Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

3,3'-Dimethyl-4,4'-(hexane-1,6-diyl)-bis[1H-1,2,4-triazol-5(4H)-one]

Reşat Ustabass, ${ }^{\text {a }}$ Ufuk Coruh, ${ }^{\text {b* }}$ Dilek Ünlüer, ${ }^{\text {c }}$ Tuncer Hökelek ${ }^{\text {d }}$ and Emel Ermis ${ }^{\text {e }}$

${ }^{\text {a }}$ Department of Middle Education, Educational Faculty, Ondokuz Mayıs University, 55200 Atakum, Samsun, Turkey, ${ }^{\text {b }}$ Department of Computer Education and Instructional Technology, Educational Faculty, Ondokuz Mayıs University, 55200 Atakum, Samsun, Turkey, ${ }^{\text {c }}$ Department of Chemistry, Faculty of Arts and Sciences, Karadeniz Teknik University, 61080 Trabzon, Turkey, ${ }^{\text {d Department of Physics, }}$ Hacettepe University, Beytepe 06800, Ankara, Turkey, and ${ }^{\mathbf{e}}$ Anadolu University, Faculty of Science, Department of Chemistry, 26470 Yenibaĝlar, Eskişehir, Turkey Correspondence e-mail: ucoruh@omu.edu.tr

Received 7 September 2010; accepted 17 September 2010
Key indicators: single-crystal X-ray study; $T=101 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.041 ; w R$ factor $=0.112$; data-to-parameter ratio $=12.8$.

The title compound, $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{~N}_{6} \mathrm{O}_{2}$, has a centre of symmetry. The molecule consists of two triazole rings joined by an aliphatic $-\left(\mathrm{CH}_{2}\right)_{6}$ - chain. The crystal structure is stabilized by intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and by $\pi-\pi$ stacking interactions between the triazole rings of inversionrelated molecules [centroid-centroid distance $=3.277(8) \AA$].

Related literature

For background information including pharmacological studies, see: Chiu \& Huskey (1998); Clemons et al. (2004); Dalloul \& Boyle (2006); Eliott et al. (1986); Griffin \& Mannion (1986); Santen (2003); Tanaka (1974); Zamani et al. (2003). Related structures have been reported by Ustabaş et al. (2006, 2007, 2009); Ünver et al. (2008, 2009); Çoruh et al. (2003).

Experimental

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{~N}_{6} \mathrm{O}_{2}$	$b=7.3034(2) \AA$
$M_{r}=280.34$	$c=7.7774(2) \AA$
Triclinic, $P \overline{1}$	$\alpha=93.299(2)^{\circ}$
$a=6.3641(2) \AA$	$\beta=109.578(2)^{\circ}$

$\gamma=94.707(2)^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$V=338.05(2) \AA^{3}$
$Z=1$
Mo $K \alpha$ radiation

Data collection
Bruker Kappa APEXII CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2007) $T_{\text {min }}=0.962, T_{\max }=0.988$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041 \quad 131$ parameters
$w R\left(F^{2}\right)=0.112$
$S=1.03$
1673 reflections
$T=101 \mathrm{~K}$
$0.40 \times 0.16 \times 0.12 \mathrm{~mm}$

6074 measured reflections 1673 independent reflections 1309 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.033$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 3-\mathrm{H} 3 \cdots \mathrm{O}^{\mathrm{i}}$	$0.90(2)$	$1.89(2)$	$2.7707(15)$	$167(2)$

Symmetry code: (i) $-x+1,-y,-z+2$.

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2267).

References

Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Chiu, S.-H. L. \& Huskey, S. E. W. (1998). Drug Metabol. Dispos. 26, 838-847.
Clemons, M., Colemon, R. E. \& Verma, S. (2004). Cancer Treat. Rev. 30, 325332.

