

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N-(5-Chloro-2-methoxyphenyl)benzene-sulfonamide

Aziz-ur-Rehman,^a‡ Shahzaman,^a Mehmet Akkurt,^b* Muhammad Athar Abbasi^a and Islam Ullah Khan^a

^aDepartment of Chemistry, Government College University, Lahore 54000, Pakistan, and ^bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey

Correspondence e-mail: akkurt@erciyes.edu.tr

Received 12 October 2010; accepted 13 October 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.035; wR factor = 0.096; data-to-parameter ratio = 18.8.

In the title compound, $C_{13}H_{12}CINO_3S$, the dihedral angle between the two aromatic rings is 73.94 (9)°. An intramolecular C-H···O hydrogen bond occurs. In the crystal, intermolecular N-H···O hydrogen bonds connect the molecules to centrosymmetric dimers, forming an $R_2^2(8)$ ring motif. The packing is consolidated by C-H···O hydrogen bonds and weak π - π interactions [centroid-centroid distances = 3.81 (3) and 3.81 (3) Å].

Related literature

For the biological properties of sulfonamide derivatives, see: Berredjem *et al.* (2000); Lee & Lee (2002); Soledade *et al.* (2006); Xiao & Timberlake (2000). For related structures, see: Aziz-ur-Rehman *et al.* (2010*a,b*); Khan *et al.* (2010); Akkurt *et al.* (2010).

Experimental

Crystal data $C_{13}H_{12}CINO_3S$ $M_r = 297.76$

Triclinic, $P\overline{1}$ a = 8.2201 (2) Å

‡ Additional corresponding author, e-mail: azizryk@hotmail.com.

b = 8.9395(2) Å	Z = 2
c = 10.5544 (2) Å	Mo $K\alpha$ radiation
$\alpha = 77.206 (1)^{\circ}$	$\mu = 0.43 \text{ mm}^{-1}$
$\beta = 76.366 (1)^{\circ}$	T = 296 K
$\gamma = 66.408 (1)^{\circ}$	$0.24 \times 0.16 \times 0.08 \text{ mm}$
V = 683.65 (3) Å ³	
Data collection	
Bruker APEXII CCD	3333 independent reflections
diffractometer	2906 reflections with $I > 2\sigma(I)$
12007 measured reflections	$R_{\rm int} = 0.023$
Pofinament	
Kejinemeni	
$R[F^2 > 2\sigma(F^2)] = 0.035$	H atoms treated by a mixture of
$wR(F^2) = 0.096$	independent and constrained
S = 1.02	refinement
3333 reflections	$\Delta \rho_{\rm max} = 0.35 \text{ e} \text{ \AA}^{-3}$
177 parameters	$\Delta \rho_{\rm min} = -0.27 \text{ e } \text{\AA}^{-3}$
1 restraint	

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1 \cdots O1^{i}$	0.828 (16)	2.217 (16)	3.0096 (15)	160.2 (16)
$C4-H4\cdots O2^{n}$	0.93	2.55	3.368 (3)	147
C8−H8···O2	0.93	2.34	2.9491 (17)	123
$C13-H13B\cdots O2^{iii}$	0.96	2.48	3.362 (3)	153

Symmetry codes: (i) -x, -y + 1, -z + 2; (ii) x + 1, y, z; (iii) x, y + 1, z.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999) and *PLATON* (Spek, 2009).

The authors are grateful to the Higher Education Commission for providing financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5375).

References

- Akkurt, M., Çelik, Í., Cihan, G., Çapan, G. & Büyükgüngör, O. (2010). Acta Cryst. E66, 0974–0975.
- Aziz-ur-Rehman, Rafique, H., Akkurt, M., Dilber, N., Abbasi, M. A. & Khan, I. U. (2010a). Acta Cryst. E66, 01728.

Aziz-ur-Rehman, Sajjad, M. A., Akkurt, M., Sharif, S., Abbasi, M. A. & Khan, I. U. (2010b). *Acta Cryst.* E66, 01769.

