

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1-{5-[4-(Hexyloxy)phenyl]-3-phenyl-4,5dihydro-1*H*-pyrazol-1-yl}ethanone

Asghar Abbas,^a* Safdar Hussain,^b Noureen Hafeez,^b Kong Mun Lo^c and Aurangzeb Hasan^c

^aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, ^bDepartment of Forensic Medicine & Toxicology, National University of Sciences & Technology, Islamabad, Pakistan, and ^cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: profazmi@hotmail.com

Received 13 August 2010; accepted 23 August 2010

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.041; wR factor = 0.103; data-to-parameter ratio = 18.4.

The crystal structure of the title compound, $C_{23}H_{28}N_2O_2$, is composed of discrete molecules with bond lengths and angles quite typical for pyrazoline derivatives of this class. The plane containing the pyrazoline unit is nearly planar with the mean plane of the phenyl ring at the 3-position, making a dihedral angle of 1.96 (3)°. The crystal packing is stabilized by weak $C-H\cdots\pi$ interactions involving both of the aromatic rings.

Related literature

For the biological activity and pharmacological properties of 2-pyrazoline derivatives, see: Cottineau *et al.* (2002); Dhal *et al.* (1975); Regaila *et al.* (1979); Rathish *et al.* (2009); Subbaramaiah *et al.* (2002); Manna *et al.* (2002). For the syntheses and crystal structures of 2-pyrazoline derivatives, see: Bai *et al.* (2009); Lu *et al.* (2008); Fahrni *et al.* (2003); Jian *et al.* (2008).

Experimental

Crystal data

 $\begin{array}{l} C_{23}H_{28}N_2O_2\\ M_r = 364.47\\ Monoclinic, P2_1/c\\ a = 5.3937 \ (8) \ {\rm \AA}\\ b = 20.237 \ (3) \ {\rm \AA}\\ c = 18.163 \ (3) \ {\rm \AA}\\ \beta = 95.144 \ (2)^\circ \end{array}$

 $V = 1974.6 (5) Å^3$ Z = 4Mo $K\alpha$ radiation $\mu = 0.08 \text{ mm}^{-1}$ T = 100 K $0.3 \times 0.2 \times 0.18 \text{ mm}$ 18731 measured reflections

 $R_{\rm int} = 0.042$

4517 independent reflections

3430 reflections with $I > 2\sigma(I)$

Data collection

Bruker APEXII CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.675, T_{\max} = 0.746$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.041$ 246 parameters $wR(F^2) = 0.103$ H-atom parameters constrainedS = 1.03 $\Delta \rho_{max} = 0.28$ e Å $^{-3}$ 4517 reflections $\Delta \rho_{min} = -0.21$ e Å $^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C7–C12 and C16–C21 aromatic rings, respectively.

D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
0.93	2.95	3.6252 (15)	131
0.97	2.63	3.5024 (14)	151
0.93	2.71	3.4299 (15)	135
	0.93 0.97 0.93	D=11 11.1.4 0.93 2.95 0.97 2.63 0.93 2.71	D=11 11.1.7A D1.1A 0.93 2.95 3.6252 (15) 0.97 2.63 3.5024 (14) 0.93 2.71 3.4299 (15)

Symmetry codes: (i) $x, -y - \frac{1}{2}, z - \frac{3}{2}$; (ii) x + 1, y, z; (iii) $x - 1, -y - \frac{1}{2}, z - \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *publCIF* (Westrip, 2010).

AA is grateful to the HEC-Pakistan for financial support for his PhD program under scholarship No. [IIC-0317109].

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZQ2055).

References

Bai, X., Chen, H., Zhang, K., Li, Y. & Yin, S. (2009). Acta Cryst. E65, o2873. Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Cottineau, B., Toto, P., Marot, C., Pipaud, A. & Chenault, J. (2002). Bioorg. Med. Chem. Lett. 12, 2105–2108.

