## organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

## 3-Acetyl-5-methyl-1-(4-methylphenyl)-1H-pyrazole-4-carboxamide

### Hatem A. Abdel-Aziz,<sup>a</sup> Ahmed Bari<sup>a</sup> and Seik Weng Ng<sup>b\*</sup>

<sup>a</sup>Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, and <sup>b</sup>Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 26 October 2010; accepted 27 October 2010

Key indicators: single-crystal X-ray study; T = 100 K; mean  $\sigma$ (C–C) = 0.003 Å; disorder in main residue; R factor = 0.050; wR factor = 0.152; data-to-parameter ratio = 12.5.

In the title compound,  $C_{14}H_{15}N_3O_2$ , the phenylene ring is disordered over two orientations. As a result, the almost planar pyrazole ring (r.m.s. deviation = 0.004 Å) forms dihedral angles of 59.8 (1) and  $-61.9(1)^{\circ}$  with the two orientations of the phenylene ring. The dihedral angle between the two orientations is  $59.2 (1)^{\circ}$ . In the crystal, inversion dimers lined by pairs of  $N-H \cdots O$  hydrogen bonds occur; there is also an intramolecular N-H···O bond.

#### **Related literature**

For the synthesis of the title compound, see: Ibrahim et al. (1992).



### **Experimental**

#### Crystal data

α β

**-** 11 - 4

| $C_{14}H_{15}N_3O_2$             | $\gamma = 100.072 \ (2)^{\circ}$ |
|----------------------------------|----------------------------------|
| $M_r = 257.29$                   | V = 631.39 (13) Å <sup>3</sup>   |
| Triclinic, P1                    | Z = 2                            |
| a = 5.0521 (6) Å                 | Mo $K\alpha$ radiation           |
| b = 10.4068 (13)  Å              | $\mu = 0.09 \text{ mm}^{-1}$     |
| c = 12.6558 (16)  Å              | T = 100  K                       |
| $\alpha = 103.295 \ (2)^{\circ}$ | $0.30 \times 0.06 \times 0.03$   |
| $\beta = 95.338 \ (2)^{\circ}$   |                                  |

#### Data collection

Bruker SMART APEX diffractometer 6045 measured reflections

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.050$ | H atoms treated by a mixture of                            |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.152$               | independent and constrained                                |
| S = 1.03                        | refinement                                                 |
| 2873 reflections                | $\Delta \rho_{\rm max} = 0.29 \ {\rm e} \ {\rm \AA}^{-3}$  |
| 230 parameters                  | $\Delta \rho_{\rm min} = -0.34 \ {\rm e} \ {\rm \AA}^{-3}$ |
| 5 restraints                    |                                                            |

 $\times$  0.06  $\times$  0.03 mm

2873 independent reflections

 $R_{\rm int} = 0.030$ 

2002 reflections with  $I > 2\sigma(I)$ 

| Table T       |          |       |     |
|---------------|----------|-------|-----|
| Hydrogen-bond | geometry | y (Å, | °). |

| $D - H \cdots A$                      | <i>D</i> -H          | $H \cdot \cdot \cdot A$ | $D \cdots A$           | $D - \mathbf{H} \cdots A$ |
|---------------------------------------|----------------------|-------------------------|------------------------|---------------------------|
| $N3-H31\cdotsO1$ $N3-H32\cdotsO2^{i}$ | 0.88 (3)<br>0.89 (3) | 1.95 (2)<br>2.02 (1)    | 2.771 (2)<br>2.906 (3) | 154 (3)<br>177 (3)        |
| Commentation and as (i)               |                      | - 1.1                   |                        |                           |

Symmetry code: (i) -x + 1, -y + 1, -z + 1.

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

The authors thank King Saud University and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5394).

