N1	0.0191 (11)	0.0186 (11)	0.0417 (14)	0.0025 (9)	-0.0092 (9)	0.0022 (9)
N2	0.0169 (10)	0.0215 (11)	0.0398 (13)	-0.0001 (8)	-0.0103 (9)	0.0011 (9)
N3	0.0616 (17)	0.0210 (12)	0.0370 (15)	-0.0144 (11)	-0.0069 (12)	-0.0007 (10)
01	0.0326 (11)	0.0284 (11)	0.0745 (16)	-0.0083 (8)	-0.0248 (10)	0.0010 (10)
O2	0.0195 (9)	0.0284 (10)	0.0597 (14)	-0.0004 (8)	-0.0183 (9)	0.0030 (9)
03	0.0239 (10)	0.0218 (10)	0.0622 (14)	0.0044 (8)	-0.0093 (9)	-0.0002 (9)
04	0.0221 (9)	0.0282 (10)	0.0566 (13)	-0.0002 (8)	-0.0167 (9)	-0.0048 (9)
05	0.0395 (12)	0.0361 (12)	0.0826 (19)	0.0042 (10)	-0.0040 (12)	0.0144 (11)
06	0.0345 (12)	0.0334 (12)	0.0748 (17)	-0.0035 (9)	-0.0015 (11)	-0.0107 (11)

Geometric parameters (Å, °)

C1-01	1.213 (3)	С6—Н6В	0.9700	
C1—O2	1.304 (3)	C7—N3	1.476 (4)	
C1—C2	1.481 (3)	C7—C6 ⁱ	1.504 (4)	
C2—N1	1.342 (3)	C7—H7A	0.9700	
C2—C3	1.369 (3)	C7—H7B	0.9700	
C3—C4	1.395 (3)	N1—N2	1.333 (3)	
С3—Н3	0.9300	N1—H1	0.84 (3)	
C4—N2	1.341 (3)	N3—H3A	0.88 (3)	
C4—C5	1.489 (3)	N3—H3B	0.88 (3)	

С5—О4	1.248 (3)	O2—H2	0.87 (3)
C5—O3	1.256 (3)	O5—H5A	0.92 (4)
C6—N3	1.480 (4)	O5—H5B	0.85 (4)
C6—C7 ⁱ	1.504 (4)	O6—H6C	0.93 (3)
С6—Н6А	0.9700	O6—H6D	0.76 (3)
O1—C1—O2	125.7 (2)	H6A—C6—H6B	108.0
O1—C1—C2	121.4 (2)	N3-C7-C6 ⁱ	109.4 (2)
O2—C1—C2	112.9 (2)	N3—C7—H7A	109.8
N1—C2—C3	106.9 (2)	C6 ⁱ —C7—H7A	109.8
N1-C2-C1	122.8 (2)	N3—C7—H7B	109.8
C3—C2—C1	130.3 (2)	C6 ⁱ —C7—H7B	109.8
C2—C3—C4	105.2 (2)	H7A—C7—H7B	108.2
С2—С3—Н3	127.4	N2—N1—C2	112.3 (2)
С4—С3—Н3	127.4	N2—N1—H1	122.4 (18)
N2—C4—C3	110.4 (2)	C2—N1—H1	125.1 (19)
N2—C4—C5	119.6 (2)	N1—N2—C4	105.21 (19)
C3—C4—C5	130.0 (2)	C7—N3—C6	111.1 (2)
O4—C5—O3	126.1 (2)	C7—N3—H3A	106 (2)
O4—C5—C4	116.5 (2)	C6—N3—H3A	113 (2)
O3—C5—C4	117.5 (2)	C7—N3—H3B	108 (2)
N3C6C7 ⁱ	111.0 (2)	C6—N3—H3B	110 (2)
N3—C6—H6A	109.4	H3A—N3—H3B	108 (3)
C7 ⁱ —C6—H6A	109.4	C1—O2—H2	110.5 (18)
N3—C6—H6B	109.4	H5A—O5—H5B	117 (3)
C7 ⁱ —C6—H6B	109.4	H6C—O6—H6D	107 (3)

Symmetry code: (i) -x+1, -y+1, -z.

Hydrogen-bond geometry (Å, °)

HA	D—H	H…A	D····A	<i>D</i> —H··· <i>A</i>
N1—H1····O5 ⁱⁱ	0.84 (3)	1.93 (3)	2.746 (3)	167 (3)
O2—H2···O4 ⁱⁱⁱ	0.87 (3)	1.65 (3)	2.520 (2)	175 (3)
N3—H3 <i>A</i> ···O4	0.88 (3)	2.36 (3)	2.918 (3)	121 (2)
N3—H3 <i>A</i> ···N2	0.88 (3)	2.01 (3)	2.865 (3)	162 (3)
N3—H3 <i>B</i> ···O3 ^{iv}	0.88 (3)	2.20 (3)	2.999 (3)	150 (3)
O5—H5 <i>B</i> ···O6	0.85 (4)	2.00 (4)	2.831 (3)	166 (3)
O5—H5 <i>A</i> ···O6 ^v	0.92 (4)	1.96 (4)	2.833 (3)	157 (3)
O6—H6 <i>C</i> ···O3 ^{vi}	0.93 (3)	1.85 (3)	2.779 (3)	173 (3)
O6—H6D····O3 ^{vii}	0.76 (3)	2.14 (3)	2.858 (3)	158 (4)
C6—H6B····O5 ⁱ	0.97	2.53	3.348 (4)	142
C7—H7A····O1 ^{viii}	0.97	2.53	3.091 (3)	117

Symmetry codes: (i) -x+1, -y+1, -z; (ii) x+1, y, z; (iii) x+1, -y+3/2, z+1/2; (iv) x, -y+3/2, z-1/2; (v) -x, -y+1, -z+1; (vi) -x+1, y-1/2, -z+1/2; (vii) x, -y+3/2, z+1/2; (vi) x, -y+3/2, z-1/2; (v) -x, -y+1, -z+1; (vi) -x+1, y-1/2, -z+1/2; (vii) x, -y+3/2, z+1/2; (vi) x, -y+3/2, z-1/2; (v) -x, -y+1, -z+1; (vi) -x+1, y-1/2, -z+1/2; (vii) x, -y+3/2, z+1/2; (vi) -x+1, -y+3/2, -z+1/2; (vi) -x+1, -y+3/2; (vi) -x+1; (vi) -x