

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

### 3'-Hydroxymethyl-1'-methyl-3'-nitro-4'-(o-tolyl)spiro[indoline-3,2'-pyrrolidin]-2one

#### Rajeswari Gangadharan,<sup>a</sup> K. SethuSankar,<sup>b</sup>\* Manickam Bakthadoss,<sup>c</sup> Nagappan Sivakumar<sup>c</sup> and D. Velmurugan<sup>d</sup>

<sup>a</sup>Department of Physics, Ethiraj College for Women (Autonomous), Chennai 600 008, India, <sup>b</sup>Department of Physics, R.K.M. Vivekananda College (Autonomous), Chennai 600 004, India, <sup>c</sup>Department of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, and <sup>d</sup>Centre for Advanced Studies in Crystallography, University of Madras, Guindy Campus, Chennai 600 025, India Correspondence e-mail: ksethusankar@yahoo.co.in

Received 5 October 2010; accepted 16 October 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean  $\sigma$ (C–C) = 0.003 Å; R factor = 0.045; wR factor = 0.131; data-to-parameter ratio = 18.7.

The title compound, C<sub>20</sub>H<sub>21</sub>N<sub>3</sub>O<sub>4</sub>, crystallizes with two molecules in the asymmetric unit. In both molecules, the pyrrolidine ring adopts an envelope conformation. The crystal structure is stabilized by intermolecular C-H···O, N-H···O and  $O-H \cdots O$  hydrogen bonds.

#### **Related literature**

For ring puckering parameters, see: Cremer & Pople (1975).



b = 13.625 (2) Å

c = 13.656 (2) Å

 $\alpha = 66.116 \ (8)^{\circ}$ 

 $\beta = 83.715 \ (8)^{\circ}$ 

#### **Experimental**

Crystal data  $C_{20}H_{21}N_3O_4$  $M_{i}$ 

| $M_r = 367.40$      |  |
|---------------------|--|
| Triclinic, P1       |  |
| a = 10.8757 (18)  Å |  |

| $\gamma = 78.991 \ (9)^{\circ}$ |
|---------------------------------|
| $V = 1814.9 (5) \text{ Å}^3$    |
| Z = 4                           |
| Mo $K\alpha$ radiation          |

#### Data collection

| Bruker APEXII CCD area detector | 9209 independent reflections           |
|---------------------------------|----------------------------------------|
| diffractometer                  | 5980 reflections with $I > 2\Sigma(I)$ |
| 32702 measured reflections      | $R_{\rm int} = 0.032$                  |
| Refinement                      |                                        |

 $R[F^2 > 2\sigma(F^2)] = 0.045$ 493 parameters  $wR(F^2) = 0.131$ H-atom parameters constrained  $\Delta \rho_{\rm max} = 0.21 \text{ e} \text{ Å}^{-3}$ S = 1.03 $\Delta \rho_{\rm min} = -0.18 \text{ e} \text{ Å}^{-3}$ 9209 reflections

### Table 1

Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$         | D-H  | $H \cdots A$ | $D \cdot \cdot \cdot A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|--------------------------|------|--------------|-------------------------|--------------------------------------|
| $N3-H3A\cdots O3^{i}$    | 0.86 | 2.00         | 2.782 (2)               | 151                                  |
| $O3-H3B\cdots O7^{ii}$   | 0.82 | 2.11         | 2.7769 (17)             | 139                                  |
| $N5-H5\cdots O8^{iii}$   | 0.86 | 2.39         | 3.0064 (19)             | 129                                  |
| $O7-H7\cdots O4^{iv}$    | 0.82 | 2.24         | 2.9356 (19)             | 142                                  |
| $C8-H8\cdots O1^{v}$     | 0.98 | 2.40         | 3.164 (2)               | 135                                  |
| $C33-H33A\cdots O2^{ii}$ | 0.97 | 2.59         | 3.209 (2)               | 122                                  |
|                          |      |              |                         |                                      |

Symmetry codes: (i) -x + 2, -y + 2, -z + 1; (ii) -x + 1, -y + 1, -z + 1; (iii) -x + 1, -y, -z + 1; (iv) x - 1, y - 1, z; (v) -x + 2, -y + 1, -z + 1.

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

RG and KS thank the Technology Business Incubator (TBI), CAS in Crystallography and Biophysics, University of Madras, Chennai, and the Department of Science and Technology (DST) for the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5370).

#### References

Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

 $\mu = 0.10 \text{ mm}^{-1}$ . T - 293 K

 $0.30 \times 0.26 \times 0.20 \text{ mm}$ 

Acta Cryst. (2010). E66, o2935 [https://doi.org/10.1107/S1600536810041917]

3'-Hydroxymethyl-1'-methyl-3'-nitro-4'-(o-tolyl)spiro[indoline-3,2'pyrrolidin]-2-one

# Rajeswari Gangadharan, K. SethuSankar, Manickam Bakthadoss, Nagappan Sivakumar and D. Velmurugan

### S1. Comment

Substituted pyrrolidine compounds have gained much importance since they are the basic structural elements of many alkaloids and pharmacologically active compounds while molecules with the indole moiety posses anti-inflammatory and antibacterial properties In the title structure the asymmetric unit contains a pair of molecules with almost identical geometry. In the two molecules the bond lengths and angles agree with each other. In the benzene ring of the indole system the endocyclic angles at C17 and C20 are contracted to 118.78 (14)° and 117.64 (16)° respectively while those at C18, C19 and C15 are expanded to 120.92 (16)°, 121.19 (19)° and 121.56 (16)°, respectively. The sum of bond angles around N2 [331.33°] and around N3 atom [359.90°] indicate sp<sup>3</sup> and sp<sup>2</sup> hybridizations respectively. Dihedral angle formed between pyrrolidine ring and benzene ring is 71.98 (10)° and the dihedral angle between oxindole moiety and benzene ring is 45.04 (8)°. In addition to van der Waals interactions there are intermolecular C—H…O , N—H…O and O —H…O hydrogen bonds.

### **S2. Experimental**

A mixture of (E) -2 nitro -3 *o*- tolyprop -2 en -1-ol(2 mmol,0.386 g) isatin (2 mmol,0.29 g) and sarcosine (2 mmol,0.18 g) in acetonitrile(8 mL) was refluxed for 5 h.After the completion of the reaction as indicated by TLC, the reaction mixture was concentrated and the resulting crude mass was diluted with water (10 ml) and extracted with ethyl acetate(3 X 10 ml).The combined organic layers were washed with brine and dried over anhydrous Na2 sO4. The organic layer was concentrated and the residue purified by column chromatography on Silica Gel (Acme 100–200 mesh),using ethyl acetate, hexanes (2:8) to afford final product as a olourless solid in 75% (0.55 g) yield.

### S3. Refinement

H atoms were placed in idealized positions and allowed to ride on their parent atoms, with C—H bond lengths fixed to 0.93Å (aromatic H), 0.96Å (methyl H), 0.97Å (methylene H), 0.98Å (methine H), 0.82Å (OH), 0.86Å (NH), and  $U_{iso}(H)=1.2 - 1.5 U_{eq}(C,N)$ .



