

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

$[1R-(1a,2a,4a,5\beta,6a,7a)]-4$ -Benzoyloxymethyl-5,6-dihydroxy-3,8-dioxatricyclo[5.1.0.0^{2,4}]octan-5-yl acetate (3-deacetylcrotepoxide) from Kaempferia rotunda Val.

Hasnah Mohd Sirat,^a Yau Sui Feng,^a Khalijah Awang^b and Seik Weng Ng^b*

^aDepartment of Chemistry, Universiti Teknologi Malaysia, 81310 Skudai, Malaysia, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 20 October 2010; accepted 20 October 2010

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.004 Å; R factor = 0.038; wR factor = 0.117; data-to-parameter ratio = 9.4.

The title compound, C16H16O7, isolated from Kaempferia rotunda rhizomes, features a six-membered cyclohexane ring that adopts a twisted-boat conformation owing to the presence of two adjacent epoxide attachments that lock in four of the six axial positions. The CH₃CO₂- and HO- substituents occupy equatorial positions. However, the bond angles at the ring carbon connected to the C6H5CO2CH2- substituent deviate signifcantly from the idealized tetrahedral angles as the carbon atom is part of an epoxide ring. In the crystal, the molecules are linked into chains by O-H···O hydrogen bonds.

Related literature

For the isolation of the compound from Kaempferia rotunda, see: Pancharoen et al. (1996).

Experimental

Crystal data

$\begin{array}{l} C_{16}H_{16}O_7 \\ M_r = 320.29 \\ \text{Orthorhombic, } P2_12_12_1 \\ a = 5.7451 \ (7) \ \text{\AA} \\ b = 7.1746 \ (9) \ \text{\AA} \\ c = 35.708 \ (5) \ \text{\AA} \end{array}$	$V = 1471.9 (3) \text{ Å}^{3}$ Z = 4 Mo K\alpha radiation $\mu = 0.12 \text{ mm}^{-1}$ T = 100 K $0.35 \times 0.05 \times 0.05 \text{ mm}$
Data collection	
Bruker SMART APEX diffractometer 14228 measured reflections	2011 independent reflections 1730 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.073$
Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.117$ S = 1.12 2011 reflections 213 parameters 1 restraint	H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{\text{max}} = 0.37 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\text{min}} = -0.33 \text{ e} \text{ Å}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

	5 H			
$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots \mathbf{A}$
$O5-H5\cdots O4^{i}$	0.84 (3)	2.05 (3)	2.887 (3)	172 (4)
Symmetry code: (i) –	$x + 1$ $y + \frac{1}{2} - 7$	+ 3		

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

We thank the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5386).

References

- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
- Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Pancharoen, O., Tuntiwachwuttikul, P. & Taylor, W. C. (1996). Phytochemistry, 43, 305-308.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2010). E66, o2945 [https://doi.org/10.1107/S1600536810042686]

 $[1R-(1\alpha,2\alpha,4\alpha,5\beta,6\alpha,7\alpha)]$ -4-Benzoyloxymethyl-5,6-dihydroxy-3,8-dioxatricyclo-[5.1.0.0^{2,4}]octan-5-yl acetate (3-deacetylcrotepoxide) from *Kaempferia rotunda* Val.

Hasnah Mohd Sirat, Yau Sui Feng, Khalijah Awang and Seik Weng Ng

S1. Comment

Kaempferia rotunda is one of the four Malaysian *Kaempferia* of the Zingiberaceae family; among the constitutents isolated is 3-deacetylcrotepoxide (Scheme I), which was first reported by Pancharoen *et al.* (1996). 3-Deacetyl-crotepoxide (Scheme I) features a six-membered cyclohexane ring that adopts a twisted boat conformation owing to the presence of two adjacent epoxide attachements that tie up four of the six axial positions. The CH₃CO₂– and HO–substituents occupy regular equatorial positions as each is connected to a methine carbon atom (Fig. 1). However, the bond angles at the ring carbon connected to the C₆H₅CO₂CH₂– substituent deviate signifcantly from the idealized tetrahedral angles as the carbon atom is part of an epoxide ring [112.4 (2), 117.9 (2), 120.3 (3) °].