Berredjem, M., Régainia, Z., Djahoudi, A., Aouf, N. E., Dewinter, G. & Montero, J. L. (2000). Phosphorus Sulfur Silicon Relat. Elem. 165, 249–264.

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Khan, I. U., Sharif, S., Akkurt, M., Sajjad, A. & Ahmad, J. (2010). *Acta Cryst.* E66, 0786.
- Lee, J. S. & Lee, C. H. (2002). Bull. Korean Chem. Soc. 23, 167-169.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Soledade, M., Pedras, C. & Jha, M. (2006). Bioorg. Med. Chem. 14, 4958–4979.
- Spek, A. L. (2009). Acta Cryst. D65, 148–155.Xiao, Z. & Timberlake, J. W. (2000). J. Heterocycl. Chem. 37, 773–777.

supporting information

Acta Cryst. (2010). E66, o2855 [https://doi.org/10.1107/S1600536810041206]

N-(5-Chloro-2-methoxyphenyl)benzenesulfonamide

Aziz-ur-Rehman, Shahzaman, Mehmet Akkurt, Muhammad Athar Abbasi and Islam Ullah Khan

S1. Comment

Sulfonamide is found in a number of synthetic as well as natural compounds. These molecules posses many biological activities *e.g.*, herbicidal, anti-malarial, anti-convulsant and anti- hypertensive (Soledade *et al.*, 2006; Xiao & Timberlake, 2000; Berredjem *et al.*, 2000; Lee & Lee, 2002). In the present paper, the structure of *N*-(5-chloro-2-methoxyphenyl) benzenesulfonamide has been determined as part of a research program involving the synthesis and biological evaluation of sulfur containing compounds.

In the title molecule (I), (Fig. 1), both sulfonamido-O atoms lie on the opposite side of the S-bound phenyl ring to the sulfonamido-N1 atom [the O1–S1–C1–C6, O2–S1–C1–C2 and N1–S1–C1–C2 torsion angles are -34.32 (13), 14.43 (13) and -101.83 (12) $^{\circ}$, respectively]. The dihedral angle formed between the phenyl (C1–C6) and benzene (C7–C12) rings in (I) is 73.94 (9) $^{\circ}$.

The molecules of (I) are dimerized due to the intermolecular N—H···O hydrogen bonding (Table 1, Fig. 2) producing a $R_2^2(8)$ ring motif.

In addition, there are C—H…O hydrogen bonds, as well as π - π interactions [Cg1…Cg1(1 - x, -y, 2 - z) = 3.8163 (11) Å and cg2…Cg2(-x, 1 - y, 1 - z) = 3.9472 (12) Å; where Cg1 and Cg2 are centroids of the phenyl and benzene rings (C1–C6 and C7–C12), respectively], between the aromatic rings of each dimer.

S2. Experimental

A mixture benzenesulfonyl chloride (10.0 mmol; 1.45 ml), 5-chloro-2-methoxy aniline (10.0 mmol; 1.47 g), aqueous sodium carbonate (10%; 20.0 ml) and water (25 ml) was stirred for one and half hour at room temperature. The crude mixture was washed with water and dried. The product was dissolved in methanol and recrystallized by slow evaporation of the solvent, to generate colourless crystal of N-(5-chloro-2-methoxyphenyl)benzenesulfonamide in 71% yield.

S3. Refinement

The amino H atom is located in a difference Fourier map and refined freely. The remaining H atoms were positioned geometrically (C—H = 0.93 and 0.96 Å) and allowed to ride on their parent atoms, with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

The title molecule drawn with displacement ellipsoids drawn at the 30% probability level.

Figure 2

View of the dimeric N-H···O interactions between two moleculs in the unit cell.