#### Figure 1

The molecular structure of title compound showing 50% probability displacement ellipsoids.



#### Figure 2

Packing diagram of the molecules viewed along the A axis.

3'-Hydroxymethyl-1'-methyl-3'-nitro-4'-(o-tolyl)spiro[indoline-3,2'- pyrrolidin]-2-one

Crystal data

 $C_{20}H_{21}N_{3}O_{4}$   $M_{r} = 367.40$ Triclinic, *P*1 Hall symbol: -P 1 a = 10.8757 (18) Å b = 13.625 (2) Å c = 13.656 (2) Å a = 66.116 (8)°  $\beta = 83.715$  (8)°  $\gamma = 78.991$  (9)° V = 1814.9 (5) Å<sup>3</sup> Z = 4 F(000) = 776  $D_x = 1.345 \text{ Mg m}^{-3}$ Mo  $K\alpha$  radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9209 reflections  $\theta = 1.6-28.7^{\circ}$   $\mu = 0.10 \text{ mm}^{-1}$  T = 293 KBlack, black  $0.30 \times 0.26 \times 0.20 \text{ mm}$  Data collection

| Bruker APEXII CCD area detector<br>diffractometer<br>Radiation source: fine-focus sealed tube<br>Graphite monochromator<br>$\omega$ and $\varphi$ scans<br>32702 measured reflections<br>9209 independent reflections | 5980 reflections with $I > 2\Sigma(I)$<br>$R_{int} = 0.032$<br>$\theta_{max} = 28.7^{\circ}, \ \theta_{min} = 1.6^{\circ}$<br>$h = -14 \rightarrow 14$<br>$k = -18 \rightarrow 18$<br>$l = -18 \rightarrow 18$ |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Refinement                                                                                                                                                                                                            |                                                                                                                                                                                                                |
| Refinement on $F^2$<br>Least-squares matrix: full<br>$R[F^2 > 2\sigma(F^2)] = 0.045$<br>$wR(F^2) = 0.131$                                                                                                             | Secondary atom site location: difference Fourier<br>map<br>Hydrogen site location: inferred from<br>neighbouring sites                                                                                         |
| S = 1.03                                                                                                                                                                                                              | H-atom parameters constrained<br>$w = 1/[r^2(F^2) + (0.0564P)^2 + 0.3018P]$                                                                                                                                    |
| 493 parameters                                                                                                                                                                                                        | where $P = (F_o^2 + 2F_c^2)/3$                                                                                                                                                                                 |
| 0 restraints                                                                                                                                                                                                          | $(\Delta/\sigma)_{\rm max} < 0.001$                                                                                                                                                                            |
| Primary atom site location: structure-invariant                                                                                                                                                                       | $\Delta \rho_{\rm max} = 0.21 \text{ e} \text{ \AA}^{-3}$                                                                                                                                                      |
| direct methods                                                                                                                                                                                                        | $\Delta \rho_{\rm min} = -0.18 \text{ e } \text{\AA}^{-3}$                                                                                                                                                     |

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|     | x            | у            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|-----|--------------|--------------|--------------|-----------------------------|--|
| C1  | 0.9263 (2)   | 0.78067 (16) | 0.12135 (15) | 0.0643 (5)                  |  |
| H1  | 0.8616       | 0.7728       | 0.0872       | 0.077*                      |  |
| C2  | 1.0088 (2)   | 0.84968 (17) | 0.06218 (15) | 0.0736 (6)                  |  |
| H2  | 1.0002       | 0.8872       | -0.0113      | 0.088*                      |  |
| C3  | 1.1032 (2)   | 0.86301 (17) | 0.11143 (15) | 0.0720 (6)                  |  |
| H3  | 1.1588       | 0.9100       | 0.0715       | 0.086*                      |  |
| C4  | 1.11632 (19) | 0.80676 (14) | 0.22033 (13) | 0.0546 (4)                  |  |
| H4  | 1.1808       | 0.8165       | 0.2533       | 0.066*                      |  |
| C5  | 1.03477 (15) | 0.73560 (12) | 0.28191 (11) | 0.0410 (3)                  |  |
| C6  | 0.93751 (16) | 0.72207 (13) | 0.23161 (13) | 0.0468 (4)                  |  |
| C7  | 0.84219 (18) | 0.65016 (16) | 0.29240 (15) | 0.0606 (5)                  |  |
| H7A | 0.8844       | 0.5780       | 0.3323       | 0.091*                      |  |
| H7B | 0.7877       | 0.6478       | 0.2429       | 0.091*                      |  |
| H7C | 0.7937       | 0.6788       | 0.3408       | 0.091*                      |  |
| C8  | 1.04939 (14) | 0.67486 (11) | 0.40162 (11) | 0.0366 (3)                  |  |
| H8  | 1.0178       | 0.6063       | 0.4220       | 0.044*                      |  |
| C9  | 1.18353 (15) | 0.64548 (13) | 0.43989 (12) | 0.0444 (4)                  |  |
|     |              |              |              |                             |  |

