# organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# (*E*)-1-(3,5-Difluorophenyl)-3-(2,4dimethoxyphenyl)prop-2-en-1-one

## Tanxiao Huang,<sup>a</sup> Dongdong Zhang,<sup>b</sup> Quanzhi Yang,<sup>a</sup> Xiaoyan Wei<sup>a</sup> and Jianzhang Wu<sup>a,c</sup>\*

<sup>a</sup>School of Pharmacy, Wenzhou Medical College, Wenzhou, Zhejiang Province 325035, People's Republic of China, <sup>b</sup>Life Science College, Wenzhou Medical College, Wenzhou, Zhejiang Province 325035, People's Republic of China, and <sup>c</sup>Institute of Biotechnology, Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, People's Republic of China Correspondence e-mail: wujianzhang6@163.com

Received 4 August 2010; accepted 1 September 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean  $\sigma$ (C–C) = 0.004 Å; R factor = 0.057; wR factor = 0.162; data-to-parameter ratio = 13.1.

The title compound,  $C_{17}H_{14}F_2O_3$ , is approximately planar, the dihedral angle between the rings being 5.46 (2)°. The H atoms of the central propenone group are *trans*. The crystal structure is stabilized by intermolecular  $C-H \cdots F$  hydrogen bonds.

#### **Related literature**

For related structures, see: Peng *et al.* (2010); Wu, Zhang *et al.* (2009); Liang *et al.* (2007); Yathirajan *et al.* (2006). For background to and applications of chalcones, see: Nowakowska (2007); Nielsen *et al.* (2005); Wu, Qiu *et al.* (2009); Liang *et al.* (2009); Mojzisa *et al.* (2008); Liu *et al.* (2008); Wu *et al.* (2010); Zhao *et al.* (2010); Selvakumar *et al.* (2007).



#### **Experimental**

#### Crystal data

 $\begin{array}{l} C_{17}H_{14}F_2O_3 \\ M_r = 304.28 \\ \text{Triclinic, } P\overline{1} \\ a = 7.8047 \ (8) \ \text{\AA} \\ b = 11.2591 \ (12) \ \text{\AA} \\ c = 17.0080 \ (18) \ \text{\AA} \\ \alpha = 81.407 \ (2)^\circ \\ \beta = 81.231 \ (2)^\circ \end{array}$ 

| $\gamma = 76.319 \ (2)^{\circ}$           |
|-------------------------------------------|
| V = 1425.1 (3) Å <sup>3</sup>             |
| Z = 4                                     |
| Mo Kα radiation                           |
| $\mu = 0.11 \text{ mm}^{-1}$              |
| T = 293  K                                |
| $0.27 \times 0.22 \times 0.17 \text{ mm}$ |

#### Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996)  $T_{min} = 0.602, T_{max} = 1.000$ 

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.057$ | 401 parameters                                             |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.162$               | H-atom parameters constrained                              |
| S = 0.92                        | $\Delta \rho_{\rm max} = 0.24 \ {\rm e} \ {\rm \AA}^{-3}$  |
| 5242 reflections                | $\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$ |

7600 measured reflections

 $R_{\rm int} = 0.034$ 

5242 independent reflections

2815 reflections with  $I > 2\sigma(I)$ 

## Table 1

| Hydrogen-bond | geometry | (A, ° | ). |  |
|---------------|----------|-------|----|--|
|               |          |       |    |  |

| $D - H \cdot \cdot \cdot A$            | D-H            | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|----------------------------------------|----------------|-------------------------|--------------|--------------------------------------|
| $C25-H25\cdots F4^{i}$                 | 0.93           | 2.59                    | 3.375 (3)    | 142                                  |
| C13−H13···F4 <sup>ii</sup>             | 0.93           | 2.46                    | 3.303 (4)    | 151                                  |
| C9−H9···F3 <sup>iii</sup>              | 0.93           | 2.66                    | 3.532 (3)    | 156                                  |
| C30−H30···F2 <sup>ii</sup>             | 0.93           | 2.47                    | 3.303 (4)    | 149                                  |
| $C8 - H8 \cdot \cdot \cdot F2^{i}$     | 0.93           | 2.46                    | 3.369 (3)    | 166                                  |
| $C28 - H28 \cdot \cdot \cdot F1^{iii}$ | 0.93           | 2.53                    | 3.437 (3)    | 166                                  |
| Symmetry codes:                        | (i) $x + 1, y$ | y - 1, z; (ii)          | -x-1, -y+2,  | , -z + 2; (iii)                      |
| -x, -y + 1, -z + 2.                    |                |                         |              |                                      |

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PB2039).