- Dhal, P. N., Acharya, T. E. & Nayak, A. (1975). J. Indian Chem. Soc. 52, 1196– 1200.
- Fahrni, C. J., Yang, L. C. & VanDerveer, D. G. (2003). J. Am. Chem. Soc. 125, 3799–3812.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Jian, F., Zhao, P., Guo, H. & Li, Y. (2008). Spectrochim. Acta Part A, 69, 647– 653.
- Lu, Z.-K., Li, S. & Feng, Y. (2008). Acta Cryst. E64, o1827.
- Manna, F., Chimenti, F., Bolasco, A., Secci, D., Bizzarri, B., Befani, O., Turini, P., Mondovi, B., Alcaro, S. & Tafi, A. (2002). *Bioorg. Med. Chem. Lett.* 12, 3629–3635.
- Rathish, I. G., Kalim, J., Shamim, A., Sameena, B., Alam, M. S., Pillai, K. K., Surender, S. & Bagchi, V. (2009). Bioorg. Med. Chem. Lett. 19, 255–258.
- Regaila, H. A., El-Bayonk, A. K. & Hammad, M. (1979). *Egypt. J. Chem.* **20**, 197–202.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Subbaramaiah, K., Norton, L., Gerald, W. & Dannenberg, A. J. (2002). J. Biol. Chem. 277, 18649–18659.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2010). E66, o2505 [doi:10.1107/S1600536810033970]

1-{5-[4-(Hexyloxy)phenyl]-3-phenyl-4,5-dihydro-1*H*-pyrazol-1-yl}ethanone

Asghar Abbas, Safdar Hussain, Noureen Hafeez, Kong Mun Lo and Aurangzeb Hasan

S1. Comment

Pyrazoline systems are well known nitrogen-containing heterocyclic compounds which exhibit a wide range of biological activities and pharmacological properties such as anti-hyperglycemic (Cottineau *et al.*, 2002), antifungal (Dhal *et al.*, 1975), anti-diabetic, anaesthetic and analgesic properties (Regaila *et al.*, 1979), anti-inflammation (Rathish *et al.*, 2009), anticancer (Subbaramaiah *et al.*, 2002), and monoamine oxidases inhibitors (Manna *et al.*, 2002).

The molecular structure of the title compound is shown in Fig. 1. The asymmetric unit consists of discrete $[PhCOCH_3C_6H_4C_3H_3N_2O(CH_2)_5CH_3]$ entities, devoid of any classical hydrogen bonds. All bond lengths and angles are in the normal range (Bai *et al.*, 2009; Lu *et al.*, 2008). In the pyrazolinyl ring, the C—N and C=N bond lengths of 1.4753 (17) and 1.2856 (17) are comparable with those in similar structures [C-N 1.482 (2)-1.515 (9) Å, C=N 1.291 (2)-1.300 (10) Å] (Fahrni *et al.*, 2003). The N—N bond length of 1.3853 (15) is longer than in the structure of Jian *et al.* [N-N 1.373 (2)-1.380 (8) Å]. The plane containing the pyrazoline moiety is nearly planar with the mean plane of the phenyl ring C16–C21 making a dihedral angle of 1.96 (3)°.

The crystal packing is stabilized by weak C-H $\cdots\pi$ interactions involving both of the phenyl rings.

S2. Experimental

A mixture of (E)-3-(4-(hexyloxy)phenyl)-1-phenylprop-2-en-1-one (3.08 g, 10 mmol) and hydrazine hydrate (1.0 g, 20 mmol) was taken in acetic acid (25 ml), and two drops of concentrated hydrochloric acid were added. The mixture was refluxed for 6 h. The precipitated solids were filtered, dried and recrystallized from ethanol. The single crystals were obtained from a mixture of ethyl acetate and dichloromethane by slow evaporation.

S3. Refinement

All hydrogen atoms were placed in calculated positions as riding on their parent carbon atoms with C-H = 0.93 to 0.97 Å and with $U_{iso}(H)$ set to 1.2 or 1.5 times $U_{eq}(C)$.