| H9A        | 1.2255       | 0.5784                     | 0.4341                     | 0.053*             |
|------------|--------------|----------------------------|----------------------------|--------------------|
| H9B        | 1.2317       | 0.7031                     | 0.3988                     | 0.053*             |
| C10        | 1.28322 (17) | 0.61668 (16)               | 0.60404 (15)               | 0.0585 (5)         |
| H10A       | 1.3231       | 0.6799                     | 0.5690                     | 0.088*             |
| H10B       | 1.3381       | 0.5542                     | 0.5998                     | 0.088*             |
| H10C       | 1.2650       | 0.6054                     | 0.6779                     | 0.088*             |
| C11        | 1.07282 (14) | 0.72425 (10)               | 0.55415 (11)               | 0.0338 (3)         |
| C12        | 0.97488 (13) | 0.73354(10)                | 0.47288 (10)               | 0.0327(3)          |
| C13        | 0.90941 (15) | 0.84833 (11)               | 0.40830(11)                | 0.0394(3)          |
| H13A       | 0.9647       | 0.8835                     | 0 3487                     | 0.047*             |
| H13R       | 0.8349       | 0.8433                     | 0.3787                     | 0.047*             |
| C14        | 1 12455 (15) | 0.83425(12)                | 0.57371(12)                | 0.047<br>0.0410(3) |
| C15        | 1.05989 (15) | 0.03423(12)<br>0.79408(12) | 0.51371(12)<br>0.68790(12) | 0.0410(3)          |
| C16        | 1.03737(13)  | 0.79400(12)<br>0.70849(11) | 0.66827(11)                | 0.0417(3)          |
| C10<br>C17 | 1.03173(14)  | 0.70849(11)<br>0.62187(12) | 0.00327(11)<br>0.75116(12) | 0.0330(3)          |
| U17        | 0.98993 (13) | 0.02187(12)                | 0.73110 (12)               | 0.0421(3)          |
| C19        | 0.9730       | 0.5050                     | 0.7393                     | $0.051^{\circ}$    |
|            | 0.97203 (17) | 0.62392 (14)               | 0.83204 (12)               | 0.0310 (4)         |
| HI8<br>C10 | 0.9442       | 0.5659                     | 0.9093                     | 0.061*             |
| C19        | 0.99680 (18) | 0.71000 (16)               | 0.87043 (13)               | 0.0586 (5)         |
| HI9        | 0.9835       | 0.7100                     | 0.9389                     | 0.070*             |
| C20        | 1.040/8 (18) | 0./9/43 (16)               | 0.78823 (14)               | 0.0566 (5)         |
| H20        | 1.0568       | 0.8562                     | 0.8003                     | 0.068*             |
| NI         | 0.87235 (12) | 0.66862 (9)                | 0.53968 (9)                | 0.0371 (3)         |
| N2         | 1.16682 (12) | 0.63274 (9)                | 0.55149 (10)               | 0.0398 (3)         |
| N3         | 1.11411 (14) | 0.86594 (11)               | 0.59629 (10)               | 0.0490 (3)         |
| H3A        | 1.1382       | 0.9239                     | 0.5928                     | 0.059*             |
| 01         | 0.89335 (12) | 0.57011 (8)                | 0.57472 (9)                | 0.0532 (3)         |
| 02         | 0.77393 (11) | 0.72006 (9)                | 0.55803 (10)               | 0.0551 (3)         |
| O3         | 0.87436 (11) | 0.91441 (8)                | 0.46729 (8)                | 0.0444 (3)         |
| H3B        | 0.8182       | 0.8912                     | 0.5112                     | 0.067*             |
| O4         | 1.16951 (12) | 0.88053 (9)                | 0.42497 (9)                | 0.0547 (3)         |
| C21        | 0.2916 (2)   | 0.53247 (16)               | 0.0557 (2)                 | 0.0802 (7)         |
| H21        | 0.2397       | 0.5877                     | 0.0049                     | 0.096*             |
| C22        | 0.3238 (3)   | 0.54936 (18)               | 0.1412 (2)                 | 0.0935 (8)         |
| H22        | 0.2922       | 0.6143                     | 0.1490                     | 0.112*             |
| C23        | 0.4028 (3)   | 0.46985 (19)               | 0.2153 (2)                 | 0.0886 (7)         |
| H23        | 0.4263       | 0.4809                     | 0.2731                     | 0.106*             |
| C24        | 0.4473 (2)   | 0.37329 (16)               | 0.20326 (17)               | 0.0690 (5)         |
| H24        | 0.5022       | 0.3202                     | 0.2528                     | 0.083*             |
| C25        | 0.41187 (17) | 0.35323 (13)               | 0.11889 (13)               | 0.0531 (4)         |
| C26        | 0.33357 (18) | 0.43623 (15)               | 0.04218 (15)               | 0.0604 (5)         |
| C27        | 0.2939 (2)   | 0.42400 (18)               | -0.05373 (17)              | 0.0790 (6)         |
| H27A       | 0.2390       | 0.4886                     | -0.0951                    | 0.118*             |
| H27B       | 0.2509       | 0.3626                     | -0.0303                    | 0.118*             |
| H27C       | 0.3666       | 0.4130                     | -0.0971                    | 0.118*             |
| C28        | 0.45817 (16) | 0.24525 (13)               | 0.10977 (12)               | 0.0486 (4)         |
| H28        | 0.4404       | 0.2556                     | 0.0371                     | 0.058*             |
| C29        | 0.59902 (17) | 0.20421 (14)               | 0.12277 (14)               | 0.0554 (4)         |

| H29A | 0.6458       | 0.2389        | 0.0567       | 0.066*     |
|------|--------------|---------------|--------------|------------|
| H29B | 0.6294       | 0.2175        | 0.1798       | 0.066*     |
| C30  | 0.73427 (17) | 0.02658 (16)  | 0.17691 (16) | 0.0635 (5) |
| H30A | 0.7592       | 0.0309        | 0.2402       | 0.095*     |
| H30B | 0.7924       | 0.0560        | 0.1186       | 0.095*     |
| H30C | 0.7337       | -0.0481       | 0.1900       | 0.095*     |
| C31  | 0.51057 (15) | 0.05040 (12)  | 0.23065 (11) | 0.0413 (3) |
| C32  | 0.39654 (15) | 0.14565 (12)  | 0.18795 (12) | 0.0418 (3) |
| C33  | 0.30840 (17) | 0.16622 (13)  | 0.27485 (13) | 0.0484 (4) |
| H33A | 0.3405       | 0.2161        | 0.2962       | 0.058*     |
| H33B | 0.2271       | 0.2017        | 0.2446       | 0.058*     |
| C34  | 0.54213 (17) | 0.03808 (14)  | 0.34425 (12) | 0.0503 (4) |
| C35  | 0.52243 (17) | -0.13051 (14) | 0.35819 (15) | 0.0586 (5) |
| C36  | 0.49706 (16) | -0.06504 (13) | 0.25191 (14) | 0.0501 (4) |
| C37  | 0.47687 (19) | -0.11189 (17) | 0.18355 (19) | 0.0674 (5) |
| H37  | 0.4634       | -0.0696       | 0.1114       | 0.081*     |
| C38  | 0.4771 (2)   | -0.2231 (2)   | 0.2245 (3)   | 0.0873 (8) |
| H38  | 0.4622       | -0.2553       | 0.1794       | 0.105*     |
| C39  | 0.4988 (2)   | -0.28621 (19) | 0.3300 (3)   | 0.0939 (9) |
| H39  | 0.4970       | -0.3605       | 0.3558       | 0.113*     |
| C40  | 0.5232 (2)   | -0.24172 (17) | 0.3991 (2)   | 0.0799 (7) |
| H40  | 0.5396       | -0.2849       | 0.4706       | 0.096*     |
| N4   | 0.31886 (15) | 0.10989 (13)  | 0.12409 (13) | 0.0566 (4) |
| N5   | 0.55111 (16) | -0.06837 (12) | 0.40917 (11) | 0.0628 (4) |
| H5   | 0.5723       | -0.0947       | 0.4749       | 0.075*     |
| N6   | 0.60896 (12) | 0.08871 (11)  | 0.14952 (10) | 0.0466 (3) |
| 05   | 0.23358 (14) | 0.06078 (13)  | 0.17280 (14) | 0.0789 (4) |
| 06   | 0.34711 (16) | 0.12759 (14)  | 0.03015 (11) | 0.0842 (5) |
| 07   | 0.29185 (12) | 0.07180 (9)   | 0.36754 (9)  | 0.0552 (3) |
| H7   | 0.2518       | 0.0347        | 0.3528       | 0.083*     |
| O8   | 0.55874 (14) | 0.11090 (11)  | 0.36834 (9)  | 0.0677 (4) |
|      |              |               |              |            |