Çoruh, U., Ustabaş, R., Sancak, K., Şaşmaz, S., Ağar, E. \& Kim, Y. (2003). Acta Cryst. E59, o1277-o1279.
Dalloul, H. \& Boyle, P. (2006). Turk. J. Chem. 30, 119-124.
Eliott, R., Sunley, R. L. \& Griffin, D. A. (1986). UK Patent Appl. GB 2, 175.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Griffin, D. A. \& Mannion, S. K. (1986). Eur. Patent Appl. EP 199, 474.
Santen, J. R. (2003). Steroids, 68, 559-567.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Tanaka, G. (1974). Japan Kokai, 973, 7495.
Ünver, Y., Düğdu, E., Sancak, K., Er, M. \& Karaoğlu, Ş. A. (2008). Turk. J. Chem. 32, 441-455.
Ünver, Y., Düğdu, E., Sancak, K., Er, M. \& Karaoğlu, Ş. A. (2009). Turk. J. Chem. 33, 135-147.
Ustabaş, R., Çoruh, U., Sancak, K. \& Demirkan, E. (2007). Acta Cryst. E63, o3443.
Ustabaş, R., Çoruh, U., Sancak, K., Dügdü, E. \& Vázquez-López, E. M. (2006). Acta Cryst. E62, o4265-o4267.
Ustabaş, R., Ünver, Y., Suleymanoğlu, N., Çoruh, U. \& Sancak, K. (2009). Acta Cryst. E65, o1006-o1007.
Zamani, K., Faghihi, K., Reza Sangi, M. \& Zolgharnein, J. (2003). Turk. J. Chem. 27, 119-126.

supporting information

Acta Cryst. (2010). E66, o2615 [doi:10.1107/S1600536810037311]

3,3'-Dimethyl-4,4'-(hexane-1,6-diyl)bis[1H-1,2,4-triazol-5(4H)-one]

Reşat Ustabaş, Ufuk Çoruh, Dilek Ünlüer, Tuncer Hökelek and Emel Ermiş

S1. Comment

The 1,2,4-triazole compounds possess important pharmacological activities that include antifungal and antiviral properties. Examples of compounds bearing the 1,2,4-triazole group are fluconazole, the powerful azole antifungal agent as well as the potent antiviral N - nucleoside ribavirin (Ünver et al., 2008; Ünver et al., 2009). Furthermore, various 1,2,4-triazole derivatives have been reported as fungicidal (Zamani et al., 2003), insecticidal (Tanaka, 1974), antimicrobial (Griffin \& Mannion, 1986), and some showed antitumor activity as well as having anticonvulsant (Dalloul \& Boyle, 2006), antidepressant (Chiu \& Huskey, 1998) and plant growth regulator anticoagulant activity (Eliott et al., 1986). It was reported that compounds having triazole moieties, such as Vorozole, Anastrozole and Letrozole appear to be very effective aromatase inhibitors and can be useful for preventing breast cancer (Santen, 2003; Clemons et al., 2004). The molecular structure of the compound is shown in Fig.1. The molecule consists of two triazole rings, joined by an aliphatic- $\left(\mathrm{CH}_{2}\right)_{6}$ - chain connected to nitrogen atoms of the rings. The molecule has an inversion center in the middle of the chain, that connects the triazole rings. The length of the $\mathrm{N}=\mathrm{C}[\mathrm{N} 2=\mathrm{C} 5=1.3031$ (17) $\AA]$ bond in the triazole ring is close to the those similar structures in the literature [1.296 (3) \AA in $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{~S}$ (Ustabaş et al., 2007); 1.288 (2) \AA in $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{~N}_{6} \mathrm{O}_{2}$ (Çoruh et al., 2003)]. The bond length of $\mathrm{O}=\mathrm{C}[\mathrm{O} 1=\mathrm{C} 1=1.2421(16) \AA$] is in conformity with the values mentioned before[1.218 (3) \AA in $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{~S}$ (Ustabaş et al., 2006); 1.220 (2) \AA in $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}$ (Ustabaş et al., 2009)]. The triazole ring is very close to planarity, with a maximum deviation from the least-squares plane of - 0.014 (13) \AA for atom C 1 .
In the crystal structure of the compound, there is a strong intermolecular $\mathrm{N} 3-\mathrm{H} 3 \cdots \mathrm{O} 1$ hydrogen-bonding interaction (Table 1). The compound also exhibits $\pi-\pi$ stacking interactions between triazole rings ($C g 1 \cdots C g 1=3.277$ (8) \AA; symmetry code: $-X, 2-Y,-Z$).