Figure 1

Molecular structure of (I) showing atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

1-{5-[4-(Hexyloxy)phenyl]-3-phenyl-4,5-dihydro-1*H*-pyrazol-1-yl}ethanone

Crystal data

F(000) = 784 $C_{23}H_{28}N_2O_2$ $D_{\rm x} = 1.226 {\rm Mg} {\rm m}^{-3}$ $M_r = 364.47$ Monoclinic, $P2_1/c$ Mo *K* α radiation, $\lambda = 0.71073$ Å Hall symbol: -P 2ybc Cell parameters from 3895 reflections a = 5.3937 (8) Å $\theta = 2.3 - 28.1^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ b = 20.237 (3) ÅT = 100 Kc = 18.163 (3) Å $\beta = 95.144 \ (2)^{\circ}$ Block, white V = 1974.6 (5) Å³ $0.3 \times 0.2 \times 0.18 \text{ mm}$ Z = 4Data collection Bruker APEXII CCD area-detector 18731 measured reflections diffractometer 4517 independent reflections Radiation source: fine-focus sealed tube 3430 reflections with $I > 2\sigma(I)$ Graphite monochromator $R_{\rm int} = 0.042$ $\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 1.5^{\circ}$ ω scans Absorption correction: multi-scan $h = -7 \rightarrow 6$ $k = -25 \rightarrow 26$ (SADABS; Sheldrick, 1996) $l = -23 \rightarrow 23$ $T_{\rm min} = 0.675, T_{\rm max} = 0.746$ Refinement on F^2 Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained

 $w = 1/[\sigma^2(F_o^2) + (0.0466P)^2 + 0.4272P]$ where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.28 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.21 \ {\rm e} \ {\rm \AA}^{-3}$

Refinement

Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.103$ *S* = 1.03 4517 reflections 246 parameters 0 restraints Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