Atomic displacement parameters  $(\AA^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| C1  | 0.0829 (15) | 0.0693 (12) | 0.0493 (10) | -0.0064 (11) | -0.0125 (10) | -0.0323 (9)  |
| C2  | 0.1127 (19) | 0.0718 (13) | 0.0344 (9)  | -0.0196 (13) | -0.0010 (11) | -0.0173 (9)  |
| C3  | 0.1015 (17) | 0.0757 (13) | 0.0402 (10) | -0.0334 (12) | 0.0126 (10)  | -0.0194 (9)  |
| C4  | 0.0684 (12) | 0.0590 (10) | 0.0405 (9)  | -0.0226 (9)  | 0.0074 (8)   | -0.0205 (8)  |
| C5  | 0.0517 (10) | 0.0396 (8)  | 0.0358 (7)  | -0.0073 (7)  | 0.0033 (7)   | -0.0203 (6)  |
| C6  | 0.0548 (10) | 0.0475 (9)  | 0.0445 (9)  | -0.0053 (7)  | -0.0011 (8)  | -0.0261 (7)  |
| C7  | 0.0559 (12) | 0.0696 (12) | 0.0645 (11) | -0.0155 (9)  | -0.0081 (9)  | -0.0310 (10) |
| C8  | 0.0442 (9)  | 0.0317 (7)  | 0.0368 (7)  | -0.0077 (6)  | 0.0025 (6)   | -0.0167 (6)  |
| C9  | 0.0444 (9)  | 0.0455 (8)  | 0.0456 (8)  | -0.0049 (7)  | 0.0041 (7)   | -0.0227 (7)  |
| C10 | 0.0453 (10) | 0.0712 (12) | 0.0550 (10) | -0.0050 (9)  | -0.0069 (8)  | -0.0215 (9)  |
| C11 | 0.0404 (8)  | 0.0293 (7)  | 0.0319 (7)  | -0.0098 (6)  | 0.0008 (6)   | -0.0110 (5)  |
| C12 | 0.0395 (8)  | 0.0281 (6)  | 0.0312 (7)  | -0.0087 (5)  | 0.0026 (6)   | -0.0118 (5)  |
| C13 | 0.0519 (9)  | 0.0301 (7)  | 0.0348 (7)  | -0.0035 (6)  | -0.0003 (7)  | -0.0128 (6)  |
|     |             |             |             |              |              |              |

| C14 | 0.0481 (9)  | 0.0360 (7)  | 0.0407 (8)  | -0.0160 (7)  | -0.0003 (7)  | -0.0134 (6)  |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| C15 | 0.0458 (9)  | 0.0435 (8)  | 0.0396 (8)  | -0.0128 (7)  | -0.0010 (7)  | -0.0179 (7)  |
| C16 | 0.0392 (8)  | 0.0348 (7)  | 0.0328 (7)  | -0.0072 (6)  | -0.0019 (6)  | -0.0126 (6)  |
| C17 | 0.0459 (9)  | 0.0392 (8)  | 0.0369 (8)  | -0.0083 (7)  | -0.0016 (7)  | -0.0099 (6)  |
| C18 | 0.0516 (10) | 0.0591 (10) | 0.0323 (8)  | -0.0101 (8)  | 0.0005 (7)   | -0.0080 (7)  |
| C19 | 0.0610 (12) | 0.0828 (13) | 0.0364 (9)  | -0.0137 (10) | 0.0013 (8)   | -0.0277 (9)  |
| C20 | 0.0658 (12) | 0.0698 (11) | 0.0518 (10) | -0.0194 (9)  | -0.0012 (9)  | -0.0383 (9)  |
| N1  | 0.0420 (7)  | 0.0350 (6)  | 0.0373 (6)  | -0.0106 (5)  | 0.0003 (5)   | -0.0159 (5)  |
| N2  | 0.0396 (7)  | 0.0377 (6)  | 0.0397 (7)  | -0.0034 (5)  | -0.0016 (5)  | -0.0140 (5)  |
| N3  | 0.0667 (10) | 0.0435 (7)  | 0.0478 (8)  | -0.0263 (7)  | 0.0024 (7)   | -0.0227 (6)  |
| 01  | 0.0643 (8)  | 0.0329 (6)  | 0.0619 (7)  | -0.0176 (5)  | 0.0112 (6)   | -0.0172 (5)  |
| O2  | 0.0440 (7)  | 0.0520 (7)  | 0.0673 (8)  | -0.0083 (5)  | 0.0129 (6)   | -0.0249 (6)  |
| 03  | 0.0569 (7)  | 0.0308 (5)  | 0.0453 (6)  | -0.0079 (5)  | 0.0104 (5)   | -0.0175 (5)  |
| O4  | 0.0711 (9)  | 0.0487 (6)  | 0.0452 (6)  | -0.0303 (6)  | 0.0112 (6)   | -0.0137 (5)  |
| C21 | 0.0712 (15) | 0.0457 (11) | 0.1031 (18) | -0.0113 (10) | -0.0016 (13) | -0.0078 (11) |
| C22 | 0.099 (2)   | 0.0495 (12) | 0.128 (2)   | -0.0200 (12) | 0.0152 (17)  | -0.0327 (14) |
| C23 | 0.117 (2)   | 0.0635 (14) | 0.0929 (17) | -0.0343 (14) | 0.0075 (16)  | -0.0333 (13) |
| C24 | 0.0852 (15) | 0.0542 (11) | 0.0640 (12) | -0.0193 (10) | -0.0023 (11) | -0.0161 (9)  |
| C25 | 0.0561 (11) | 0.0463 (9)  | 0.0447 (9)  | -0.0151 (8)  | 0.0064 (8)   | -0.0046 (7)  |
| C26 | 0.0514 (11) | 0.0495 (10) | 0.0607 (11) | -0.0142 (8)  | 0.0055 (9)   | -0.0011 (8)  |
| C27 | 0.0695 (14) | 0.0789 (14) | 0.0615 (12) | 0.0009 (11)  | -0.0153 (11) | -0.0025 (11) |
| C28 | 0.0518 (10) | 0.0515 (9)  | 0.0320 (8)  | -0.0074 (7)  | -0.0005 (7)  | -0.0064 (7)  |
| C29 | 0.0496 (11) | 0.0566 (10) | 0.0442 (9)  | -0.0135 (8)  | 0.0062 (8)   | -0.0036 (8)  |
| C30 | 0.0425 (10) | 0.0709 (12) | 0.0600 (11) | -0.0038 (9)  | 0.0063 (9)   | -0.0128 (9)  |
| C31 | 0.0396 (9)  | 0.0482 (8)  | 0.0321 (7)  | -0.0079 (7)  | 0.0036 (6)   | -0.0126 (6)  |
| C32 | 0.0416 (9)  | 0.0473 (8)  | 0.0363 (8)  | -0.0065 (7)  | -0.0003 (7)  | -0.0168 (7)  |
| C33 | 0.0497 (10) | 0.0459 (9)  | 0.0478 (9)  | -0.0067 (7)  | 0.0086 (8)   | -0.0195 (7)  |
| C34 | 0.0542 (11) | 0.0562 (10) | 0.0318 (8)  | -0.0052 (8)  | 0.0016 (7)   | -0.0110 (7)  |
| C35 | 0.0490 (11) | 0.0504 (10) | 0.0614 (11) | -0.0055 (8)  | 0.0202 (9)   | -0.0134 (9)  |
| C36 | 0.0391 (9)  | 0.0504 (9)  | 0.0562 (10) | -0.0062 (7)  | 0.0120 (8)   | -0.0201 (8)  |
| C37 | 0.0537 (12) | 0.0693 (12) | 0.0887 (15) | -0.0069 (9)  | 0.0082 (10)  | -0.0448 (11) |
| C38 | 0.0610 (14) | 0.0717 (15) | 0.149 (3)   | -0.0112 (11) | 0.0154 (15)  | -0.0679 (17) |
| C39 | 0.0608 (15) | 0.0543 (13) | 0.159 (3)   | -0.0139 (11) | 0.0330 (17)  | -0.0414 (17) |
| C40 | 0.0603 (13) | 0.0513 (11) | 0.0947 (16) | -0.0041 (9)  | 0.0278 (12)  | -0.0044 (11) |
| N4  | 0.0489 (9)  | 0.0652 (9)  | 0.0618 (10) | -0.0004 (7)  | -0.0095 (8)  | -0.0332 (8)  |
| N5  | 0.0741 (11) | 0.0574 (9)  | 0.0347 (7)  | 0.0013 (8)   | 0.0026 (7)   | -0.0017 (7)  |
| N6  | 0.0386 (8)  | 0.0545 (8)  | 0.0351 (7)  | -0.0059 (6)  | 0.0063 (6)   | -0.0086 (6)  |
| 05  | 0.0528 (9)  | 0.0960 (11) | 0.1116 (12) | -0.0257 (8)  | 0.0061 (8)   | -0.0613 (10) |
| O6  | 0.0956 (12) | 0.1114 (12) | 0.0575 (9)  | -0.0119 (9)  | -0.0166 (8)  | -0.0440 (8)  |
| O7  | 0.0605 (8)  | 0.0497 (7)  | 0.0561 (7)  | -0.0195 (6)  | 0.0224 (6)   | -0.0230 (6)  |
| O8  | 0.0923 (11) | 0.0693 (8)  | 0.0421 (7)  | -0.0152 (7)  | -0.0121 (7)  | -0.0194 (6)  |
|     |             |             |             |              |              |              |