#### References

- Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Liang, G., Shao, L. L., Wang, Y., Zhao, C. G., Chu, Y. H., Xiao, J., Zhao, Y., Li, X. K. & Yang, S. L. (2009). *Bioorg. Med. Chem.* 17, 2623–2631.
- Liang, G., Tian, J.-L., Zhao, C.-G. & Li, X.-K. (2007). Acta Cryst. E63, 03630.
- Liu, X. L., Xu, Y. J. & Go, M. L. (2008). Eur. J. Med. Chem. 43, 1681–1687.
- Mojzisa, J., Varinskaa, L., Mojzisovab, G., Kostovac, I. & Mirossaya, L. (2008). *Pharmacol. Res.* **57**, 259–265.
- Nielsen, S. F., Larsen, M., Boesen, T., Schønning, K. & Kromann, H. (2005). J. Med. Chem. 48, 2667–2677.
- Nowakowska, Z. (2007). Eur. J. Med. Chem. 42, 125-137.
- Peng, J., Xu, H., Li, Z., Zhang, Y. & Wu, J. (2010). Acta Cryst. E66, o1156– 01157.
- Selvakumar, N., Kumar, G. S., Azhagan, A. M., Rajulu, G. G., Sharma, S., Kumar, M. S., Das, J., Iqbal, J. & Trehan, S. (2007). *Eur. J. Med. Chem.* 42, 538–543.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wu, J. Z., Qiu, P. H., Li, Y., Yang, X. F., Li, L. & Ai, C. C. (2009). Chem. Nat. Compd, 45, 572–574.
- Wu, J. Z., Wang, C., Cai, Y. P., Yang, S. L., Zheng, X. Y., Qiu, P. H., Peng, J., Liang, G. & Li, X. K. (2010). *Chin. J. Org. Chem.* **30**, 884–889.
- Wu, J. Z., Zhang, L., Wang, J., Yang, S. L. & Li, X. K. (2009). Acta Cryst. E65, 02805.
- Yathirajan, H. S., Sarojini, B. K., Narayana, B., Bindya, S. & Bolte, M. (2006). Acta Cryst. E62, 03629–03630.
- Zhao, C.G., Yang, J., Wang, Y., Liang, D. L., Yang, X.Y., Li, X.X., Wu, J.Z., Wu, X.P., Yang, S.L., Li, X.K. & Liang, G. (2010). *Bioorg. Med. Chem.* 18, 2388– 2393.

# supporting information

Acta Cryst. (2010). E66, o2518 [doi:10.1107/S1600536810035257]

# (E)-1-(3,5-Difluorophenyl)-3-(2,4-dimethoxyphenyl)prop-2-en-1-one

## Tanxiao Huang, Dongdong Zhang, Quanzhi Yang, Xiaoyan Wei and Jianzhang Wu

### S1. Comment

Chalcones, which have the common Skeleton of 1,3-diaryl-2-propen-1-ones, are open-chain flavonoids. Chalcones belong to nature products and distribute widespread in fruits, vegetables, tea and so on. Like as other flavonoids, Chalcones have wide-range biological properties, including antimicrobial, antitumor, antiangiogenic, antifungal, antioxidant activities and so on (Nowakowska, 2007; Zhao *et al.*, 2010; Liu *et al.*, 2008; Wu *et al.*, 2010.). Moreover, Chalcones have low toxicity. Owing to its good effect and low toxicity, it has attract more and more scientists attention. Recent studies have demonstrated that synthesized Chalcones have the same activities as or better activities than natural chalcones (Nowakowska, 2007; Selvakumar *et al.*, 2007).

Because Chalcones have good activity, the title chalcone derivative has been synthesized. In order to get detailed information such as the geometrical features and the underlying interaction of the crystal structure, an X-ray study of the title compound was carried out.

Two rings of molecule is approximately planar and the dihedral angle between the two rings is  $5.46^{\circ}$ . The H atoms of the central propenone group are *trans*. The average value of exocyclic bond angles [120.7 (4)°] and the bond distances [1.381 (5) Å] in the phenyl rings are agree quite well with the normal values reported in the literature for some analogous structures (Peng *et al.*, 2010; Wu *et al.*, 2009; Liang *et al.*, 2007; Yathirajan *et al.*, 2006). In the crystal, The crystal structure is stabilized by intermolecular C—H···F hydrogen bonds.

## **S2.** Experimental

The title compounds was synthesized by Claisene-Schmidt condensation. 2,4-dimethoxyBenzaldehyde (2 mmol) and 3',5'-Difluoroacetophenone (2 mmol) were dissolved in ehanol (20 ml). Temperature of reaction was controlled at 278 K and 5 drops NaOH (20%) was added. The reaction was monitored by thin-layer chromatography. 20 ml H<sub>2</sub>O was added after 8 h and the yellow solid was Precipitated, washed with water and cold ethanol, dried and purified by column chromatography on silica gel. Single crystals of the title compound were grow in a  $CH_2Cl_2/CH_3CH_2OH$  mixture (2:1) at 277 K.



# Figure 1

Ellispoid plot.



# Figure 2

Packing diagram.

### (E)-1-(3,5-Difluorophenyl)-3-(2,4-dimethoxyphenyl)prop-2-en-1-one

#### Crystal data

 $\begin{array}{l} C_{17}H_{14}F_{2}O_{3}\\ M_{r}=304.28\\ \text{Triclinic, }P\overline{1}\\ a=7.8047\ (8)\ \text{\AA}\\ b=11.2591\ (12)\ \text{\AA}\\ c=17.0080\ (18)\ \text{\AA}\\ a=81.407\ (2)^{\circ}\\ \beta=81.231\ (2)^{\circ}\\ \gamma=76.319\ (2)^{\circ}\\ V=1425.1\ (3)\ \text{\AA}^{3} \end{array}$ 

#### Data collection

| Bruker SMART CCD area-detector           | 7600 measured reflections                                           |
|------------------------------------------|---------------------------------------------------------------------|
| diffractometer                           | 5242 independent reflections                                        |
| Radiation source: fine-focus sealed tube | 2815 reflections with $I > 2\sigma(I)$                              |
| Graphite monochromator                   | $R_{\rm int} = 0.034$                                               |
| phi and $\omega$ scans                   | $\theta_{\rm max} = 25.5^{\circ}, \ \theta_{\rm min} = 1.9^{\circ}$ |
| Absorption correction: multi-scan        | $h = -9 \rightarrow 9$                                              |
| (SADABS; Sheldrick, 1996)                | $k = -6 \rightarrow 13$                                             |
| $T_{\min} = 0.602, \ T_{\max} = 1.000$   | $l = -20 \rightarrow 20$                                            |
|                                          |                                                                     |