 $U_{\rm iso}^*/U_{\rm eq}$ Ζ х v 01 0.0179 (2) 0.18742 (16) 0.45980(5)-0.05993(5)O2 0.32678 (19) 0.17097(5)0.05044(5)0.0271(2)N1 0.1119(2)0.20218 (6) 0.14456 (6) 0.0191(3)N2 -0.0638(2)0.18796 (6) 0.19341 (6) 0.0179 (2) C1 -0.39381(9)0.5550(4)0.54544(9)0.0418(4)H1A 0.4064 0.5562 -0.42450.063* H1B 0.6700 0.5234 -0.42290.063* H1C 0.6297 0.5852 -0.37340.063* C2 0.4902(3)0.50039(7)-0.33153(7)0.0249(3)H2A 0.6419 0.4891 -0.30140.030* H2B 0.4195 0.4598 -0.35260.030* C3 0.3071(3)0.53097(7)-0.28225(7)0.0249(3)0.030* H3A 0.3774 0.5716 -0.2613H3B 0.1551 0.5421 -0.31230.030* C4 0.2433(3)0.48570(7) -0.21971(7)0.0225(3)H4A 0.3943 0.4769 -0.18810.027* H4B 0.1845 0.4439 -0.24080.027* C5 0.0473(3)0.51279(7) -0.17220(7)0.0209(3)H5A 0.1100 0.5529 -0.14800.025* H5B -0.10100.5241 -0.20390.025* 0.46428 (7) C6 -0.0217(2)-0.11418(7)0.0187(3)H6A -0.16750.4796 -0.09160.022* H6B -0.05840.4214 -0.13630.022* C7 0.1846(2)0.41158 (6) -0.00717(6)0.0151(3)C8 -0.0066(2)0.36643(7)-0.00220(7)0.0165(3)H8 -0.14870.3685 -0.03510.020* C9 0.0156(2)0.31812(7) 0.05236(7) 0.0167(3)Н9 -0.11320.2880 0.0558 0.020* C10 0.2267(2)0.31401 (6) 0.10170(6) 0.0152 (3) C11 0.4149(2)0.36037(7)0.09649(7)0.0168(3)H11 0.5562 0.1298 0.020* 0.3586 0.3957 (2) 0.40882 (7) 0.04292 (7) 0.0165 (3) C12 H12 0.5230 0.4395 0.0402 0.020* C13 0.2542(2)0.26318(7) 0.16271 (7) 0.0173 (3) H13 0.4306 0.2524 0.1742 0.021*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C14	0.1407 (2)	0.28567 (7)	0.23384 (7)	0.0174 (3)
H14A	0.2658	0.2871	0.2756	0.021*
H14B	0.0634	0.3288	0.2274	0.021*
C15	-0.0501 (2)	0.23286 (7)	0.24369 (7)	0.0160 (3)
C16	-0.2154 (2)	0.23144 (7)	0.30378 (7)	0.0163 (3)
C17	-0.3931 (2)	0.18129 (7)	0.30687 (7)	0.0177 (3)
H17	-0.4052	0.1482	0.2712	0.021*
C18	-0.5505 (2)	0.18075 (7)	0.36271 (7)	0.0194 (3)
H18	-0.6679	0.1473	0.3644	0.023*
C19	-0.5348 (2)	0.22987 (7)	0.41648 (7)	0.0193 (3)
H19	-0.6420	0.2295	0.4538	0.023*
C21	-0.1990 (2)	0.28018 (7)	0.35816 (7)	0.0193 (3)
H21	-0.0806	0.3135	0.3571	0.023*
C20	-0.3591 (3)	0.27924 (7)	0.41409 (7)	0.0199 (3)
H20	-0.3478	0.3121	0.4501	0.024*
C22	0.1542 (3)	0.16031 (7)	0.08809 (7)	0.0209 (3)
C23	-0.0247 (3)	0.10362 (7)	0.07542 (8)	0.0259 (3)
H23A	0.0172	0.0784	0.0335	0.039*
H23B	-0.1911	0.1204	0.0662	0.039*
H23C	-0.0145	0.0758	0.1184	0.039*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0188 (5)	0.0165 (5)	0.0177 (4)	-0.0025 (4)	-0.0017 (3)	0.0030 (4)
O2	0.0332 (6)	0.0255 (6)	0.0248 (5)	0.0035 (5)	0.0155 (4)	0.0011 (4)
N1	0.0223 (6)	0.0178 (6)	0.0185 (5)	-0.0017 (5)	0.0093 (4)	0.0004 (4)
N2	0.0189 (6)	0.0197 (6)	0.0160 (5)	0.0009 (5)	0.0067 (4)	0.0018 (4)
C1	0.0560 (12)	0.0388 (11)	0.0334 (8)	0.0093 (9)	0.0187 (8)	0.0104 (8)
C2	0.0299 (8)	0.0235 (8)	0.0209 (7)	-0.0010 (6)	0.0005 (6)	0.0014 (6)
C3	0.0329 (8)	0.0212 (8)	0.0205 (6)	-0.0001 (6)	0.0010 (6)	0.0028 (6)
C4	0.0271 (8)	0.0209 (8)	0.0194 (6)	0.0007 (6)	0.0005 (5)	0.0018 (5)
C5	0.0247 (7)	0.0179 (7)	0.0191 (6)	0.0021 (6)	-0.0026 (5)	0.0009 (5)
C6	0.0179 (7)	0.0187 (7)	0.0187 (6)	0.0010 (5)	-0.0024 (5)	-0.0003 (5)
C7	0.0168 (6)	0.0146 (7)	0.0145 (6)	0.0021 (5)	0.0038 (5)	-0.0007 (5)
C8	0.0138 (6)	0.0193 (7)	0.0163 (6)	0.0009 (5)	0.0021 (5)	-0.0024 (5)
C9	0.0147 (6)	0.0187 (7)	0.0175 (6)	-0.0023 (5)	0.0060 (5)	-0.0016 (5)
C10	0.0163 (6)	0.0156 (7)	0.0145 (6)	0.0012 (5)	0.0061 (5)	-0.0005 (5)
C11	0.0145 (6)	0.0217 (7)	0.0144 (6)	0.0013 (5)	0.0023 (5)	-0.0015 (5)
C12	0.0142 (6)	0.0179 (7)	0.0179 (6)	-0.0027 (5)	0.0041 (5)	-0.0012 (5)
C13	0.0167 (7)	0.0189 (7)	0.0168 (6)	0.0010 (5)	0.0040 (5)	0.0015 (5)
C14	0.0186 (7)	0.0184 (7)	0.0156 (6)	-0.0004 (5)	0.0041 (5)	0.0017 (5)
C15	0.0155 (6)	0.0169 (7)	0.0159 (6)	0.0022 (5)	0.0017 (5)	0.0028 (5)
C16	0.0158 (6)	0.0190 (7)	0.0144 (6)	0.0026 (5)	0.0022 (5)	0.0031 (5)
C17	0.0188 (7)	0.0178 (7)	0.0165 (6)	0.0014 (5)	0.0012 (5)	-0.0006 (5)
C18	0.0190 (7)	0.0207 (7)	0.0190 (6)	-0.0014 (6)	0.0036 (5)	0.0035 (5)
C19	0.0185 (7)	0.0240 (8)	0.0160 (6)	0.0039 (6)	0.0057 (5)	0.0042 (5)
C21	0.0191 (7)	0.0188 (7)	0.0201 (6)	-0.0018 (6)	0.0026 (5)	0.0013 (5)