S2. Experimental

The synthesis of 4,4'-(hexane-1,6-diyl)bis (5-ethyl-2H-1,2,4-triazol-3(4H)-one) to a solution of ethyl 2 (1-ethoxyethylidene)hydrazinecarboxylate $(0.02 \mathrm{~mol})$ in 50 ml water hexane-1,6-diamine $(0.01 \mathrm{~mol})$ was added. Having refluxed this mixture for 4 h the precipitate formed was filtered off. The solid product was washed with water and crystallized from ethanol/water (1/3)(yield 73.25%) to afford the desired compound.

S3. Refinement

All H atoms were located in a difference synthesis and refined $[\mathrm{N}-\mathrm{H}=0.902$ (19) \AA; ethylene $\mathrm{C}-\mathrm{H}=0.945$ (18) $\AA \AA-1.017$ (18) \AA; and methylene $\mathrm{C}-\mathrm{H}=0.952 \AA-1.00$ (2) \AA].

Figure 1
An ellipsoid plot of the title compound, with the atom numbering scheme. Atoms with primed labels are related via an inversion center (1-x, 1-y, 1-z). Displacement ellipsoids are drawn at the 50% probability level.

Figure 2
A packing diagram, viewed along b .

3,3'-Dimethyl-4,4'-(hexane-1,6-diyl)bis[1 H-1,2,4-triazol- 5(4H)-one]

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{~N}_{6} \mathrm{O}_{2}$
$M_{r}=280.34$
Triclinic, $P 1$
Hall symbol: -P 1
$a=6.3641$ (2) A
$b=7.3034$ (2) \AA
$c=7.7774$ (2) \AA
$\alpha=93.299(2)^{\circ}$
$\beta=109.578(2)^{\circ}$
$\gamma=94.707(2)^{\circ}$
$V=338.05(2) \AA^{3}$

Data collection

Bruker Kappa APEXII CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
$T_{\min }=0.962, T_{\max }=0.988$

$$
\begin{aligned}
& Z=1 \\
& F(000)=150 \\
& D_{\mathrm{x}}=1.377 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 1309 \text { reflections } \\
& \theta=2.8-28.3^{\circ} \\
& \mu=0.10 \mathrm{~mm}^{-1} \\
& T=101 \mathrm{~K} \\
& \text { Rod-shaped, colorless } \\
& 0.40 \times 0.16 \times 0.12 \mathrm{~mm}
\end{aligned}
$$

6074 measured reflections
1673 independent reflections
1309 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.033$
$\theta_{\text {max }}=28.3^{\circ}, \theta_{\text {min }}=2.8^{\circ}$
$h=-8 \rightarrow 8$
$k=-9 \rightarrow 9$
$l=-10 \rightarrow 10$

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.112$
$S=1.03$
1673 reflections
131 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
All H -atom parameters refined
$w=1 /\left[\sigma^{2}\left(F_{0}{ }^{2}\right)+(0.062 P)^{2}+0.0594 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.32 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.28$ e \AA^{-3}

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
O1	$0.49741(15)$	$0.02539(13)$	$0.76514(13)$	$0.0199(3)$
N1	$0.84928(18)$	$0.18555(15)$	$0.81036(15)$	$0.0159(3)$
N2	$0.98018(18)$	$0.22436(15)$	$1.11442(15)$	$0.0183(3)$