Z = 4

F(000) = 632

 $\theta = 4.7 - 46.3^{\circ}$ 

 $\mu = 0.11 \text{ mm}^{-1}$ 

Prismatic, green

 $0.27 \times 0.22 \times 0.17$  mm

T = 293 K

 $D_{\rm x} = 1.418 {\rm Mg} {\rm m}^{-3}$ 

Mo *K* $\alpha$  radiation,  $\lambda = 0.71073$  Å

Cell parameters from 1503 reflections

### Refinement

| Refinement on $F^2$                             | Secondary atom site location: difference Fourier           |
|-------------------------------------------------|------------------------------------------------------------|
| Least-squares matrix: full                      | map                                                        |
| $R[F^2 > 2\sigma(F^2)] = 0.057$                 | Hydrogen site location: inferred from                      |
| $wR(F^2) = 0.162$                               | neighbouring sites                                         |
| S = 0.92                                        | H-atom parameters constrained                              |
| 5242 reflections                                | $w = 1/[\sigma^2(F_o^2) + (0.0748P)^2]$                    |
| 401 parameters                                  | where $P = (F_o^2 + 2F_c^2)/3$                             |
| 0 restraints                                    | $(\Delta/\sigma)_{\rm max} = 0.005$                        |
| Primary atom site location: structure-invariant | $\Delta \rho_{\rm max} = 0.24 \text{ e } \text{\AA}^{-3}$  |
| direct methods                                  | $\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$ |

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|    |             |              |              | TT 4/TT                       |
|----|-------------|--------------|--------------|-------------------------------|
|    | x           | У            | <i>Z</i>     | $U_{\rm iso}$ */ $U_{\rm eq}$ |
| F1 | -0.1189 (2) | 0.41876 (16) | 1.15514 (9)  | 0.0680 (5)                    |
| F2 | -0.4957 (2) | 0.73654 (16) | 1.01469 (11) | 0.0774 (6)                    |
| F3 | -0.1962 (3) | 0.85773 (17) | 0.95482 (10) | 0.0765 (6)                    |
| F4 | -0.5094 (3) | 1.19504 (18) | 0.80248 (13) | 0.1043 (8)                    |
|    |             |              |              |                               |

| 01   | -0.2308 (3) | 0.4469 (2)    | 0.81479 (12) | 0.0796 (8)  |
|------|-------------|---------------|--------------|-------------|
| 02   | 0.0468 (3)  | 0.10719 (18)  | 0.67405 (11) | 0.0612 (6)  |
| 03   | 0.4032 (3)  | -0.26852 (18) | 0.79562 (12) | 0.0638 (6)  |
| 04   | -0.2520 (3) | 0.8979 (2)    | 0.60758 (13) | 0.0763 (7)  |
| 05   | 0.1805 (3)  | 0.61876 (18)  | 0.46058 (11) | 0.0595 (6)  |
| 06   | 0.4537 (3)  | 0.21210 (18)  | 0.57760 (12) | 0.0621 (6)  |
| C1   | -0.1733 (4) | 0.3926 (3)    | 0.87639 (17) | 0.0503 (8)  |
| C2   | -0.0645 (4) | 0.2671 (3)    | 0.87879 (17) | 0.0534 (8)  |
| H2   | -0.0239     | 0.2287        | 0.9269       | 0.064*      |
| C3   | -0.0216 (4) | 0.2062 (3)    | 0.81555 (17) | 0.0478 (8)  |
| Н3   | -0.0661     | 0.2473        | 0.7688       | 0.057*      |
| C4   | 0.0863 (4)  | 0.0833 (3)    | 0.81000 (16) | 0.0433 (7)  |
| C5   | 0.1221 (4)  | 0.0337 (3)    | 0.73634 (16) | 0.0469 (7)  |
| C6   | 0.2271 (4)  | -0.0839 (3)   | 0.72881 (17) | 0.0494 (8)  |
| H6   | 0.2496      | -0.1154       | 0.6798       | 0.059*      |
| C7   | 0.2975 (4)  | -0.1533 (3)   | 0.79590 (18) | 0.0492 (8)  |
| C8   | 0.2621 (4)  | -0.1065 (3)   | 0.86926 (18) | 0.0580 (9)  |
| H8   | 0.3096      | -0.1533       | 0.9139       | 0.070*      |
| C9   | 0.1576 (4)  | 0.0082 (3)    | 0.87555 (17) | 0.0525 (8)  |
| H9   | 0.1329      | 0.0374        | 0.9253       | 0.063*      |
| C10  | -0.2167 (3) | 0.4558 (2)    | 0.95157 (16) | 0.0418 (7)  |
| C11  | -0.1461 (4) | 0.4034 (3)    | 1.02204 (16) | 0.0457 (7)  |
| H11  | -0.0681     | 0.3269        | 1.0249       | 0.055*      |
| C12  | -0.1941 (4) | 0.4671 (3)    | 1.08689 (16) | 0.0473 (7)  |
| C13  | -0.3090 (4) | 0.5794 (3)    | 1.08698 (18) | 0.0537 (8)  |
| H13  | -0.3390     | 0.6210        | 1.1321       | 0.064*      |
| C14  | -0.3774 (4) | 0.6268 (3)    | 1.01672 (18) | 0.0503 (8)  |
| C15  | -0.3339 (4) | 0.5702 (3)    | 0.94908 (17) | 0.0484 (8)  |
| H15  | -0.3814     | 0.6070        | 0.9022       | 0.058*      |
| C16  | 0.0892 (5)  | 0.0699 (3)    | 0.59549 (16) | 0.0703 (10) |
| H16A | 0.2140      | 0.0624        | 0.5787       | 0.105*      |
| H16B | 0.0229      | 0.1302        | 0.5589       | 0.105*      |
| H16C | 0.0590      | -0.0081       | 0.5960       | 0.105*      |
| C17  | 0.4356 (4)  | -0.3267 (3)   | 0.72383 (19) | 0.0662 (9)  |
| H17A | 0.3244      | -0.3278       | 0.7067       | 0.099*      |
| H17B | 0.5025      | -0.4096       | 0.7340       | 0.099*      |
| H17C | 0.5018      | -0.2817       | 0.6826       | 0.099*      |
| C18  | -0.2005 (4) | 0.8425 (3)    | 0.67020 (17) | 0.0487 (8)  |
| C19  | -0.0831 (4) | 0.7203 (3)    | 0.67198 (17) | 0.0493 (8)  |
| H19  | -0.0649     | 0.6735        | 0.7211       | 0.059*      |
| C20  | -0.0021 (4) | 0.6746 (3)    | 0.60528 (17) | 0.0466 (7)  |
| H20  | -0.0241     | 0.7249        | 0.5577       | 0.056*      |
| C21  | 0.1172 (4)  | 0.5552 (2)    | 0.59737 (16) | 0.0423 (7)  |
| C22  | 0.2083 (3)  | 0.5271 (3)    | 0.52183 (16) | 0.0430 (7)  |
| C23  | 0.3202 (3)  | 0.4129 (2)    | 0.51277 (16) | 0.0467 (7)  |
| H23  | 0.3787      | 0.3950        | 0.4626       | 0.056*      |
| C24  | 0.3438 (4)  | 0.3257 (3)    | 0.57915 (17) | 0.0465 (7)  |
| C25  | 0.2562 (4)  | 0.3512 (3)    | 0.65383 (17) | 0.0521 (8)  |
|      | ~ /         |               | × /          |             |