#### References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Ibrahim, M. K. A., Elghandour, A. H. H., Abou-Hadeed, K. & Abdelhafiz, I. S. (1992). J. Indian Chem. Soc. 69, 378-380.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

# supporting information

 Acta Cryst. (2010). E66, o3010 [https://doi.org/10.1107/S1600536810043928]

 3-Acetyl-5-methyl-1-(4-methylphenyl)-1H-pyrazole-4-carboxamide

## Hatem A. Abdel-Aziz, Ahmed Bari and Seik Weng Ng

## S1. Comment

Pyrazole derivatives have been studied in the context of its biological properties. One class of such compounds is synthesized by reaction of hydrazidolyl chlorides active methylene comounds in basic medium (Ibrahim *et al.*, 1992). The hydrazidolyl chloride in the present study is 2-oxo-*N'*-(4-tolyl)propanehydrazolyl chloride; this reacts with 3- oxobutanamide to yield the title compound (Scheme I). In the title molecule, the phenylene ring adopts two orientations. One orientation has the ring aligned at about 60° and the other has the ring aligned at about -60° with respect to the pyrazoly ring. The two orientations are stagged by another 60°. Two molecules are linked by an N—H…O hydrogen bond about a center-of-inversion to form a dimer. (Fig. 1).

## **S2. Experimental**

Sodium metal (0.023 g, 1 mmol) was dissolved in absolute ethanol (50 ml); to the solution of sodium ethoxide was added 3-oxobutanamide (0.10 g, 10 mmol). To the clear solution was added 2-oxo-N'-(4-tolyl)propanehydrazolyl chloride (0.21 g, 1 mmol). The reaction mixture was set aside for 12 h. Water was added to precipitate the product, which was collected and dried. The compound was recrystallized from ethanol to yield yellow prisms.

### **S3. Refinement**

Carbon-bound H atoms were placed in calculated positions (C—H 0.95–0.98 Å) and were included in the refinement in the riding model approximation, with  $U_{iso}$ (H) set to 1.2–1.5 times  $U_{eq}$ (C).

The amino H atoms were located in a difference Fourier map, and were refined isotropically with a distance restraint of N—H 0.88 (1) Å.

The phenylene ring is disordered along the  $C_{ipso}$ — $C_{para}$  axis; as the disorder refined to nearly 1:1, the ratio was then fixed as exactly 1:1. No restraints were imposed. As the two orientations differ by 60°, the H atoms of the methyl group are ordered. These were refined isotropically with a distance restraint of C—H 0.98 (1) Å.





Anisotropic ellipsoid plot (Barbour, 2001) of the title compound showing two molecules related by a center-of-inversion and held together by hydrogen bonds. The probability level is set at 70%; H atoms are drawn as spheres of arbitrary radius, and the disorder is not shown.

Z = 2F(000) = 272

 $D_{\rm x} = 1.353 {\rm Mg} {\rm m}^{-3}$ 

 $\theta = 3.0 - 27.9^{\circ}$ 

 $\mu = 0.09 \text{ mm}^{-1}$ 

Prism, yellow

 $0.30 \times 0.06 \times 0.03 \text{ mm}$ 

T = 100 K

Mo *K* $\alpha$  radiation,  $\lambda = 0.71073$  Å

Cell parameters from 1604 reflections

3-Acetyl-5-methyl-1-(4-methylphenyl)-1*H*-pyrazole-4-carboxamide

Crystal data

C<sub>14</sub>H<sub>15</sub>N<sub>3</sub>O<sub>2</sub>  $M_r = 257.29$ Triclinic,  $P\overline{1}$ Hall symbol: -P 1 a = 5.0521 (6) Å b = 10.4068 (13) Å c = 12.6558 (16) Å a = 103.295 (2)°  $\beta = 95.338$  (2)°  $\gamma = 100.072$  (2)° V = 631.39 (13) Å<sup>3</sup>

## Data collection

| Bruker SMART APEX                        | 2002 reflections with $I > 2\sigma(I)$                             |
|------------------------------------------|--------------------------------------------------------------------|
| diffractometer                           | $R_{\rm int} = 0.030$                                              |
| Radiation source: fine-focus sealed tube | $\theta_{\rm max} = 27.5^{\circ},  \theta_{\rm min} = 1.7^{\circ}$ |
| Graphite monochromator                   | $h = -6 \rightarrow 6$                                             |
| ωscans                                   | $k = -13 \rightarrow 13$                                           |
| 6045 measured reflections                | $l = -16 \rightarrow 15$                                           |
| 2873 independent reflections             |                                                                    |