N3	$0.76344(18)$	$0.13460(15)$	$1.04956(15)$	$0.0173(3)$
C1	$0.6815(2)$	$0.10507(17)$	$0.86549(18)$	$0.0162(3)$
C2	$0.8354(2)$	$0.1878(2)$	$0.61861(18)$	$0.0189(3)$
C3	$0.7642(2)$	$0.36813(19)$	$0.54057(19)$	$0.0202(3)$
C4	$0.5280(2)$	$0.40487(19)$	$0.53108(19)$	$0.0193(3)$
C5	$1.0248(2)$	$0.25341(17)$	$0.96590(18)$	$0.0166(3)$
C6	$1.2408(2)$	$0.3456(2)$	$0.9639(2)$	$0.0207(3)$
H21	$0.981(3)$	$0.163(2)$	$0.609(2)$	$0.019(4)^{*}$
H61	$1.220(3)$	$0.461(3)$	$0.914(2)$	$0.030(4)^{*}$
H32	$0.772(3)$	$0.361(2)$	$0.415(2)$	$0.025(4)^{*}$
H41	$0.512(3)$	$0.397(2)$	$0.655(2)$	$0.018(4)^{*}$
H31	$0.876(3)$	$0.476(2)$	$0.614(2)$	$0.028(4)^{*}$
H42	$0.414(3)$	$0.309(2)$	$0.446(2)$	$0.022(4)^{*}$
H22	$0.732(3)$	$0.087(2)$	$0.551(2)$	$0.025(4)^{*}$
H3	$0.696(3)$	$0.089(2)$	$1.125(3)$	$0.036(5)^{*}$
H62	$1.310(3)$	$0.273(3)$	$0.887(3)$	$0.035(5)^{*}$
H63	$1.348(3)$	$0.368(3)$	$1.093(3)$	$0.041(5)^{*}$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	$U^{\beta 3}$	U^{12}	U^{13}	U^{23}
O1	$0.0140(5)$	$0.0240(5)$	$0.0184(5)$	$-0.0042(4)$	$0.0030(4)$	$0.0004(4)$
N1	$0.0126(6)$	$0.0162(6)$	$0.0181(6)$	$0.0005(4)$	$0.0043(5)$	$0.0024(4)$
N2	$0.0123(6)$	$0.0186(6)$	$0.0213(6)$	$-0.0005(4)$	$0.0028(5)$	$0.0012(4)$
N3	$0.0127(6)$	$0.0192(6)$	$0.0183(6)$	$-0.0006(4)$	$0.0035(5)$	$0.0026(4)$
C1	$0.0134(6)$	$0.0150(6)$	$0.0197(7)$	$0.0028(5)$	$0.0047(5)$	$0.0025(5)$
C2	$0.0156(7)$	$0.0230(7)$	$0.0169(7)$	$-0.0009(6)$	$0.0049(5)$	$-0.0001(5)$
C3	$0.0163(7)$	$0.0237(7)$	$0.0202(7)$	$-0.0017(6)$	$0.0065(6)$	$0.0039(6)$
C4	$0.0160(7)$	$0.0213(7)$	$0.0184(7)$	$-0.0029(5)$	$0.0039(6)$	$0.0035(5)$
C5	$0.0130(6)$	$0.0153(6)$	$0.0198(7)$	$0.0033(5)$	$0.0028(5)$	$0.0018(5)$
C6	$0.0131(7)$	$0.0208(7)$	$0.0261(8)$	$-0.0005(5)$	$0.0045(6)$	$0.0021(6)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{O} 1-\mathrm{C} 1$	$1.2421(16)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.5271(19)$
$\mathrm{N} 1-\mathrm{C} 5$	$1.3751(17)$	$\mathrm{C} 3-\mathrm{H} 32$	$0.991(16)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.3794(16)$	$\mathrm{C} 3-\mathrm{H} 31$	$1.017(18)$
$\mathrm{N} 1-\mathrm{C} 2$	$1.4653(16)$	$\mathrm{C} 4-\mathrm{C} 4$	$1.528(3)$
$\mathrm{N} 2-\mathrm{C} 5$	$1.3031(17)$	$\mathrm{C} 4-\mathrm{H} 41$	$1.007(15)$
$\mathrm{N} 2-\mathrm{N} 3$	$1.3907(15)$	$\mathrm{C} 4-\mathrm{H} 42$	$1.000(17)$
$\mathrm{N} 3-\mathrm{C} 1$	$1.3467(18)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.4856(19)$
$\mathrm{N} 3-\mathrm{H} 3$	$0.902(19)$	$\mathrm{C} 6-\mathrm{H} 61$	$0.952(18)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.521(2)$	$\mathrm{C} 6-\mathrm{H} 62$	$1.006(18)$
$\mathrm{C} 2-\mathrm{H} 21$	$0.985(15)$	$\mathrm{C} 6-\mathrm{H} 63$	$1.00(2)$
$\mathrm{C} 2-\mathrm{H} 22$	$0.945(18)$		
		$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 31$	$110.3(10)$
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 1$	$107.39(11)$	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 31$	$109.3(9)$
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 2$	$128.60(11)$		