| H25  | 0.2723      | 0.2921     | 0.6981       | 0.062*      |
|------|-------------|------------|--------------|-------------|
| C26  | 0.1461 (4)  | 0.4637 (3) | 0.66228 (16) | 0.0478 (7)  |
| H26  | 0.0885      | 0.4800     | 0.7128       | 0.057*      |
| C27  | -0.2562 (4) | 0.9035 (3) | 0.74549 (17) | 0.0440 (7)  |
| C28  | -0.2002 (4) | 0.8479 (3) | 0.81899 (17) | 0.0496 (8)  |
| H28  | -0.1295     | 0.7687     | 0.8238       | 0.060*      |
| C29  | -0.2513 (4) | 0.9119 (3) | 0.88340 (17) | 0.0500 (8)  |
| C30  | -0.3563 (4) | 1.0274 (3) | 0.88054 (19) | 0.0579 (8)  |
| H30  | -0.3918     | 1.0683     | 0.9259       | 0.070*      |
| C31  | -0.4070 (4) | 1.0801 (3) | 0.8076 (2)   | 0.0605 (9)  |
| C32  | -0.3603 (4) | 1.0222 (3) | 0.74061 (19) | 0.0562 (8)  |
| H32  | -0.3975     | 1.0615     | 0.6921       | 0.067*      |
| C33  | 0.2640 (4)  | 0.5973 (3) | 0.38187 (16) | 0.0594 (9)  |
| H33A | 0.3906      | 0.5764     | 0.3817       | 0.089*      |
| H33B | 0.2316      | 0.6703     | 0.3454       | 0.089*      |
| H33C | 0.2259      | 0.5307     | 0.3655       | 0.089*      |
| C34  | 0.5535 (4)  | 0.1789 (3) | 0.50357 (19) | 0.0704 (10) |
| H34A | 0.4738      | 0.1760     | 0.4665       | 0.106*      |
| H34B | 0.6313      | 0.0996     | 0.5126       | 0.106*      |
| H34C | 0.6226      | 0.2390     | 0.4818       | 0.106*      |
|      |             |            |              |             |