S2. Experimental

Kaempferia rotunda rhizomes were purchased from a market in Kempas, Johor. The rhizomes were dried and then grounded. The grounded rhizomes were extracted with *n*-hexane (4.5 *L*), ethyl acetate (4.5 *L*) and methanol (4.5 *L*) in a soxhlet extractor for 16 h. The extracts were concentrated to give a dark brown semi-solid from the n-hexane extract (2.32 g), a dark brown oil from the ethyl acetate extract (6.80 g) and a dark brown viscous liquid from the methanol extract (15.27 g). The ethyl acetate extract (6.80 g) was fractionated by VLC (260 g, column size: 10 x 12 cm) by using petroleum ether, ether and ethyl acetate to afford four fractions, (0.02 g, 0.15 g, 2.70 g and 2.50 g. Evaporation of the solvent of the third fraction yielded 3-deacetylcrotepoxide (0.145 g, 2.13%) as colorless crystals.

The absolute configuration was assumed from that obtained from spectroscopic measurements (Pancharoen *et al.*, 1996).

S3. Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95–0.99 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2-15U(C).

The hydroxy H-atom was located in a difference Fourier map, and was refined isotropically with the O–H distance restrained to 0.84 ± 0.01 Å.

1374 Friedel pairs were merged.

Anisotropic displacement ellipsoid plot (Barbour, 2001) of $C_{16}H_{16}O_7$ at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

[1*R*-(1*α*,2*α*,4*α*,5*β*,6*α*,7*α*)]-4-Benzoyloxymethyl-5,6-dihydroxy- 3,8-dioxatricyclo[5.1.0.0^{2,4}]octan-5-yl acetate

Crystal data

-	
$C_{16}H_{16}O_7$	F(000) = 672
$M_r = 320.29$	$D_{\rm x} = 1.445 {\rm Mg} {\rm m}^{-3}$
Orthorhombic, $P2_12_12_1$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: P 2ac 2ab	Cell parameters from 1788 reflections
a = 5.7451 (7) Å	$\theta = 3.1 - 20.0^{\circ}$
b = 7.1746 (9) Å	$\mu = 0.12 \text{ mm}^{-1}$
c = 35.708 (5) Å	T = 100 K
V = 1471.9 (3) Å ³	Prism, colorless
Z = 4	$0.35 \times 0.05 \times 0.05$ mm
Data collection	
Data conection	

Bruker SMART APEX	1730 reflections with $I > 2\sigma(I)$
diffractometer	$R_{\rm int} = 0.073$
Radiation source: fine-focus sealed tube	$\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 1.1^{\circ}$
Graphite monochromator	$h = -7 \rightarrow 7$
ωscans	$k = -9 \longrightarrow 9$
14228 measured reflections	$l = -46 \rightarrow 46$
2011 independent reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.038$	Hydrogen site location: inferred from
$wR(F^2) = 0.117$	neighbouring sites
S = 1.12	H atoms treated by a mixture of independent
2011 reflections	and constrained refinement
213 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0674P)^2]$
1 restraint	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.001$
direct methods	$\Delta \rho_{\rm max} = 0.37 \text{ e} \text{ Å}^{-3}$
	$\Delta ho_{\min} = -0.33 \text{ e} \text{\AA}^{-3}$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.4671 (3)	0.4022 (3)	0.89359 (5)	0.0161 (4)	
02	0.1026 (4)	0.3085 (3)	0.88101 (5)	0.0237 (5)	
O3	0.5062 (3)	0.3882 (3)	0.78913 (5)	0.0166 (4)	
O4	0.1819 (4)	0.5944 (3)	0.74537 (5)	0.0204 (5)	
05	0.4387 (4)	0.9627 (3)	0.80058 (6)	0.0220 (5)	
Н5	0.541 (5)	0.999 (5)	0.7854 (8)	0.032 (10)*	
O6	0.6886 (3)	0.7118 (3)	0.84539 (5)	0.0164 (4)	
07	0.5199 (4)	0.8762 (3)	0.89191 (6)	0.0251 (5)	
C1	0.1872 (5)	0.4312 (4)	0.94156 (7)	0.0152 (6)	
C2	0.3442 (5)	0.5291 (4)	0.96376 (8)	0.0177 (6)	
H2	0.4890	0.5684	0.9536	0.021*	
C3	0.2893 (6)	0.5693 (4)	1.00069 (8)	0.0208 (6)	
H3	0.3963	0.6364	1.0158	0.025*	
C4	0.0783 (6)	0.5115 (4)	1.01552 (8)	0.0207 (6)	
H4	0.0423	0.5364	1.0410	0.025*	
C5	-0.0805 (5)	0.4172 (4)	0.99317 (8)	0.0203 (6)	
H5A	-0.2256	0.3789	1.0034	0.024*	
C6	-0.0289 (5)	0.3787 (4)	0.95618 (8)	0.0183 (6)	
H6	-0.1395	0.3169	0.9408	0.022*	
C7	0.2420 (5)	0.3749 (4)	0.90243 (7)	0.0163 (6)	
C8	0.5387 (5)	0.3349 (4)	0.85715 (7)	0.0162 (6)	
H8A	0.4820	0.2058	0.8537	0.019*	
H8B	0.7108	0.3329	0.8558	0.019*	
C9	0.4444 (5)	0.4570 (4)	0.82602 (7)	0.0143 (6)	
C10	0.2631 (5)	0.3857 (4)	0.80053 (7)	0.0167 (6)	
H10	0.1942	0.2615	0.8067	0.020*	
C11	0.1072 (5)	0.5236 (4)	0.78182 (7)	0.0177 (6)	
H11	-0.0640	0.5067	0.7856	0.021*	
C12	0.1917 (5)	0.7166 (4)	0.77788 (7)	0.0173 (6)	
H12	0.0699	0.8160	0.7790	0.021*	
C13	0.4278 (6)	0.7684 (4)	0.79357 (7)	0.0170 (6)	
H13	0.5530	0.7316	0.7756	0.020*	
C14	0.4611 (5)	0.6656 (4)	0.83081 (7)	0.0141 (6)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