supporting information

C20	0.0241 (7)	0.0205 (7)	0.0154 (6)	0.0021 (6)	0.0038 (5)	-0.0006 (5)
C22	0.0270 (8)	0.0194 (8)	0.0172 (6)	0.0053 (6)	0.0066 (5)	0.0024 (5)
C23	0.0345 (8)	0.0225 (8)	0.0214 (7)	0.0005 (6)	0.0066 (6)	-0.0027 (6)

Geometric parameters (11,)	Geometric	parameters	(Å, '	°)
-----------------------------	-----------	------------	-------	----

01—C7	1.3688 (15)	C9—C10	1.3867 (17)	
O1—C6	1.4325 (14)	С9—Н9	0.9300	
O2—C22	1.2226 (17)	C10-C11	1.3918 (18)	
N1-C22	1.3652 (17)	C10—C13	1.5094 (17)	
N1—N2	1.3853 (15)	C11—C12	1.3786 (18)	
N1-C13	1.4753 (17)	C11—H11	0.9300	
N2-C15	1.2856 (17)	C12—H12	0.9300	
C1—C2	1.518 (2)	C13—C14	1.5471 (17)	
C1—H1A	0.9600	C13—H13	0.9800	
C1—H1B	0.9600	C14—C15	1.5054 (18)	
C1—H1C	0.9600	C14—H14A	0.9700	
С2—С3	1.523 (2)	C14—H14B	0.9700	
C2—H2A	0.9700	C15—C16	1.4701 (17)	
C2—H2B	0.9700	C16—C21	1.3932 (18)	
С3—С4	1.5225 (19)	C16—C17	1.4008 (19)	
С3—НЗА	0.9700	C17—C18	1.3795 (18)	
С3—Н3В	0.9700	C17—H17	0.9300	
C4—C5	1.525 (2)	C18—C19	1.3906 (19)	
C4—H4A	0.9700	C18—H18	0.9300	
C4—H4B	0.9700	C19—C20	1.380 (2)	
С5—С6	1.5109 (19)	C19—H19	0.9300	
С5—Н5А	0.9700	C21—C20	1.3912 (18)	
С5—Н5В	0.9700	C21—H21	0.9300	
С6—Н6А	0.9700	C20—H20	0.9300	
С6—Н6В	0.9700	C22—C23	1.504 (2)	
С7—С8	1.3868 (18)	C23—H23A	0.9600	
C7—C12	1.3934 (17)	C23—H23B	0.9600	
С8—С9	1.3896 (18)	C23—H23C	0.9600	
С8—Н8	0.9300			
C7—O1—C6	117.98 (10)	C9—C10—C13	122.44 (12)	
C22—N1—N2	121.49 (11)	C11—C10—C13	119.01 (11)	
C22—N1—C13	124.64 (11)	C12-C11-C10	121.22 (12)	
N2-N1-C13	113.75 (10)	C12—C11—H11	119.4	
C15—N2—N1	108.01 (11)	C10-C11-H11	119.4	
C2—C1—H1A	109.5	C11—C12—C7	119.64 (12)	
C2—C1—H1B	109.5	C11—C12—H12	120.2	
H1A—C1—H1B	109.5	C7—C12—H12	120.2	
C2—C1—H1C	109.5	N1-C13-C10	113.03 (10)	
H1A—C1—H1C	109.5	N1-C13-C14	101.29 (10)	
H1B—C1—H1C	109.5	C10-C13-C14	113.09 (11)	
C1—C2—C3	113.51 (13)	N1-C13-H13	109.7	