## Atomic displacement parameters $(Å^2)$

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| F1  | 0.0799 (13) | 0.0739 (13) | 0.0421 (10) | 0.0071 (10)  | -0.0177 (9)  | -0.0090 (9)  |
| F2  | 0.0863 (14) | 0.0563 (12) | 0.0775 (13) | 0.0256 (10)  | -0.0236 (10) | -0.0218 (10) |
| F3  | 0.1055 (15) | 0.0721 (13) | 0.0443 (11) | 0.0041 (11)  | -0.0221 (10) | -0.0078 (9)  |
| F4  | 0.139 (2)   | 0.0618 (13) | 0.0955 (16) | 0.0442 (13)  | -0.0455 (14) | -0.0312 (12) |
| 01  | 0.1074 (19) | 0.0692 (16) | 0.0395 (13) | 0.0305 (14)  | -0.0166 (12) | -0.0070 (12) |
| O2  | 0.0856 (16) | 0.0512 (13) | 0.0334 (11) | 0.0128 (11)  | -0.0118 (10) | -0.0025 (10) |
| O3  | 0.0758 (15) | 0.0462 (13) | 0.0605 (14) | 0.0126 (11)  | -0.0208 (12) | -0.0074 (11) |
| O4  | 0.1063 (19) | 0.0609 (15) | 0.0495 (14) | 0.0189 (13)  | -0.0280 (13) | -0.0088 (11) |
| 05  | 0.0801 (15) | 0.0510 (12) | 0.0341 (11) | 0.0040 (11)  | -0.0019 (10) | 0.0025 (10)  |
| O6  | 0.0730 (15) | 0.0514 (13) | 0.0475 (13) | 0.0146 (11)  | -0.0073 (11) | -0.0057 (10) |
| C1  | 0.0553 (19) | 0.0490 (19) | 0.0368 (17) | 0.0027 (15)  | -0.0018 (14) | -0.0004 (14) |
| C2  | 0.063 (2)   | 0.0495 (18) | 0.0396 (17) | 0.0054 (16)  | -0.0091 (14) | -0.0046 (14) |
| C3  | 0.0543 (19) | 0.0489 (18) | 0.0365 (16) | -0.0023 (15) | -0.0075 (13) | -0.0055 (14) |
| C4  | 0.0500 (18) | 0.0413 (17) | 0.0366 (16) | -0.0054 (14) | -0.0070 (13) | -0.0040 (13) |
| C5  | 0.0531 (18) | 0.0441 (18) | 0.0386 (16) | -0.0035 (15) | -0.0053 (13) | -0.0015 (14) |
| C6  | 0.0569 (19) | 0.0477 (18) | 0.0394 (17) | -0.0003 (15) | -0.0050 (14) | -0.0110 (14) |
| C7  | 0.0487 (18) | 0.0431 (18) | 0.0501 (19) | 0.0019 (15)  | -0.0093 (14) | -0.0033 (15) |
| C8  | 0.071 (2)   | 0.054 (2)   | 0.0457 (19) | 0.0014 (17)  | -0.0218 (16) | -0.0033 (16) |
| C9  | 0.064 (2)   | 0.053 (2)   | 0.0399 (17) | -0.0030 (17) | -0.0128 (15) | -0.0118 (15) |
| C10 | 0.0419 (16) | 0.0432 (17) | 0.0381 (16) | -0.0067 (14) | -0.0013 (12) | -0.0058 (13) |
| C11 | 0.0475 (18) | 0.0434 (18) | 0.0415 (17) | -0.0024 (14) | -0.0048 (13) | -0.0030 (14) |
| C12 | 0.0502 (18) | 0.0518 (19) | 0.0361 (16) | -0.0011 (15) | -0.0101 (14) | -0.0048 (14) |
| C13 | 0.057 (2)   | 0.057 (2)   | 0.0455 (18) | -0.0047 (17) | -0.0027 (15) | -0.0164 (15) |
| C14 | 0.0508 (18) | 0.0411 (18) | 0.0532 (19) | 0.0047 (15)  | -0.0058 (15) | -0.0113 (15) |

| C15 | 0.0526 (19) | 0.0446 (18) | 0.0447 (17) | -0.0018 (15) | -0.0106 (14) | -0.0042 (14) |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| C16 | 0.108 (3)   | 0.062 (2)   | 0.0320 (17) | -0.002 (2)   | -0.0128 (17) | -0.0012 (16) |
| C17 | 0.075 (2)   | 0.056 (2)   | 0.061 (2)   | 0.0025 (18)  | -0.0060 (17) | -0.0159 (17) |
| C18 | 0.0531 (19) | 0.0466 (18) | 0.0455 (18) | -0.0039 (15) | -0.0170 (15) | -0.0028 (15) |
| C19 | 0.0575 (19) | 0.0464 (18) | 0.0402 (17) | 0.0019 (15)  | -0.0135 (14) | -0.0064 (14) |
| C20 | 0.0535 (18) | 0.0468 (18) | 0.0393 (17) | -0.0069 (15) | -0.0115 (14) | -0.0055 (14) |
| C21 | 0.0447 (17) | 0.0410 (17) | 0.0409 (16) | -0.0057 (14) | -0.0089 (13) | -0.0063 (13) |
| C22 | 0.0467 (17) | 0.0448 (18) | 0.0368 (16) | -0.0072 (14) | -0.0093 (13) | -0.0029 (13) |
| C23 | 0.0511 (18) | 0.0489 (18) | 0.0361 (16) | -0.0026 (15) | -0.0041 (13) | -0.0074 (14) |
| C24 | 0.0471 (18) | 0.0418 (18) | 0.0463 (18) | 0.0014 (14)  | -0.0100 (14) | -0.0047 (14) |
| C25 | 0.0562 (19) | 0.0504 (19) | 0.0406 (17) | 0.0029 (16)  | -0.0095 (14) | 0.0032 (14)  |
| C26 | 0.0533 (18) | 0.0527 (19) | 0.0328 (15) | -0.0035 (15) | -0.0034 (13) | -0.0051 (14) |
| C27 | 0.0429 (17) | 0.0414 (17) | 0.0444 (17) | -0.0010 (14) | -0.0064 (13) | -0.0066 (13) |
| C28 | 0.0535 (19) | 0.0431 (17) | 0.0476 (18) | 0.0018 (15)  | -0.0099 (14) | -0.0068 (14) |
| C29 | 0.0552 (19) | 0.0530 (19) | 0.0394 (17) | -0.0035 (16) | -0.0105 (14) | -0.0068 (15) |
| C30 | 0.062 (2)   | 0.060 (2)   | 0.053 (2)   | -0.0035 (17) | -0.0097 (16) | -0.0227 (17) |
| C31 | 0.064 (2)   | 0.0454 (19) | 0.068 (2)   | 0.0114 (17)  | -0.0215 (18) | -0.0176 (17) |
| C32 | 0.062 (2)   | 0.0478 (19) | 0.0529 (19) | 0.0042 (16)  | -0.0196 (16) | -0.0022 (16) |
| C33 | 0.068 (2)   | 0.070 (2)   | 0.0328 (16) | -0.0052 (18) | -0.0047 (15) | 0.0020 (15)  |
| C34 | 0.079 (2)   | 0.062 (2)   | 0.058 (2)   | 0.0128 (19)  | -0.0041 (18) | -0.0182 (18) |
|     |             |             |             |              |              |              |