supporting information

H14	0.3394	0.7078	0.8490	0.017*
C15	0.6928 (6)	0.8232 (4)	0.87612 (7)	0.0183 (6)
C16	0.9378 (6)	0.8664 (5)	0.88744 (9)	0.0274 (7)
H16A	0.9366	0.9530	0.9087	0.041*
H16B	1.0202	0.9235	0.8663	0.041*
H16C	1.0169	0.7510	0.8947	0.041*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
01	0.0167 (10)	0.0203 (11)	0.0112 (9)	-0.0012 (9)	0.0016 (8)	0.0001 (8)
02	0.0184 (11)	0.0360 (13)	0.0167 (10)	-0.0048 (10)	-0.0022 (9)	-0.0016 (9)
O3	0.0193 (10)	0.0184 (10)	0.0120 (9)	0.0009 (9)	0.0021 (7)	-0.0031 (8)
O4	0.0252 (11)	0.0239 (11)	0.0122 (9)	-0.0022 (10)	-0.0031 (8)	0.0016 (8)
05	0.0331 (13)	0.0125 (10)	0.0202 (10)	-0.0010 (10)	0.0035 (10)	0.0003 (8)
06	0.0171 (10)	0.0177 (10)	0.0146 (9)	-0.0014 (9)	0.0000 (8)	-0.0013 (8)
O7	0.0250 (12)	0.0321 (13)	0.0182 (10)	0.0011 (11)	0.0004 (9)	-0.0079 (9)
C1	0.0159 (13)	0.0173 (14)	0.0124 (12)	0.0034 (12)	0.0009 (11)	0.0031 (10)
C2	0.0170 (14)	0.0161 (14)	0.0201 (13)	-0.0001 (12)	0.0029 (11)	0.0032 (11)
C3	0.0270 (16)	0.0167 (14)	0.0189 (14)	0.0011 (13)	-0.0008 (12)	-0.0014 (11)
C4	0.0282 (17)	0.0182 (15)	0.0158 (13)	0.0065 (13)	0.0048 (13)	0.0011 (11)
C5	0.0178 (15)	0.0201 (16)	0.0229 (15)	0.0016 (12)	0.0029 (12)	0.0044 (11)
C6	0.0152 (14)	0.0208 (14)	0.0190 (14)	0.0000 (13)	-0.0029 (11)	0.0042 (12)
C7	0.0168 (14)	0.0166 (14)	0.0155 (13)	-0.0006 (12)	-0.0017 (11)	0.0038 (11)
C8	0.0170 (14)	0.0183 (14)	0.0132 (12)	0.0021 (12)	0.0000 (11)	0.0006 (10)
C9	0.0160 (13)	0.0176 (14)	0.0094 (12)	0.0012 (12)	0.0015 (10)	-0.0011 (10)
C10	0.0178 (14)	0.0186 (14)	0.0137 (12)	-0.0004 (12)	0.0004 (11)	-0.0015 (11)
C11	0.0171 (14)	0.0237 (15)	0.0122 (12)	-0.0013 (12)	-0.0012 (11)	0.0001 (11)
C12	0.0207 (14)	0.0203 (14)	0.0110 (12)	0.0057 (13)	-0.0010 (11)	0.0009 (11)
C13	0.0232 (15)	0.0144 (14)	0.0133 (12)	-0.0008 (12)	-0.0003 (12)	-0.0007 (10)
C14	0.0131 (13)	0.0173 (14)	0.0120 (12)	0.0001 (11)	0.0017 (10)	-0.0005 (10)
C15	0.0236 (15)	0.0173 (15)	0.0141 (13)	0.0008 (13)	-0.0023 (12)	-0.0007 (11)
C16	0.0241 (16)	0.0281 (17)	0.0300 (16)	-0.0003 (15)	-0.0067 (14)	-0.0071 (14)