	100.0		100 -
C1—C2—H2A	108.9	C10—C13—H13	109.7
C3—C2—H2A	108.9	C14—C13—H13	109.7
C1—C2—H2B	108.9	C15—C14—C13	102.50 (10)
C3—C2—H2B	108.9	C15—C14—H14A	111.3
H2A—C2—H2B	107.7	C13—C14—H14A	111.3
C4—C3—C2	113.33 (12)	C15—C14—H14B	111.3
С4—С3—НЗА	108.9	C13—C14—H14B	111.3
С2—С3—НЗА	108.9	H14A—C14—H14B	109.2
C4—C3—H3B	108.9	N2—C15—C16	120.89 (12)
C2—C3—H3B	108.9	N2-C15-C14	114.44 (11)
H_{3A} C_{3} H_{3B}	107.7	C_{16} C_{15} C_{14}	124.65(11)
$C_3 - C_4 - C_5$	114 86 (12)	C_{21} C_{16} C_{17}	121.09(11) 118.99(12)
$C_3 C_4 H_{4A}$	108.6	C_{21} C_{16} C_{15}	110.99(12) 120.56(12)
$C_5 = C_4 = H_{4A}$	108.6	$C_{21} = C_{10} = C_{15}$	120.30(12)
C_{3} C_{4} H_{4}	108.0	C17 - C10 - C13	120.43(12)
C3—C4—H4B	108.0		120.23 (12)
C5—C4—H4B	108.6	С18—С17—Н17	119.9
H4A—C4—H4B	107.5	С16—С17—Н17	119.9
C6—C5—C4	112.80 (12)	C17—C18—C19	120.54 (13)
С6—С5—Н5А	109.0	C17—C18—H18	119.7
C4—C5—H5A	109.0	C19—C18—H18	119.7
C6—C5—H5B	109.0	C20-C19-C18	119.61 (12)
C4—C5—H5B	109.0	С20—С19—Н19	120.2
H5A—C5—H5B	107.8	C18—C19—H19	120.2
O1—C6—C5	107.04 (10)	C20—C21—C16	120.27 (13)
O1—C6—H6A	110.3	C20—C21—H21	119.9
С5—С6—Н6А	110.3	C16—C21—H21	119.9
01—C6—H6B	110.3	C19—C20—C21	120.37 (13)
C5—C6—H6B	110.3	C19—C20—H20	119.8
H6A—C6—H6B	108.6	$C_{21} - C_{20} - H_{20}$	119.8
01-07-08	124 77 (11)	02-C22-N1	119.85 (13)
O1 C7 C12	124.77(11) 115.21(11)	$O_2 C_{22} C_{23}$	117.03(13) 124.01(12)
$C_{1}^{2} = C_{1}^{2}$	113.21(11) 120.00(12)	N1 C22 C23	124.01(12)
$C_{8} - C_{7} - C_{12}$	120.00(12) 110.52(12)	N1 = C22 = C23	110.12 (12)
$C_{-}C_{0}$	119.32 (12)	С22—С23—П23А	109.5
C/-C8-H8	120.2	C22—C23—H23B	109.5
С9—С8—Н8	120.2	H23A—C23—H23B	109.5
C10-C9-C8	121.11 (12)	С22—С23—Н23С	109.5
С10—С9—Н9	119.4	H23A—C23—H23C	109.5
С8—С9—Н9	119.4	H23B—C23—H23C	109.5
C9—C10—C11	118.49 (12)		
	175 04 (10)		
C22—N1—N2—C15	1/5.04 (12)	C9—C10—C13—C14	-86.17 (15)
C13—N1—N2—C15	-1.30 (14)	C11—C10—C13—C14	91.00 (14)
C1—C2—C3—C4	-179.80 (13)	N1—C13—C14—C15	-0.22 (12)
C2—C3—C4—C5	-176.14 (12)	C10—C13—C14—C15	121.03 (11)
C3—C4—C5—C6	176.22 (11)	N1—N2—C15—C16	179.74 (11)
C7—O1—C6—C5	-170.59 (10)	N1—N2—C15—C14	1.13 (15)
C4—C5—C6—O1	70.78 (14)	C13—C14—C15—N2	-0.55 (14)
C6—O1—C7—C8	-0.01 (18)	C13—C14—C15—C16	-179.10 (11)