# Geometric parameters (Å, °)

| F1—C12 | 1.363 (3) | C15—H15  | 0.9300    |
|--------|-----------|----------|-----------|
| F2     | 1.355 (3) | C16—H16A | 0.9600    |
| F3—C29 | 1.359 (3) | C16—H16B | 0.9600    |
| F4—C31 | 1.349 (3) | C16—H16C | 0.9600    |
| 01—C1  | 1.223 (3) | C17—H17A | 0.9600    |
| O2—C5  | 1.360 (3) | C17—H17B | 0.9600    |
| O2—C16 | 1.428 (3) | C17—H17C | 0.9600    |
| O3—C7  | 1.363 (3) | C18—C19  | 1.461 (4) |
| O3—C17 | 1.432 (3) | C18—C27  | 1.501 (4) |
| O4—C18 | 1.224 (3) | C19—C20  | 1.324 (4) |
| O5—C22 | 1.356 (3) | C19—H19  | 0.9300    |
| O5—C33 | 1.425 (3) | C20—C21  | 1.455 (4) |
| O6—C24 | 1.362 (3) | C20—H20  | 0.9300    |
| O6—C34 | 1.427 (3) | C21—C26  | 1.399 (4) |
| C1—C2  | 1.465 (4) | C21—C22  | 1.412 (4) |
| C1-C10 | 1.510 (4) | C22—C23  | 1.388 (4) |
| C2—C3  | 1.319 (4) | C23—C24  | 1.385 (3) |
| С2—Н2  | 0.9300    | С23—Н23  | 0.9300    |
| C3—C4  | 1.448 (4) | C24—C25  | 1.384 (4) |
| С3—Н3  | 0.9300    | C25—C26  | 1.366 (4) |
| C4—C9  | 1.398 (4) | C25—H25  | 0.9300    |
| C4—C5  | 1.410 (4) | C26—H26  | 0.9300    |
| C5—C6  | 1.395 (4) | C27—C32  | 1.388 (4) |
| С6—С7  | 1.391 (4) | C27—C28  | 1.396 (4) |
| С6—Н6  | 0.9300    | C28—C29  | 1.358 (4) |
|        |           |          |           |