N-(5-chloro-2-methoxyphenyl)benzenesulfonamide

Crystal data

C₁₃H₁₂CINO₃S $M_r = 297.76$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 8.2201 (2) Å b = 8.9395 (2) Å c = 10.5544 (2) Å $\alpha = 77.206$ (1)° $\beta = 76.366$ (1)° $\gamma = 66.408$ (1)° V = 683.65 (3) Å³

Data collection

Bruker APEXII CCD diffractometer Radiation source: sealed tube Graphite monochromator φ and ω scans 12007 measured reflections 3333 independent reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.035$ $wR(F^2) = 0.096$ S = 1.02 Z = 2 F(000) = 308 $D_x = 1.446 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 6946 reflections $\theta = 2.5-28.2^{\circ}$ $\mu = 0.43 \text{ mm}^{-1}$ T = 296 K Prism, colourless $0.24 \times 0.16 \times 0.08 \text{ mm}$

2906 reflections with $I > 2\sigma(I)$ $R_{int} = 0.023$ $\theta_{max} = 28.3^\circ, \ \theta_{min} = 4.0^\circ$ $h = -10 \rightarrow 10$ $k = -11 \rightarrow 11$ $l = -14 \rightarrow 12$

3333 reflections177 parameters1 restraintPrimary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier	$w = 1/[\sigma^2(F_o^2) + (0.0504P)^2 + 0.1401P]$
map	where $P = (F_o^2 + 2F_c^2)/3$
Hydrogen site location: inferred from	$(\Delta/\sigma)_{\rm max} = 0.001$
neighbouring sites	$\Delta \rho_{\rm max} = 0.35 \text{ e} \text{ Å}^{-3}$
H atoms treated by a mixture of independent	$\Delta \rho_{\rm min} = -0.27 \text{ e} \text{ Å}^{-3}$
and constrained refinement	

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The observed criterion of $F^2 > \sigma(F^2)$ is used only for calculating -*R*-factor-obs *etc.* and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F. and *R*-factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cl1	0.29733 (8)	0.24190 (8)	0.34117 (5)	0.0934 (2)
S1	0.14406 (4)	0.27960 (4)	0.88801 (3)	0.0380 (1)
01	0.03295 (14)	0.31471 (13)	1.01239 (9)	0.0510 (3)
O2	0.13974 (14)	0.15335 (13)	0.82861 (10)	0.0506 (3)
O3	0.1709 (2)	0.71184 (16)	0.69335 (12)	0.0734 (5)
N1	0.08081 (16)	0.45288 (14)	0.78854 (10)	0.0429 (3)
C1	0.36916 (18)	0.23297 (16)	0.90100 (12)	0.0398 (4)
C2	0.5039 (2)	0.11582 (19)	0.83059 (15)	0.0521 (5)
C3	0.6805 (2)	0.0782 (2)	0.8436 (2)	0.0696 (6)
C4	0.7178 (3)	0.1563 (3)	0.9253 (2)	0.0767 (7)
C5	0.5824 (3)	0.2731 (3)	0.9938 (2)	0.0731 (7)
C6	0.4049 (2)	0.3136 (2)	0.98279 (16)	0.0557 (5)
C7	0.16189 (18)	0.47011 (17)	0.65422 (12)	0.0422 (4)
C8	0.1896 (2)	0.35789 (19)	0.57270 (13)	0.0505 (4)
C9	0.2635 (2)	0.3861 (2)	0.44138 (15)	0.0616 (5)
C10	0.3044 (3)	0.5227 (3)	0.39090 (16)	0.0756 (7)
C11	0.2737 (3)	0.6360 (3)	0.47153 (17)	0.0739 (7)
C12	0.2046 (2)	0.6098 (2)	0.60401 (14)	0.0541 (5)
C13	0.1961 (3)	0.8625 (3)	0.6504 (3)	0.0875 (9)
H1	0.058 (2)	0.5318 (19)	0.8273 (16)	0.052 (4)*
H2	0.47690	0.06350	0.77580	0.0630*
H3	0.77380	0.00000	0.79700	0.0830*
H4	0.83650	0.12960	0.93410	0.0920*
H5	0.61010	0.32540	1.04810	0.0880*
H6	0.31220	0.39270	1.02900	0.0670*
H8	0.15940	0.26520	0.60520	0.0600*
H10	0.35290	0.53940	0.30240	0.0910*
H11	0.29940	0.73070	0.43700	0.0890*
H13A	0.32050	0.84190	0.61440	0.1310*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supporting information