C1-N1-C2	123.98 (11)	H32-C3-H31	107.2 (13)
C5-N2-N3	103.79 (11)	C3-C4-C4	112.27 (14)
$\mathrm{C} 1-\mathrm{N} 3-\mathrm{N} 2$	112.63 (11)	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 41$	110.2 (9)
C1-N3-H3	124.9 (12)	C4i-C4-H41	108.2 (8)
N2-N3-H3	122.0 (12)	C3-C4-H42	110.5 (9)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{N} 3$	128.98 (12)	C4i- 4 4- H 42	109.0 (9)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{N} 1$	126.86 (12)	H41-C4-H42	106.5 (13)
N3-C1-N1	104.16 (11)	N2-C5-N1	111.99 (11)
N1-C2-C3	112.31 (11)	N2-C5-C6	124.26 (13)
N1-C2-H21	108.9 (9)	N1-C5-C6	123.74 (12)
C3-C2-H21	111.3 (9)	C5-C6-H61	110.6 (10)
N1-C2-H22	107.6 (10)	C5-C6-H62	113.5 (10)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 22$	110.7 (10)	H61-C6-H62	105.9 (14)
$\mathrm{H} 21-\mathrm{C} 2-\mathrm{H} 22$	105.8 (13)	C5-C6-H63	108.9 (11)
C2-C3-C4	114.14 (11)	H61-C6-H63	108.3 (15)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 32$	106.5 (9)	H62-C6-H63	109.6 (14)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 32$	109.1 (9)		
$\mathrm{C} 5-\mathrm{N} 2-\mathrm{N} 3-\mathrm{C} 1$	1.87 (14)	$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	-64.04 (15)
$\mathrm{N} 2-\mathrm{N} 3-\mathrm{C} 1-\mathrm{O} 1$	178.11 (12)	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 4{ }^{\text {i }}$	174.64 (14)
N2-N3-C1-N1	-2.33 (14)	N3-N2-C5-N1	-0.58 (14)
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 1-\mathrm{O} 1$	-178.57 (12)	N3-N2-C5-C6	-179.47 (12)
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 1-\mathrm{O} 1$	-0.5 (2)	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 5-\mathrm{N} 2$	-0.81 (15)
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 3$	1.86 (13)	C2-N1-C5-N2	-178.77 (12)
C2-N1-C1-N3	179.93 (11)	C1-N1-C5-C6	178.09 (12)
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	-84.62 (16)	C2-N1-C5-C6	0.1 (2)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	97.73 (14)		

Symmetry code: (i) $-x+1,-y+1,-z+1$.
Hydrogen-bond geometry (A, o)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 3 — \mathrm{H} 3 \cdots \mathrm{O} 1^{\mathrm{ii}}$	$0.90(2)$	$1.89(2)$	$2.7707(15)$	$167(2)$

Symmetry code: (ii) $-x+1,-y,-z+2$.