| C7—C8                      | 1 390 (4)            | C28—H28                    | 0.9300               |
|----------------------------|----------------------|----------------------------|----------------------|
| $C_8 - C_9$                | 1 364 (4)            | $C_{29}$ $C_{30}$          | 1 362 (4)            |
| C8—H8                      | 0.9300               | $C_{30}$ $-C_{31}$         | 1.362(1)             |
| C9—H9                      | 0.9300               | C30—H30                    | 0.9300               |
| C10-C11                    | 1.387(4)             | $C_{31}$ $C_{32}$          | 1.357(4)             |
| C10 $C15$                  | 1.301(4)             | C32 H32                    | 0.0300               |
| $C_{11}$ $C_{12}$          | 1.391(4)<br>1.362(4) | C32 H33A                   | 0.9500               |
| C11 H11                    | 0.0200               | C22 H22D                   | 0.9000               |
| $C_{11}$ $C_{12}$ $C_{12}$ | 1.366(A)             | C33—1155B                  | 0.9000               |
| $C_{12} = C_{13}$          | 1.300(4)<br>1.366(4) | $C_{24}$ H24A              | 0.9000               |
| C13—C14                    | 1.300 (4)            | C34—H34A                   | 0.9000               |
| C13—H13                    | 0.9500               | C34—H34B                   | 0.9600               |
| C14—C15                    | 1.358 (4)            | С34—Н34С                   | 0.9600               |
| C5-02-C16                  | 1198(2)              | H17A—C17—H17C              | 109 5                |
| $C_{7} - C_{17}$           | 119.0(2)<br>118.9(2) | H17B - C17 - H17C          | 109.5                |
| $C^{22} - 05 - C^{33}$     | 110.3 (2)            | 04-C18-C19                 | 109.5<br>121.0(3)    |
| $C_{22} = 05 = C_{33}$     | 119.3(2)<br>110.0(2) | 04  C18  C27               | 121.0(3)<br>1180(3)  |
| $C_2 = 00 = C_3 = 01$      | 119.0(2)<br>121.2(3) | $C_{10} = C_{10} = C_{27}$ | 110.9(3)<br>120.1(2) |
| 01 - 01 - 02               | 121.2(3)<br>1104(3)  | $C_{19} = C_{18} = C_{27}$ | 120.1(2)<br>121.5(3) |
| $C_{1} = C_{1} = C_{10}$   | 119.4(3)             | $C_{20} = C_{19} = C_{18}$ | 121.3(3)             |
| $C_2 = C_1 = C_1 C_1$      | 119.4(2)             | $C_{20} = C_{19} = H_{19}$ | 119.2                |
| $C_3 = C_2 = C_1$          | 122.7 (5)            | С10—С19—П19                | 119.2                |
| $C_3 = C_2 = H_2$          | 118.0                | C19 - C20 - C21            | 127.9 (3)            |
| C1 - C2 - H2               | 118.6                | C19—C20—H20                | 116.0                |
| C2—C3—C4                   | 128.0 (3)            | C21—C20—H20                | 116.0                |
| С2—С3—Н3                   | 116.0                | C26—C21—C22                | 117.2 (2)            |
| С4—С3—Н3                   | 116.0                | C26—C21—C20                | 122.7 (3)            |
| C9—C4—C5                   | 116.9 (3)            | C22—C21—C20                | 120.2 (3)            |
| C9—C4—C3                   | 122.9 (3)            | O5—C22—C23                 | 123.3 (3)            |
| C5—C4—C3                   | 120.2 (2)            | O5—C22—C21                 | 115.6 (2)            |
| O2—C5—C6                   | 122.7 (3)            | C23—C22—C21                | 121.0 (3)            |
| O2—C5—C4                   | 115.8 (2)            | C24—C23—C22                | 119.3 (3)            |
| C6—C5—C4                   | 121.6 (3)            | С24—С23—Н23                | 120.3                |
| C7—C6—C5                   | 118.8 (3)            | С22—С23—Н23                | 120.3                |
| С7—С6—Н6                   | 120.6                | O6—C24—C25                 | 115.0 (2)            |
| С5—С6—Н6                   | 120.6                | O6—C24—C23                 | 124.3 (3)            |
| O3—C7—C8                   | 115.4 (3)            | C25—C24—C23                | 120.7 (3)            |
| O3—C7—C6                   | 124.1 (3)            | C26—C25—C24                | 119.7 (3)            |
| C8—C7—C6                   | 120.5 (3)            | C26—C25—H25                | 120.2                |
| C9—C8—C7                   | 119.8 (3)            | C24—C25—H25                | 120.2                |
| С9—С8—Н8                   | 120.1                | C25—C26—C21                | 122.1 (3)            |
| С7—С8—Н8                   | 120.1                | С25—С26—Н26                | 118.9                |
| C8—C9—C4                   | 122.4 (3)            | C21—C26—H26                | 118.9                |
| С8—С9—Н9                   | 118.8                | C32—C27—C28                | 119.0 (3)            |
| С4—С9—Н9                   | 118.8                | C32—C27—C18                | 118.4 (3)            |
| C11—C10—C15                | 119.6 (3)            | C28—C27—C18                | 122.5 (3)            |
| C11—C10—C1                 | 122.6 (3)            | C29—C28—C27                | 118.5 (3)            |
| C15—C10—C1                 | 117.8 (2)            | C29—C28—H28                | 120.7                |
| C12—C11—C10                | 118.3 (3)            | C27—C28—H28                | 120.7                |