Refinement

| Refinement on $F^2$                             | Secondary atom site location: difference Fourier         |
|-------------------------------------------------|----------------------------------------------------------|
| Least-squares matrix: full                      | map                                                      |
| $R[F^2 > 2\sigma(F^2)] = 0.050$                 | Hydrogen site location: inferred from                    |
| $wR(F^2) = 0.152$                               | neighbouring sites                                       |
| <i>S</i> = 1.03                                 | H atoms treated by a mixture of independent              |
| 2873 reflections                                | and constrained refinement                               |
| 230 parameters                                  | $w = 1/[\sigma^2(F_o^2) + (0.0719P)^2 + 0.3595P]$        |
| 5 restraints                                    | where $P = (F_{o}^{2} + 2F_{c}^{2})/3$                   |
| Primary atom site location: structure-invariant | $(\Delta/\sigma)_{\rm max} = 0.001$                      |
| direct methods                                  | $\Delta \rho_{\rm max} = 0.29 \ { m e} \ { m \AA}^{-3}$  |
|                                                 | $\Delta \rho_{\rm min} = -0.34 \text{ e} \text{ Å}^{-3}$ |

## Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\mathring{A}^2)$ 

|     | x           | у            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ | Occ. (<1) |
|-----|-------------|--------------|--------------|-----------------------------|-----------|
| 01  | -0.1305 (3) | 0.14044 (15) | 0.52867 (12) | 0.0268 (4)                  |           |
| O2  | 0.6699 (3)  | 0.4493 (2)   | 0.61411 (15) | 0.0452 (5)                  |           |
| N1  | 0.4515 (3)  | 0.23144 (16) | 0.84070 (13) | 0.0174 (4)                  |           |
| N2  | 0.2167 (3)  | 0.15038 (17) | 0.78625 (14) | 0.0184 (4)                  |           |
| N3  | 0.2489 (4)  | 0.3669 (2)   | 0.52691 (17) | 0.0345 (5)                  |           |
| C1  | 0.5330 (4)  | 0.23207 (19) | 0.95263 (16) | 0.0172 (4)                  |           |
| C2  | 0.5929 (9)  | 0.1193 (4)   | 0.9788 (3)   | 0.0224 (9)                  | 0.50      |
| H2  | 0.5835      | 0.0389       | 0.9235       | 0.027*                      | 0.50      |
| C3  | 0.6675 (9)  | 0.1253 (4)   | 1.0878 (4)   | 0.0255 (10)                 | 0.50      |
| H3  | 0.7061      | 0.0467       | 1.1069       | 0.031*                      | 0.50      |
| C4  | 0.6885 (4)  | 0.2436 (2)   | 1.17193 (17) | 0.0232 (5)                  |           |
| C5  | 0.6121 (8)  | 0.3527 (4)   | 1.1393 (3)   | 0.0199 (8)                  | 0.50      |
| Н5  | 0.6103      | 0.4322       | 1.1939       | 0.024*                      | 0.50      |
| C6  | 0.5386 (8)  | 0.3491 (4)   | 1.0303 (3)   | 0.0210 (8)                  | 0.50      |
| H6  | 0.4933      | 0.4257       | 1.0098       | 0.025*                      | 0.50      |
| C7  | 0.7753 (5)  | 0.2541 (3)   | 1.2913 (2)   | 0.0349 (6)                  |           |
| H7A | 0.643 (6)   | 0.288 (4)    | 1.336 (3)    | 0.088 (13)*                 |           |
| H7B | 0.958 (3)   | 0.309 (3)    | 1.312 (3)    | 0.064 (10)*                 |           |
| H7C | 0.782 (6)   | 0.1647 (16)  | 1.302 (3)    | 0.058 (9)*                  |           |
| C8  | 0.8281 (4)  | 0.4154 (2)   | 0.82810 (17) | 0.0206 (4)                  |           |
| H8A | 0.9078      | 0.3966       | 0.8951       | 0.031*                      |           |
| H8B | 0.7935      | 0.5072       | 0.8451       | 0.031*                      |           |
| H8C | 0.9542      | 0.4070       | 0.7737       | 0.031*                      |           |
| C9  | 0.5672 (4)  | 0.31710 (19) | 0.78304 (17) | 0.0185 (4)                  |           |
| C10 | 0.3949 (4)  | 0.29140 (19) | 0.68544 (16) | 0.0179 (4)                  |           |
| C11 | 0.1794 (4)  | 0.18543 (19) | 0.69107 (16) | 0.0172 (4)                  |           |
| C12 | -0.0704 (4) | 0.1115 (2)   | 0.61502 (17) | 0.0187 (4)                  |           |
| C13 | -0.2497 (4) | 0.0000 (2)   | 0.64740 (18) | 0.0219 (5)                  |           |
|     |             |              |              |                             |           |