Geometric parameters (Å, °)

O1—C7	1.345 (3)	C5—C6	1.382 (4)
O1—C8	1.448 (3)	С5—Н5А	0.9500
O2—C7	1.206 (3)	С6—Н6	0.9500
О3—С9	1.451 (3)	C8—C9	1.515 (4)
O3—C10	1.455 (3)	C8—H8A	0.9900
O4—C12	1.455 (3)	C8—H8B	0.9900
O4—C11	1.462 (3)	C9—C10	1.475 (4)
O5—C13	1.418 (3)	C9—C14	1.509 (4)
O5—H5	0.84 (3)	C10—C11	1.492 (4)
O6—C15	1.358 (3)	C10—H10	1.0000
O6—C14	1.445 (3)	C11—C12	1.474 (4)
O7—C15	1.204 (4)	C11—H11	1.0000

supporting information

C1—C2	1.391 (4)	C12—C13	1.514 (4)
C1—C6	1.398 (4)	C12—H12	1.0000
C1 $C7$	1.488(4)	C13 C14	1 532 (4)
$C_1 = C_1$	1.400(4)		1.0000
C2—C3	1.386 (4)	C13—H13	1.0000
C2—H2	0.9500	C14—H14	1.0000
C3—C4	1.387 (4)	C15—C16	1.497 (4)
С3—Н3	0.9500	C16—H16A	0.9800
C4—C5	1.388 (4)	C16—H16B	0.9800
C4—H4	0.9500	C16—H16C	0.9800
	0.9500		0.9000
C7 O1 C9	115 9 (2)	02 C10 C11	116.2(2)
C = 0 = 0	(1.00 (17)		110.5 (2)
C9—O3—C10	61.00 (17)	C9—C10—C11	118.1 (3)
C12—O4—C11	60.70 (18)	O3—C10—H10	116.9
С13—О5—Н5	103 (3)	C9—C10—H10	116.9
C15—O6—C14	116.2 (2)	C11—C10—H10	116.9
C2—C1—C6	119.9 (3)	O4—C11—C12	59.43 (17)
$C_{2}-C_{1}-C_{7}$	1223(3)	04-C11-C10	1169(2)
$C_{1} = C_{1} = C_{1}$	122.3(3)		110.9(2)
	11/./ (3)		117.9(3)
C3—C2—C1	120.0 (3)	04—C11—H11	116.7
С3—С2—Н2	120.0	C12—C11—H11	116.7
C1—C2—H2	120.0	C10-C11-H11	116.7
C2—C3—C4	120.0 (3)	O4—C12—C11	59.86 (18)
С2—С3—Н3	120.0	O4—C12—C13	118.5 (2)
C4_C3_H3	120.0	C_{11} C_{12} C_{13}	1193(2)
C_{4}	120.0	$C_{11} = C_{12} = C_{13}$	119.5 (2)
$C_3 - C_4 - C_5$	120.1 (3)	04—C12—H12	115.9
С3—С4—Н4	120.0	C11—C12—H12	115.9
C5—C4—H4	120.0	C13—C12—H12	115.9
C6—C5—C4	120.4 (3)	O5—C13—C12	110.3 (3)
С6—С5—Н5А	119.8	O5-C13-C14	108.3 (2)
С4—С5—Н5А	119.8	C12—C13—C14	108.3 (2)
C5-C6-C1	1196(3)	O5-C13-H13	110.0
$C_5 C_6 H_6$	120.2	C_{12} C_{13} H_{13}	110.0
C_{3}	120.2	C_{12} $-C_{13}$ $-H_{13}$	110.0
	120.2	C14—C13—H13	110.0
O2—C7—O1	123.2 (3)	O6—C14—C9	109.0 (2)
O2—C7—C1	124.2 (3)	O6—C14—C13	108.4 (2)
O1—C7—C1	112.6 (2)	C9—C14—C13	111.8 (2)
O1—C8—C9	111.4 (2)	O6-C14-H14	109.2
O1—C8—H8A	109.3	С9—С14—Н14	109.2
С9—С8—Н8А	109.3	C13—C14—H14	109.2
01—C8—H8B	109.3	07	123.3(3)
$C_0 C_2 H^{0}$	109.3	07 C15 C16	125.5(3)
	109.3	0/C15C10	123.7(3)
H8A—C8—H8B	108.0	06-015-016	110.9 (3)
O3—C9—C10	59.64 (16)	C15—C16—H16A	109.5
O3—C9—C14	115.2 (2)	C15—C16—H16B	109.5
C10—C9—C14	117.3 (3)	H16A—C16—H16B	109.5
O3—C9—C8	112.4 (2)	C15—C16—H16C	109.5
С10—С9—С8	120.3 (3)	H16A—C16—H16C	109.5
C14-C9-C8	1179(2)	H16B-C16-H16C	109.5
	···/ (4)		107.5