H13B	0.16150	0.92250	0.72360	0.1310*
H13C	0.12340	0.92620	0.58390	0.1310*

Atomic	displa	acement	parameters	(\mathring{A}^2)
111011110	anspit	accincia	parameters	(11)

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.1058 (4)	0.0954 (4)	0.0594 (3)	0.0032 (3)	-0.0179 (2)	-0.0448 (3)
S 1	0.0403 (2)	0.0368 (2)	0.0370 (2)	-0.0163 (1)	0.0011 (1)	-0.0095 (1)
01	0.0538 (6)	0.0510 (6)	0.0416 (5)	-0.0206 (5)	0.0098 (4)	-0.0100 (4)
O2	0.0566 (6)	0.0459 (5)	0.0577 (6)	-0.0253 (5)	-0.0063 (5)	-0.0146 (4)
O3	0.1093 (11)	0.0642 (8)	0.0596 (7)	-0.0505 (8)	0.0026 (7)	-0.0160 (6)
N1	0.0491 (6)	0.0385 (6)	0.0360 (5)	-0.0107 (5)	-0.0019 (4)	-0.0111 (4)
C1	0.0435 (7)	0.0381 (6)	0.0381 (6)	-0.0193 (5)	-0.0049 (5)	0.0003 (5)
C2	0.0465 (8)	0.0504 (8)	0.0515 (8)	-0.0145 (6)	-0.0008 (6)	-0.0058 (6)
C3	0.0437 (8)	0.0664 (11)	0.0793 (11)	-0.0144 (8)	0.0003 (8)	0.0052 (9)
C4	0.0524 (10)	0.0787 (13)	0.0975 (14)	-0.0378 (10)	-0.0255 (10)	0.0310 (11)
C5	0.0829 (13)	0.0731 (12)	0.0857 (13)	-0.0494 (11)	-0.0375 (11)	0.0098 (10)
C6	0.0643 (9)	0.0529 (8)	0.0591 (9)	-0.0286 (7)	-0.0153 (7)	-0.0068 (7)
C7	0.0419 (7)	0.0437 (7)	0.0351 (6)	-0.0092 (5)	-0.0058 (5)	-0.0073 (5)
C8	0.0535 (8)	0.0491 (8)	0.0420 (7)	-0.0073 (6)	-0.0100 (6)	-0.0131 (6)
C9	0.0611 (9)	0.0675 (10)	0.0397 (7)	0.0007 (8)	-0.0109 (6)	-0.0189 (7)
C10	0.0797 (12)	0.0875 (14)	0.0370 (7)	-0.0161 (10)	0.0030 (7)	-0.0062 (8)
C11	0.0871 (13)	0.0748 (12)	0.0503 (9)	-0.0341 (10)	0.0042 (8)	0.0014 (8)
C12	0.0602 (9)	0.0554 (9)	0.0442 (7)	-0.0219 (7)	-0.0022 (6)	-0.0080 (6)
C13	0.1028 (17)	0.0654 (12)	0.1064 (17)	-0.0453 (12)	-0.0112 (13)	-0.0149 (11)

Geometric parameters (Å, °)