C6—O1—C7—C12	178.57 (11)	N2-C15-C16-C21	179.85 (12)
O1—C7—C8—C9	177.70 (12)	C14—C15—C16—C21	-1.68 (19)
C12—C7—C8—C9	-0.81 (19)	N2-C15-C16-C17	-0.64 (18)
C7—C8—C9—C10	-0.41 (19)	C14—C15—C16—C17	177.82 (12)
C8—C9—C10—C11	1.34 (19)	C21—C16—C17—C18	0.53 (19)
C8—C9—C10—C13	178.52 (12)	C15—C16—C17—C18	-178.98 (12)
C9—C10—C11—C12	-1.08 (19)	C16—C17—C18—C19	0.04 (19)
C13-C10-C11-C12	-178.36 (12)	C17—C18—C19—C20	-0.43 (19)
C10-C11-C12-C7	-0.12 (19)	C17—C16—C21—C20	-0.71 (19)
O1—C7—C12—C11	-177.58 (11)	C15—C16—C21—C20	178.80 (12)
C8—C7—C12—C11	1.07 (19)	C18—C19—C20—C21	0.2 (2)
C22-N1-C13-C10	63.40 (16)	C16—C21—C20—C19	0.3 (2)
N2-N1-C13-C10	-120.39 (12)	N2—N1—C22—O2	-172.82 (12)
C22-N1-C13-C14	-175.30 (12)	C13—N1—C22—O2	3.1 (2)
N2—N1—C13—C14	0.90 (13)	N2—N1—C22—C23	8.60 (18)
C9-C10-C13-N1	28.19 (17)	C13—N1—C22—C23	-175.47 (12)
C11—C10—C13—N1	-154.64 (11)		

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C7–C12 and C16–C21 aromatic rings, respectively.

D—H···A	D—H	H···A	D····A	D—H··· A	
C8—H8···Cg2 ⁱ	0.93	2.95	3.6252 (15)	131	_
C14—H14 <i>A</i> … <i>C</i> g2 ⁱⁱ	0.97	2.63	3.5024 (14)	151	
C19—H19···· <i>Cg</i> 1 ⁱⁱⁱ	0.93	2.71	3.4299 (15)	135	

Symmetry codes: (i) *x*, -*y*-1/2, *z*-3/2; (ii) *x*+1, *y*, *z*; (iii) *x*-1, -*y*-1/2, *z*-1/2.