O3—C10—C9	59.37 (17)		
	2.1.(1)		
C6—C1—C2—C3	2.1 (4)	03	23.0 (4)
C7—C1—C2—C3	-176.5 (3)	C9—C10—C11—O4	90.6 (3)
C1—C2—C3—C4	0.2 (4)	O3—C10—C11—C12	-44.9 (3)
C2—C3—C4—C5	-1.5 (4)	C9—C10—C11—C12	22.7 (4)
C3—C4—C5—C6	0.6 (4)	C11—O4—C12—C13	109.2 (3)
C4—C5—C6—C1	1.6 (4)	C10-C11-C12-O4	106.4 (3)
C2-C1-C6-C5	-2.9 (4)	O4—C11—C12—C13	-107.9 (3)
C7—C1—C6—C5	175.7 (3)	C10-C11-C12-C13	-1.5 (4)
C8—O1—C7—O2	-4.1 (4)	O4—C12—C13—O5	133.7 (2)
C8—O1—C7—C1	174.5 (2)	C11—C12—C13—O5	-156.8 (2)
C2-C1-C7-O2	-171.5 (3)	O4—C12—C13—C14	-107.9 (3)
C6—C1—C7—O2	9.9 (4)	C11—C12—C13—C14	-38.4 (3)
C2-C1-C7-O1	9.9 (4)	C15—O6—C14—C9	-128.9 (2)
C6-C1-C7-O1	-168.7 (2)	C15—O6—C14—C13	109.2 (2)
C7—O1—C8—C9	72.9 (3)	O3—C9—C14—O6	-93.0 (3)
C10-O3-C9-C14	-108.2 (3)	C10-C9-C14-O6	-160.3 (2)
C10—O3—C9—C8	113.0 (3)	C8—C9—C14—O6	43.4 (3)
O1—C8—C9—O3	-177.7 (2)	O3—C9—C14—C13	26.7 (4)
O1-C8-C9-C10	-110.8 (3)	C10-C9-C14-C13	-40.6 (4)
O1-C8-C9-C14	44.7 (4)	C8—C9—C14—C13	163.2 (2)
C9-O3-C10-C11	108.5 (3)	O5-C13-C14-O6	-61.7 (3)
C14—C9—C10—O3	104.6 (3)	C12—C13—C14—O6	178.7 (2)
C8—C9—C10—O3	-99.8 (3)	O5-C13-C14-C9	178.2 (3)
O3—C9—C10—C11	-105.5 (3)	C12—C13—C14—C9	58.6 (3)
C14—C9—C10—C11	-0.9 (4)	C14—O6—C15—O7	3.2 (4)
C8—C9—C10—C11	154.7 (3)	C14—O6—C15—C16	-177.8 (2)
C12—O4—C11—C10	-108.0 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H…A
O5—H5…O4 ⁱ	0.84 (3)	2.05 (3)	2.887 (3)	172 (4)

Symmetry code: (i) -x+1, y+1/2, -z+3/2.