Cl1—C9	1.7424 (17)	С7—С8	1.380 (2)
S1—O1	1.4296 (10)	C8—C9	1.387 (2)
S1—O2	1.4227 (12)	C9—C10	1.358 (3)
S1—N1	1.6323 (12)	C10—C11	1.375 (3)
S1—C1	1.7588 (16)	C11—C12	1.386 (2)
O3—C12	1.361 (2)	C2—H2	0.9300
O3—C13	1.404 (3)	С3—Н3	0.9300
N1—C7	1.4205 (16)	C4—H4	0.9300
N1—H1	0.828 (16)	С5—Н5	0.9300
C1—C2	1.380 (2)	С6—Н6	0.9300
C1—C6	1.384 (2)	C8—H8	0.9300
C2—C3	1.386 (3)	C10—H10	0.9300
C3—C4	1.374 (3)	C11—H11	0.9300
C4—C5	1.370 (3)	C13—H13A	0.9600
C5—C6	1.383 (3)	C13—H13B	0.9600
C7—C12	1.391 (2)	С13—Н13С	0.9600
Cl1···C6 ⁱ	3.6473 (17)	C7····Cl1 ⁱⁱⁱ	3.6152 (17)
Cl1···C2 ⁱⁱ	3.6292 (17)	C7…C9 ⁱⁱⁱ	3.520 (2)
Cl1…C7 ⁱⁱⁱ	3.6152 (17)	C8····C8 ⁱⁱⁱ	3.566 (2)

Cl1···H2 ⁱⁱ	2.9600	C8…O2	2.9491 (17)
Cl1···H13A ^{iv}	3.0500	C8…C9 ⁱⁱⁱ	3.524 (2)
S1…H8	2.9900	C9····C8 ⁱⁱⁱ	3.524 (2)
O1…N1 ^v	3.0096 (15)	C9…C7 ⁱⁱⁱ	3.520 (2)
01…01 ^v	3.0957 (15)	C13…O2 ^{xi}	3.362 (3)
O1…O3 ^v	3.1699 (16)	C3…H11 ^{iv}	3.0800
02…C13 ^{vi}	3.362 (3)	С11…Н13А	2.8100
O2…C4 ^{vii}	3.368 (3)	C11H13C	2.7900
02	2 9491 (17)	C13…H11	2.5800
$02 \cdots C4^{\text{viii}}$	3382(2)	H1O3	2.2000 2 241 (17)
$02^{-}04^{-}$	3.562(2)	$H1 \cdots O1^{v}$	2.241(17) 2.217(16)
03N1	2.6284(10)	H2O2	2.217 (10)
01	2.0204 (19)	$H_{2} = 0.2$	2.5100
$O_1 \dots H_1$	2.7000		2.9000
	2.217 (10)	H402	2.3300
02 H4/ii	2.4800		2.7000
02H4***	2.5500	H851	2.9900
02H8	2.3400	H8…O2	2.3400
O2…H2	2.5100	H11····C13	2.5800
O3…H1	2.241 (17)	H11…H13A	2.3700
N1…O3	2.6284 (19)	H11…H13C	2.3800
N1…O1 ^v	3.0096 (15)	$H11\cdots C3^{iv}$	3.0800
C1···C3 ^{viii}	3.499 (2)	H13A…C11	2.8100
C2…Cl1 ⁱⁱ	3.6292 (17)	H13A…H11	2.3700
C3····C1 ^{viii}	3.499 (2)	H13A…Cl1 ^{iv}	3.0500
C4…O2 ^{ix}	3.368 (3)	H13B…O2 ^{xi}	2.4800
C4…O2 ^{viii}	3.382 (2)	H13C…C11	2.7900
C6…Cl1 ^x	3.6473 (17)	H13C…H11	2.3800
O1—S1—O2	118.95 (7)	C10—C11—C12	120.3 (2)
O1—S1—N1	105.06 (6)	C7—C12—C11	119.51 (16)
O1—S1—C1	109.15 (7)	O3—C12—C7	114.94 (13)
O2—S1—N1	108.21 (6)	O3—C12—C11	125.55 (17)
02—S1—C1	107.73 (7)	C1—C2—H2	121.00
N1 - S1 - C1	107 19 (7)	C3—C2—H2	121.00
C12 - C13	11930(17)	C2-C3-H3	120.00
S1N1C7	12257(10)	C4-C3-H3	120.00
C7—N1—H1	115.2(11)	$C_3 - C_4 - H_4$	120.00
S1 N1 H1	110.2(11)	$C_5 = C_4 = H_4$	120.00
$S_1 = C_1 = C_6$	110.4 (11)	$C_3 = C_4 = H_5$	120.00
S1 - C1 - C0	110.03(11) 110.09(12)	C_{+}	120.00
SI = CI = CZ	110.00(12)		120.00
$C_2 = C_1 = C_0$	122.27 (16)		121.00
C1 = C2 = C3	118.25 (15)	C5—C6—H6	121.00
$C_2 = C_3 = C_4$	120.09 (18)	C/C8H8	121.00
C3—C4—C5	120.9 (2)	С9—С8—Н8	121.00
C4—C5—C6	120.5 (2)	С9—С10—Н10	120.00
C1—C6—C5	118.07 (17)	C11—C10—H10	120.00
N1—C7—C12	117.82 (12)	C10—C11—H11	120.00
N1—C7—C8	121.96 (13)	C12—C11—H11	120.00