Geometric parameters (Å, °)

| C1—C2 | 1.375 (3) | C21—C22 | 1.371 (4) |  |
|-------|-----------|---------|-----------|--|
| C1—C6 | 1.396 (2) | C21—C26 | 1.382 (3) |  |
| C1—H1 | 0.9300    | C21—H21 | 0.9300    |  |
| C2—C3 | 1.364 (3) | C22—C23 | 1.373 (4) |  |
|       |           |         |           |  |

| С2—Н2    | 0.9300      | С22—Н22  | 0.9300      |
|----------|-------------|----------|-------------|
| C3—C4    | 1.379 (2)   | C23—C24  | 1.381 (3)   |
| С3—Н3    | 0.9300      | С23—Н23  | 0.9300      |
| C4—C5    | 1.392 (2)   | C24—C25  | 1.394 (3)   |
| C4—H4    | 0.9300      | C24—H24  | 0.9300      |
| C5—C6    | 1.400 (2)   | C25—C26  | 1.403 (3)   |
| C5—C8    | 1.514 (2)   | C25—C28  | 1.512 (2)   |
| C6—C7    | 1.505 (3)   | C26—C27  | 1.502 (3)   |
| C7—H7A   | 0.9600      | С27—Н27А | 0.9600      |
| С7—Н7В   | 0.9600      | С27—Н27В | 0.9600      |
| C7—H7C   | 0.9600      | С27—Н27С | 0.9600      |
| C8—C9    | 1.528 (2)   | C28—C29  | 1.531 (2)   |
| C8—C12   | 1.5660 (18) | C28—C32  | 1.565 (2)   |
| С8—Н8    | 0.9800      | C28—H28  | 0.9800      |
| C9—N2    | 1.4570 (19) | C29—N6   | 1.449 (2)   |
| С9—Н9А   | 0.9700      | С29—Н29А | 0.9700      |
| С9—Н9В   | 0.9700      | C29—H29B | 0.9700      |
| C10—N2   | 1.460 (2)   | C30—N6   | 1.459 (2)   |
| C10—H10A | 0.9600      | С30—Н30А | 0.9600      |
| C10—H10B | 0.9600      | С30—Н30В | 0.9600      |
| C10—H10C | 0.9600      | С30—Н30С | 0.9600      |
| C11—N2   | 1.4638 (18) | C31—N6   | 1.460 (2)   |
| C11—C16  | 1.5125 (19) | C31—C36  | 1.513 (2)   |
| C11—C14  | 1.5657 (19) | C31—C34  | 1.561 (2)   |
| C11—C12  | 1.5735 (19) | C31—C32  | 1.579 (2)   |
| C12—C13  | 1.5251 (19) | C32—C33  | 1.524 (2)   |
| C12—N1   | 1.5358 (18) | C32—N4   | 1.541 (2)   |
| C13—O3   | 1.4121 (16) | С33—07   | 1.4175 (19) |
| С13—Н13А | 0.9700      | С33—Н33А | 0.9700      |
| С13—Н13В | 0.9700      | С33—Н33В | 0.9700      |
| C14—O4   | 1.2141 (18) | C34—O8   | 1.213 (2)   |
| C14—N3   | 1.3485 (19) | C34—N5   | 1.350 (2)   |
| C15—C20  | 1.381 (2)   | C35—N5   | 1.387 (3)   |
| C15—C16  | 1.390 (2)   | C35—C40  | 1.385 (3)   |
| C15—N3   | 1.392 (2)   | C35—C36  | 1.387 (3)   |
| C16—C17  | 1.375 (2)   | C36—C37  | 1.381 (3)   |
| C17—C18  | 1.389 (2)   | С37—С38  | 1.386 (3)   |
| С17—Н17  | 0.9300      | С37—Н37  | 0.9300      |
| C18—C19  | 1.366 (3)   | C38—C39  | 1.366 (4)   |
| C18—H18  | 0.9300      | С38—Н38  | 0.9300      |
| C19—C20  | 1.387 (3)   | C39—C40  | 1.381 (4)   |
| С19—Н19  | 0.9300      | С39—Н39  | 0.9300      |
| C20—H20  | 0.9300      | C40—H40  | 0.9300      |
| N1—O1    | 1.2121 (15) | N4—O6    | 1.221 (2)   |
| N1—O2    | 1.2235 (16) | N4—O5    | 1.221 (2)   |
| N3—H3A   | 0.8600      | N5—H5    | 0.8600      |
| O3—H3B   | 0.8200      | O7—H7    | 0.8200      |