| C12—C11—H11                    | 120.9      | C28—C29—F3                          | 118.5 (3)  |
|--------------------------------|------------|-------------------------------------|------------|
| C10-C11-H11                    | 120.9      | C28—C29—C30                         | 123.5 (3)  |
| C11—C12—F1                     | 118.5 (3)  | F3—C29—C30                          | 118.0 (3)  |
| C11—C12—C13                    | 123.9 (3)  | C29—C30—C31                         | 116.6 (3)  |
| F1—C12—C13                     | 117.6 (3)  | С29—С30—Н30                         | 121.7      |
| C12—C13—C14                    | 116.0 (3)  | С31—С30—Н30                         | 121.7      |
| C12—C13—H13                    | 122.0      | F4—C31—C32                          | 118.7 (3)  |
| C14—C13—H13                    | 122.0      | F4—C31—C30                          | 118.1 (3)  |
| F2—C14—C15                     | 118.3 (3)  | C32—C31—C30                         | 123.2 (3)  |
| F2-C14-C13                     | 118.0 (3)  | C31—C32—C27                         | 119.1 (3)  |
| C15—C14—C13                    | 123.7 (3)  | С31—С32—Н32                         | 120.5      |
| C14—C15—C10                    | 118.5 (3)  | С27—С32—Н32                         | 120.5      |
| C14—C15—H15                    | 120.8      | 05—C33—H33A                         | 109.5      |
| C10—C15—H15                    | 120.8      | 05-C33-H33B                         | 109.5      |
| 02-C16-H16A                    | 109.5      | H33A—C33—H33B                       | 109.5      |
| 02—C16—H16B                    | 109.5      | 05-C33-H33C                         | 109.5      |
| H16A—C16—H16B                  | 109.5      | H33A-C33-H33C                       | 109.5      |
| $\Omega^2$ —C16—H16C           | 109.5      | H33B-C33-H33C                       | 109.5      |
| $H_{16A}$ $-C_{16}$ $-H_{16C}$ | 109.5      | 06-C34-H34A                         | 109.5      |
| H16B— $C16$ — $H16C$           | 109.5      | 06-C34-H34B                         | 109.5      |
| 03-C17-H17A                    | 109.5      | H34A-C34-H34B                       | 109.5      |
| 03-C17-H17B                    | 109.5      | 06-C34-H34C                         | 109.5      |
| H17A—C17—H17B                  | 109.5      | H34A-C34-H34C                       | 109.5      |
| 03-C17-H17C                    | 109.5      | H34B - C34 - H34C                   | 109.5      |
|                                | 107.5      |                                     | 109.5      |
| O1—C1—C2—C3                    | 0.5 (5)    | O4—C18—C19—C20                      | 12.7 (5)   |
| C10—C1—C2—C3                   | 179.9 (3)  | C27—C18—C19—C20                     | -165.8(3)  |
| C1—C2—C3—C4                    | 179.1 (3)  | C18—C19—C20—C21                     | -179.8(3)  |
| C2—C3—C4—C9                    | 2.3 (5)    | C19—C20—C21—C26                     | 8.0 (5)    |
| C2—C3—C4—C5                    | -178.4(3)  | C19—C20—C21—C22                     | -172.6(3)  |
| C16—O2—C5—C6                   | -6.5 (4)   | C33—O5—C22—C23                      | 2.4 (4)    |
| C16—O2—C5—C4                   | 174.0 (3)  | C33—O5—C22—C21                      | -178.5 (2) |
| C9—C4—C5—O2                    | 178.1 (3)  | C26—C21—C22—O5                      | -178.5(2)  |
| C3—C4—C5—O2                    | -1.2 (4)   | C20—C21—C22—O5                      | 2.0 (4)    |
| C9—C4—C5—C6                    | -1.4(4)    | C26—C21—C22—C23                     | 0.6 (4)    |
| C3—C4—C5—C6                    | 179.3 (3)  | C20—C21—C22—C23                     | -178.8(3)  |
| O2—C5—C6—C7                    | -179.4 (3) | O5—C22—C23—C24                      | 178.5 (2)  |
| C4—C5—C6—C7                    | 0.1 (4)    | C21—C22—C23—C24                     | -0.6 (4)   |
| C17—O3—C7—C8                   | 175.6 (3)  | C34—O6—C24—C25                      | -178.2(3)  |
| C17—O3—C7—C6                   | -4.4 (4)   | C34—O6—C24—C23                      | 0.5 (4)    |
| C5—C6—C7—O3                    | -179.3(3)  | C22—C23—C24—O6                      | -178.2(3)  |
| C5—C6—C7—C8                    | 0.7 (4)    | $C_{22}$ $C_{23}$ $C_{24}$ $C_{25}$ | 0.5 (4)    |
| 03-C7-C8-C9                    | 180.0 (3)  | 06-C24-C25-C26                      | 178.5 (3)  |
| C6—C7—C8—C9                    | 0.0 (5)    | $C_{23}$ $C_{24}$ $C_{25}$ $C_{26}$ | -0.3(4)    |
| C7—C8—C9—C4                    | -1.5 (5)   | C24—C25—C26—C21                     | 0.4 (5)    |
| $C_{5}-C_{4}-C_{9}-C_{8}$      | 2.1 (4)    | $C_{22} = C_{21} = C_{26} = C_{25}$ | -0.5(4)    |
| C3—C4—C9—C8                    | -178.6 (3) | C20-C21-C26-C25                     | 178.9 (3)  |
| 01 - C1 - C10 - C11            | -175.4(3)  | 04-C18-C27-C32                      | -1.7(4)    |
|                                | 1,0,1 (0)  | 3. 515 52, 552                      | ··· (')    |

| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                    | 5.2 (4)<br>5.4 (4)<br>-174.0 (3)<br>-0.3 (4)<br>-179.6 (3)<br>-177.0 (2)<br>0.6 (5)<br>0.3 (5)<br>177.9 (3)<br>178.3 (3)<br>-1.5 (5)<br>-178.1 (3)<br>1.7 (5) | C19—C18—C27—C32<br>O4—C18—C27—C28<br>C19—C18—C27—C28<br>C32—C27—C28—C29<br>C18—C27—C28—C29<br>C27—C28—C29—F3<br>C27—C28—C29—C30<br>C28—C29—C30—C31<br>F3—C29—C30—C31<br>C29—C30—C31—F4<br>C29—C30—C31—C32<br>F4—C31—C32—C27<br>C30—C31—C32—C27 | 176.7 (3)  -178.6 (3)  -0.1 (4)  0.6 (4)  177.4 (3)  -179.8 (3)  0.8 (5)  -1.7 (5)  178.9 (3)  -179.2 (3)  1.2 (5)  -179.5 (3)  0.1 (5) |
|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| C13—C14—C15—C10<br>C13—C14—C15—C10<br>C11—C10—C15—C14<br>C1—C10—C15—C14 | -178.1 (3)<br>1.7 (5)<br>-0.7 (4)<br>178.6 (3)                                                                                                                | C30-C31-C32-C27<br>C28-C27-C32-C31<br>C18-C27-C32-C31                                                                                                                                                                                          | -179.3 (3)<br>0.1 (5)<br>-1.0 (5)<br>-177.9 (3)                                                                                         |

## Hydrogen-bond geometry (Å, °)

| HA                        | D—H  | H···A | D····A    | D—H···A |
|---------------------------|------|-------|-----------|---------|
| C25—H25…F4 <sup>i</sup>   | 0.93 | 2.59  | 3.375 (3) | 142     |
| C13—H13…F4 <sup>ii</sup>  | 0.93 | 2.46  | 3.303 (4) | 151     |
| C9—H9…F3 <sup>iii</sup>   | 0.93 | 2.66  | 3.532 (3) | 156     |
| C30—H30…F2 <sup>ii</sup>  | 0.93 | 2.47  | 3.303 (4) | 149     |
| C8—H8····F2 <sup>i</sup>  | 0.93 | 2.46  | 3.369 (3) | 166     |
| C28—H28…F1 <sup>iii</sup> | 0.93 | 2.53  | 3.437 (3) | 166     |

Symmetry codes: (i) x+1, y-1, z; (ii) -x-1, -y+2, -z+2; (iii) -x, -y+1, -z+2.