C8—C7—C12	120.14 (12)	O3—C13—H13A	109.00
C7—C8—C9	118.69 (15)	O3—C13—H13B	109.00
Cl1—C9—C8	117.57 (13)	O3—C13—H13C	109.00
C8—C9—C10	121.73 (16)	H13A—C13—H13B	109.00
Cl1—C9—C10	120.68 (13)	H13A—C13—H13C	109.00
C9—C10—C11	119.57 (17)	H13B-C13-H13C	109.00
O1—S1—N1—C7	179.00 (12)	C1—C2—C3—C4	0.2 (3)
O2—S1—N1—C7	-52.96 (14)	C2—C3—C4—C5	-0.7 (3)
C1—S1—N1—C7	62.98 (14)	C3—C4—C5—C6	0.6 (3)
O1—S1—C1—C2	144.89 (11)	C4—C5—C6—C1	0.0 (3)
O2—S1—C1—C2	14.43 (13)	C12—C7—C8—C9	1.2 (2)
N1—S1—C1—C2	-101.83 (12)	N1—C7—C12—O3	3.1 (2)
O1—S1—C1—C6	-34.32 (13)	C8—C7—C12—O3	179.75 (16)
O2—S1—C1—C6	-164.78 (11)	C8—C7—C12—C11	0.5 (3)
N1—S1—C1—C6	78.96 (12)	N1-C7-C12-C11	-176.09 (18)
C13—O3—C12—C7	-175.04 (19)	N1—C7—C8—C9	177.65 (15)
C13—O3—C12—C11	4.1 (3)	C7—C8—C9—C10	-1.8 (3)
S1—N1—C7—C12	-135.26 (14)	C7—C8—C9—Cl1	179.83 (13)
S1—N1—C7—C8	48.2 (2)	C8—C9—C10—C11	0.6 (3)
C2-C1-C6-C5	-0.4 (2)	Cl1—C9—C10—C11	178.93 (19)
C6—C1—C2—C3	0.3 (2)	C9—C10—C11—C12	1.2 (4)
S1—C1—C2—C3	-178.87 (12)	C10-C11-C12-C7	-1.7 (3)
S1—C1—C6—C5	178.76 (14)	C10-C11-C12-O3	179.1 (2)

Symmetry codes: (i) x, y, z-1; (ii) -x+1, -y, -z+1; (iii) -x, -y+1, -z+1; (iv) -x+1, -y+1, -z+1; (v) -x, -y+1, -z+2; (vi) x, y-1, z; (vii) x-1, y, z; (viii) -x+1, -y, -z+2; (ix) x+1, y, z; (vi) x, y, z+1; (xi) x, y+1, z.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
N1—H1…O1 ^v	0.828 (16)	2.217 (16)	3.0096 (15)	160.2 (16)
C4—H4···O2 ^{ix}	0.93	2.55	3.368 (3)	147
С8—Н8…О2	0.93	2.34	2.9491 (17)	123
C13—H13 <i>B</i> ····O2 ^{xi}	0.96	2.48	3.362 (3)	153

Symmetry codes: (v) -x, -y+1, -z+2; (ix) x+1, y, z; (xi) x, y+1, z.