| C2—C1—C6                      | 121.46 (19)              | C22—C21—C26                         | 122.2 (2)                 |
|-------------------------------|--------------------------|-------------------------------------|---------------------------|
| C2—C1—H1                      | 119.3                    | C22—C21—H21                         | 118.9                     |
| С6—С1—Н1                      | 119.3                    | C26—C21—H21                         | 118.9                     |
| C3—C2—C1                      | 119.93 (18)              | C23—C22—C21                         | 119.6 (2)                 |
| С3—С2—Н2                      | 120.0                    | C23—C22—H22                         | 120.2                     |
| C1—C2—H2                      | 120.0                    | C21—C22—H22                         | 120.2                     |
| C2—C3—C4                      | 120.0 (2)                | C22—C23—C24                         | 119.3 (2)                 |
| С2—С3—Н3                      | 120.0                    | С22—С23—Н23                         | 120.3                     |
| С4—С3—Н3                      | 120.0                    | C24—C23—H23                         | 120.3                     |
| C3—C4—C5                      | 121.21 (18)              | $C_{23}$ — $C_{24}$ — $C_{25}$      | 121.8 (2)                 |
| C3-C4-H4                      | 119.4                    | $C_{23}$ $C_{24}$ $H_{24}$          | 1191                      |
| C5 - C4 - H4                  | 119.1                    | $C_{25} = C_{24} = H_{24}$          | 119.1                     |
| C4-C5-C6                      | 118.91 (15)              | $C_{25} = C_{25} = C_{25} = C_{26}$ | 119.1                     |
| $C_{4} = C_{5} = C_{6}$       | 120.78(14)               | $C_{24} = C_{25} = C_{26}$          | 120.69 (16)               |
| $C_{+} - C_{5} - C_{8}$       | 120.78(14)<br>120.31(14) | $C_{24} = C_{25} = C_{26}$          | 120.09(10)<br>121.01(17)  |
| $C_0 = C_3 = C_8$             | 120.31(14)<br>118.50(17) | $C_{20} = C_{23} = C_{28}$          | 121.01(17)<br>118.7(2)    |
| C1 = C6 = C7                  | 110.30(17)<br>118.01(17) | $C_{21} = C_{20} = C_{23}$          | 110.7(2)                  |
| $C_1 = C_0 = C_1$             | 118.91 (17)              | $C_{21} = C_{20} = C_{27}$          | 119.01 (19)               |
| $C_{5}$                       | 122.55 (15)              | $C_{25} = C_{26} = C_{27}$          | 122.33 (18)               |
|                               | 109.5                    | $C_{26} = C_{27} = H_{27}$          | 109.5                     |
| С6—С/—Н/В                     | 109.5                    | С26—С27—Н27В                        | 109.5                     |
| H/A—C/—H/B                    | 109.5                    | H2/A—C2/—H2/B                       | 109.5                     |
| С6—С7—Н7С                     | 109.5                    | С26—С27—Н27С                        | 109.5                     |
| H7A—C7—H7C                    | 109.5                    | H27A—C27—H27C                       | 109.5                     |
| H7B—C7—H7C                    | 109.5                    | H27B—C27—H27C                       | 109.5                     |
| C5—C8—C9                      | 115.73 (13)              | C25—C28—C29                         | 115.58 (15)               |
| C5—C8—C12                     | 115.67 (11)              | C25—C28—C32                         | 117.28 (13)               |
| C9—C8—C12                     | 104.24 (11)              | C29—C28—C32                         | 103.95 (12)               |
| С5—С8—Н8                      | 106.9                    | C25—C28—H28                         | 106.4                     |
| С9—С8—Н8                      | 106.9                    | C29—C28—H28                         | 106.4                     |
| С12—С8—Н8                     | 106.9                    | C32—C28—H28                         | 106.4                     |
| N2—C9—C8                      | 103.39 (12)              | N6-C29-C28                          | 103.19 (14)               |
| N2—C9—H9A                     | 111.1                    | N6—C29—H29A                         | 111.1                     |
| С8—С9—Н9А                     | 111.1                    | С28—С29—Н29А                        | 111.1                     |
| N2—C9—H9B                     | 111.1                    | N6—C29—H29B                         | 111.1                     |
| С8—С9—Н9В                     | 111.1                    | С28—С29—Н29В                        | 111.1                     |
| H9A—C9—H9B                    | 109.0                    | H29A—C29—H29B                       | 109.1                     |
| N2-C10-H10A                   | 109.5                    | N6-C30-H30A                         | 109.5                     |
| N2-C10-H10B                   | 109.5                    | N6-C30-H30B                         | 109.5                     |
| $H_{10A}$ $-C_{10}$ $H_{10B}$ | 109.5                    | $H_{30A}$ $C_{30}$ $H_{30B}$        | 109.5                     |
| $N_2$ $C_{10}$ $H_{10}C$      | 109.5                    | N6-C30-H30C                         | 109.5                     |
| $H_{10A} = C_{10} = H_{10C}$  | 109.5                    | $H_{30A} = C_{30} = H_{30C}$        | 109.5                     |
| HIOR CIO HIOC                 | 109.5                    | H30B C30 H30C                       | 109.5                     |
| $N_2$ _C11_C16                | 110.87 (11)              | N6_C31_C36                          | 111 72 (13)               |
| $N_2 = C_{11} = C_{10}$       | 113 72 (12)              | N6 C31 C34                          | 111.72(13)<br>113(15(12)) |
| 112 - 011 - 014               | 113.72(12)<br>101.40(11) | $C_{26} C_{21} C_{24}$              | 113.13(13)<br>101.14(12)  |
| $V_{10} = C_{11} = C_{14}$    | 101.40(11)<br>102.28(10) | $V_{30} = V_{31} = V_{34}$          | 101.14(13)<br>102.16(12)  |
| 112 - 011 - 012               | 102.20(10)<br>120.25(12) | 10 - 0.31 - 0.32                    | 102.10(12)                |
| C10 - C11 - C12               | 120.23(12)               | $C_{30} - C_{31} - C_{32}$          | 120.11(14)                |
| U14-U11-U12                   | 100./9(11)               | U34-U31-U32                         | 108.97 (12)               |

| C13—C12—N1     | 106.79 (12) | C33—C32—N4                | 106.55 (13) |
|----------------|-------------|---------------------------|-------------|
| C13—C12—C8     | 113.48 (11) | C33—C32—C28               | 115.10 (13) |
| N1—C12—C8      | 109.38 (10) | N4—C32—C28                | 109.66 (12) |
| C13—C12—C11    | 115.71 (11) | C33—C32—C31               | 114.93 (12) |
| N1-C12-C11     | 106.58 (10) | N4—C32—C31                | 105.72 (12) |
| C8—C12—C11     | 104.63 (11) | C28—C32—C31               | 104.48 (13) |
| O3—C13—C12     | 114.57 (12) | O7—C33—C32                | 114.88 (13) |
| O3—C13—H13A    | 108.6       | O7—C33—H33A               | 108.5       |
| C12—C13—H13A   | 108.6       | С32—С33—Н33А              | 108.5       |
| O3—C13—H13B    | 108.6       | O7—C33—H33B               | 108.5       |
| C12—C13—H13B   | 108.6       | С32—С33—Н33В              | 108.5       |
| H13A—C13—H13B  | 107.6       | H33A—C33—H33B             | 107.5       |
| O4—C14—N3      | 126.40 (13) | O8—C34—N5                 | 126.64 (16) |
| O4—C14—C11     | 125.96 (13) | O8—C34—C31                | 125.86 (15) |
| N3—C14—C11     | 107.60 (12) | N5—C34—C31                | 107.47 (15) |
| C20—C15—C16    | 121.56 (15) | N5—C35—C40                | 128.5 (2)   |
| C20—C15—N3     | 128.19 (14) | N5—C35—C36                | 109.73 (15) |
| C16—C15—N3     | 110.14 (12) | C40—C35—C36               | 121.7 (2)   |
| C17—C16—C15    | 119.84 (13) | C37—C36—C35               | 119.50 (17) |
| C17—C16—C11    | 130.98 (13) | C37—C36—C31               | 131.20 (17) |
| C15—C16—C11    | 108.58 (12) | C35—C36—C31               | 108.97 (15) |
| C16—C17—C18    | 118.78 (15) | C36—C37—C38               | 118.8 (2)   |
| С16—С17—Н17    | 120.6       | С36—С37—Н37               | 120.6       |
| C18—C17—H17    | 120.6       | С38—С37—Н37               | 120.6       |
| C19—C18—C17    | 120.92 (16) | C39—C38—C37               | 121.0 (2)   |
| C19—C18—H18    | 119.5       | C39—C38—H38               | 119.5       |
| C17—C18—H18    | 119.5       | С37—С38—Н38               | 119.5       |
| C18—C19—C20    | 121.19 (15) | C38—C39—C40               | 121.2 (2)   |
| С18—С19—Н19    | 119.4       | С38—С39—Н39               | 119.4       |
| С20—С19—Н19    | 119.4       | С40—С39—Н39               | 119.4       |
| C15—C20—C19    | 117.64 (15) | C39—C40—C35               | 117.7 (2)   |
| C15—C20—H20    | 121.2       | C39—C40—H40               | 121.2       |
| С19—С20—Н20    | 121.2       | C35—C40—H40               | 121.2       |
| 01—N1—02       | 123.13 (13) | 06—N4—O5                  | 123.20 (17) |
| 01 - N1 - C12  | 119.39 (12) | 06—N4—C32                 | 119.69 (16) |
| 02-N1-C12      | 117.43 (11) | 05—N4—C32                 | 117.05 (15) |
| C9-N2-C10      | 114.40 (13) | C34—N5—C35                | 112.54 (15) |
| C9—N2—C11      | 106.64 (11) | C34—N5—H5                 | 123.7       |
| C10 - N2 - C11 | 115.29 (12) | C35—N5—H5                 | 123.7       |
| C14 - N3 - C15 | 112.25 (12) | $C_{29} - N_{6} - C_{31}$ | 106.72 (12) |
| C14—N3—H3A     | 123.9       | $C_{29} = N_{6} = C_{30}$ | 114.73 (15) |
| C15 - N3 - H3A | 123.9       | $C_{31} - N_{6} - C_{30}$ | 115.07 (12) |
| C13—O3—H3B     | 109.5       | C33—O7—H7                 | 109.5       |
|                |             |                           | 10,10       |
| C6—C1—C2—C3    | -0.8 (3)    | C26—C21—C22—C23           | 1.7 (4)     |
| C1—C2—C3—C4    | 0.4 (3)     | C21—C22—C23—C24           | -1.0 (4)    |
| C2—C3—C4—C5    | 0.2 (3)     | C22—C23—C24—C25           | -1.4 (4)    |
| C3—C4—C5—C6    | -0.4 (3)    | C23—C24—C25—C26           | 3.0 (3)     |

| $C^2$ $C^4$ $C^5$ $C^9$             | 170.52(10)               | C                                   | 177.9(2)     |
|-------------------------------------|--------------------------|-------------------------------------|--------------|
| $C_{3} - C_{4} - C_{5} - C_{8}$     | -1/9.53(10)              | $C_{23} = C_{24} = C_{25} = C_{28}$ | -1/7.8(2)    |
| $C_2 - C_1 - C_6 - C_3$             | 0.0(3)                   | $C_{22} = C_{21} = C_{26} = C_{25}$ | 0.0(3)       |
|                                     | 1/8.36 (18)              | $C_{22} = C_{21} = C_{26} = C_{27}$ | 1/9.9 (2)    |
| C4—C5—C6—C1                         | 0.0 (2)                  | C24—C25—C26—C21                     | -2.2 (3)     |
| C8—C5—C6—C1                         | 179.15 (14)              | C28—C25—C26—C21                     | 178.53 (17)  |
| C4—C5—C6—C7                         | -177.67 (16)             | C24—C25—C26—C27                     | 177.82 (19)  |
| C8—C5—C6—C7                         | 1.5 (2)                  | C28—C25—C26—C27                     | -1.4 (3)     |
| C4—C5—C8—C9                         | -31.83 (19)              | C24—C25—C28—C29                     | -47.9 (2)    |
| C6—C5—C8—C9                         | 149.07 (14)              | C26—C25—C28—C29                     | 131.35 (17)  |
| C4—C5—C8—C12                        | 90.49 (18)               | C24—C25—C28—C32                     | 75.3 (2)     |
| C6—C5—C8—C12                        | -88.62 (16)              | C26—C25—C28—C32                     | -105.46 (18) |
| C5—C8—C9—N2                         | 156.71 (11)              | C25—C28—C29—N6                      | 159.94 (13)  |
| C12—C8—C9—N2                        | 28.50 (14)               | C32—C28—C29—N6                      | 29.97 (16)   |
| C5-C8-C12-C13                       | -5.69 (18)               | C25—C28—C32—C33                     | -7.8 (2)     |
| C9—C8—C12—C13                       | 122.55 (13)              | C29—C28—C32—C33                     | 121.12 (15)  |
| C5-C8-C12-N1                        | 113.43 (13)              | C25—C28—C32—N4                      | 112.27 (16)  |
| C9—C8—C12—N1                        | -118.33 (12)             | C29—C28—C32—N4                      | -118.79 (14) |
| C5—C8—C12—C11                       | -132.72(13)              | C25—C28—C32—C31                     | -134.81 (14) |
| C9—C8—C12—C11                       | -4.48(13)                | $C_{29}$ $C_{28}$ $C_{32}$ $C_{31}$ | -5.87 (16)   |
| N2-C11-C12-C13                      | -146.49(12)              | N6-C31-C32-C33                      | -147.02(13)  |
| $C_{16}$ $C_{11}$ $C_{12}$ $C_{13}$ | 90.22 (15)               | $C_{36} = C_{31} = C_{32} = C_{33}$ | 88 74 (17)   |
| $C_{14}$ $C_{11}$ $C_{12}$ $C_{13}$ | -25.90(16)               | $C_{34}$ $C_{31}$ $C_{32}$ $C_{33}$ | -27.07(18)   |
| $N_{2}$ $C_{11}$ $C_{12}$ $N_{1}$   | 94 96 (11)               | N6-C31-C32-N4                       | 95 78 (14)   |
| $C_{16}$ $C_{11}$ $C_{12}$ $N_1$    | -28.33(15)               | $C_{36}$ $C_{31}$ $C_{32}$ $N_{4}$  | -28.45(18)   |
| $C_{10} = C_{11} = C_{12} = N_1$    | -14444(11)               | $C_{30} = C_{31} = C_{32} = N_4$    | -144.27(13)  |
| $N_{2} = C_{11} = C_{12} = C_{13}$  | -20.86(12)               | $N_{6} C_{21} C_{22} C_{28}$        | -10.02(14)   |
| $N_2 - C_{11} - C_{12} - C_{8}$     | -20.80(13)               | 10-031-032-028                      | -19.93(14)   |
| C16-C11-C12-C8                      | -144.14(12)              | $C_{30} - C_{31} - C_{32} - C_{28}$ | -144.16(14)  |
| C14— $C11$ — $C12$ — $C8$           | 99.74 (12)<br>77.62 (15) | $C_{34} - C_{31} - C_{32} - C_{28}$ | 100.03 (14)  |
| NI-CI2-CI3-O3                       | //.63 (15)               | N4—C32—C33—O7                       | 81.97 (17)   |
| C8—C12—C13—O3                       | -161.78 (12)             | $C_{28} = C_{32} = C_{33} = 07$     | -156.24 (14) |
| C11—C12—C13—O3                      | -40.80 (18)              | C31—C32—C33—O7                      | -34.8 (2)    |
| N2—C11—C14—O4                       | 60.5 (2)                 | N6-C31-C34-O8                       | 62.1 (2)     |
| C16—C11—C14—O4                      | 179.52 (16)              | C36—C31—C34—O8                      | -178.23 (18) |
| C12—C11—C14—O4                      | -52.8 (2)                | C32—C31—C34—O8                      | -50.8 (2)    |
| N2-C11-C14-N3                       | -117.40 (14)             | N6-C31-C34-N5                       | -116.05 (16) |
| C16—C11—C14—N3                      | 1.64 (16)                | C36—C31—C34—N5                      | 3.58 (17)    |
| C12—C11—C14—N3                      | 129.34 (13)              | C32—C31—C34—N5                      | 131.05 (15)  |
| C20-C15-C16-C17                     | -3.4 (2)                 | N5-C35-C36-C37                      | 174.38 (16)  |
| N3-C15-C16-C17                      | 172.98 (14)              | C40—C35—C36—C37                     | -2.6 (3)     |
| C20-C15-C16-C11                     | -175.46 (15)             | N5-C35-C36-C31                      | 0.2 (2)      |
| N3-C15-C16-C11                      | 0.97 (18)                | C40—C35—C36—C31                     | -176.80 (17) |
| N2-C11-C16-C17                      | -51.3 (2)                | N6-C31-C36-C37                      | -54.8 (2)    |
| C14—C11—C16—C17                     | -172.36 (16)             | C34—C31—C36—C37                     | -175.49 (18) |
| C12—C11—C16—C17                     | 67.8 (2)                 | C32—C31—C36—C37                     | 64.7 (2)     |
| N2-C11-C16-C15                      | 119.53 (13)              | N6—C31—C36—C35                      | 118.41 (15)  |
| C14—C11—C16—C15                     | -1.54(15)                | C34—C31—C36—C35                     | -2.24(17)    |
| C12—C11—C16—C15                     | -121.41 (14)             | C32—C31—C36—C35                     | -122.05(15)  |
| C15-C16-C17-C18                     | 2.2.(2)                  | C35-C36-C37-C38                     | 2.8 (3)      |
|                                     | -·-· \-·                 |                                     | (-)          |

| C11—C16—C17—C18 | 172.19 (15)  | C31—C36—C37—C38 | 175.49 (18)  |
|-----------------|--------------|-----------------|--------------|
| C16—C17—C18—C19 | -0.2 (3)     | C36—C37—C38—C39 | -1.0 (3)     |
| C17—C18—C19—C20 | -0.8 (3)     | C37—C38—C39—C40 | -1.1 (4)     |
| C16—C15—C20—C19 | 2.4 (3)      | C38—C39—C40—C35 | 1.3 (3)      |
| N3—C15—C20—C19  | -173.28 (17) | N5-C35-C40-C39  | -175.85 (19) |
| C18—C19—C20—C15 | -0.3 (3)     | C36—C35—C40—C39 | 0.5 (3)      |
| C13—C12—N1—O1   | 159.88 (12)  | C33—C32—N4—O6   | 152.14 (16)  |
| C8—C12—N1—O1    | 36.70 (16)   | C28—C32—N4—O6   | 27.0 (2)     |
| C11—C12—N1—O1   | -75.88 (14)  | C31—C32—N4—O6   | -85.15 (18)  |
| C13—C12—N1—O2   | -22.68 (15)  | C33—C32—N4—O5   | -30.58 (19)  |
| C8—C12—N1—O2    | -145.86 (12) | C28—C32—N4—O5   | -155.76 (15) |
| C11—C12—N1—O2   | 101.55 (14)  | C31—C32—N4—O5   | 92.13 (17)   |
| C8—C9—N2—C10    | -173.13 (13) | O8—C34—N5—C35   | 178.02 (18)  |
| C8—C9—N2—C11    | -44.43 (14)  | C31—C34—N5—C35  | -3.8 (2)     |
| C16—C11—N2—C9   | 170.06 (12)  | C40—C35—N5—C34  | 179.13 (19)  |
| C14—C11—N2—C9   | -76.45 (14)  | C36—C35—N5—C34  | 2.4 (2)      |
| C12—C11—N2—C9   | 40.67 (14)   | C28-C29-N6-C31  | -45.54 (16)  |
| C16—C11—N2—C10  | -61.76 (16)  | C28-C29-N6-C30  | -174.26 (13) |
| C14—C11—N2—C10  | 51.73 (17)   | C36-C31-N6-C29  | 170.46 (14)  |
| C12-C11-N2-C10  | 168.84 (13)  | C34—C31—N6—C29  | -76.18 (16)  |
| O4—C14—N3—C15   | -179.06 (16) | C32—C31—N6—C29  | 40.80 (15)   |
| C11—C14—N3—C15  | -1.20 (18)   | C36-C31-N6-C30  | -61.02 (19)  |
| C20-C15-N3-C14  | 176.30 (18)  | C34—C31—N6—C30  | 52.34 (19)   |
| C16-C15-N3-C14  | 0.18 (19)    | C32—C31—N6—C30  | 169.33 (14)  |
|                 |              |                 |              |

Hydrogen-bond geometry (Å, °)

| D—H···A                              | <i>D</i> —Н | H···A | $D \cdots A$ | D—H···A |
|--------------------------------------|-------------|-------|--------------|---------|
| N3—H3 <i>A</i> ···O3 <sup>i</sup>    | 0.86        | 2.00  | 2.782 (2)    | 151     |
| O3—H3 <i>B</i> ···O7 <sup>ii</sup>   | 0.82        | 2.11  | 2.7769 (17)  | 139     |
| N5—H5····O8 <sup>iii</sup>           | 0.86        | 2.39  | 3.0064 (19)  | 129     |
| O7—H7···O4 <sup>iv</sup>             | 0.82        | 2.24  | 2.9356 (19)  | 142     |
| C8—H8···O1 <sup>v</sup>              | 0.98        | 2.40  | 3.164 (2)    | 135     |
| C33—H33 <i>A</i> ···O2 <sup>ii</sup> | 0.97        | 2.59  | 3.209 (2)    | 122     |
|                                      |             |       |              |         |

Symmetry codes: (i) -x+2, -y+2, -z+1; (ii) -x+1, -y+1, -z+1; (iii) -x+1, -y, -z+1; (iv) x-1, y-1, z; (v) -x+2, -y+1, -z+1.