# supporting information

| H13A | -0.4213    | -0.0288    | 0.5975       | 0.033*      |      |  |
|------|------------|------------|--------------|-------------|------|--|
| H13B | -0.2862    | 0.0325     | 0.7226       | 0.033*      |      |  |
| H13C | -0.1586    | -0.0764    | 0.6432       | 0.033*      |      |  |
| C14  | 0.4481 (4) | 0.3732 (2) | 0.60424 (17) | 0.0201 (4)  |      |  |
| C2′  | 0.7886 (8) | 0.2071 (4) | 0.9862 (4)   | 0.0223 (9)  | 0.50 |  |
| H2′  | 0.9071     | 0.1855     | 0.9337       | 0.027*      | 0.50 |  |
| C3′  | 0.8673 (8) | 0.2140 (4) | 1.0949 (4)   | 0.0245 (9)  | 0.50 |  |
| H3′  | 1.0412     | 0.1989     | 1.1178       | 0.029*      | 0.50 |  |
| C5′  | 0.4431 (9) | 0.2659 (5) | 1.1399 (4)   | 0.0268 (10) | 0.50 |  |
| H5′  | 0.3240     | 0.2862     | 1.1923       | 0.032*      | 0.50 |  |
| C6′  | 0.3625 (9) | 0.2593 (4) | 1.0304 (3)   | 0.0226 (9)  | 0.50 |  |
| H6′  | 0.1872     | 0.2738     | 1.0088       | 0.027*      | 0.50 |  |
| H31  | 0.093 (4)  | 0.311 (3)  | 0.522 (3)    | 0.059 (9)*  |      |  |
| H32  | 0.280 (6)  | 0.422 (2)  | 0.484 (2)    | 0.051 (9)*  |      |  |
|      |            |            |              |             |      |  |

Atomic displacement parameters  $(A^2)$ 

|     | U <sup>11</sup> | U <sup>22</sup> | U <sup>33</sup> | <i>U</i> <sup>12</sup> | <i>U</i> <sup>13</sup> | $U^{23}$    |
|-----|-----------------|-----------------|-----------------|------------------------|------------------------|-------------|
| 01  | 0.0255 (8)      | 0.0296 (8)      | 0.0230 (8)      | -0.0029 (6)            | -0.0035 (6)            | 0.0114 (6)  |
| O2  | 0.0267 (9)      | 0.0648 (13)     | 0.0474 (12)     | -0.0126 (8)            | -0.0049 (8)            | 0.0411 (10) |
| N1  | 0.0167 (8)      | 0.0169 (8)      | 0.0174 (9)      | 0.0004 (6)             | -0.0008 (6)            | 0.0054 (7)  |
| N2  | 0.0151 (8)      | 0.0192 (8)      | 0.0191 (9)      | 0.0005 (6)             | -0.0009 (7)            | 0.0048 (7)  |
| N3  | 0.0266 (10)     | 0.0430 (13)     | 0.0344 (12)     | -0.0089 (9)            | -0.0065 (9)            | 0.0266 (10) |
| C1  | 0.0174 (9)      | 0.0174 (9)      | 0.0161 (10)     | 0.0000(7)              | -0.0006 (7)            | 0.0063 (8)  |
| C2  | 0.027 (2)       | 0.0164 (19)     | 0.019 (2)       | -0.0017 (16)           | -0.0016 (17)           | 0.0004 (16) |
| C3  | 0.034 (2)       | 0.018 (2)       | 0.025 (2)       | -0.0007 (17)           | -0.0039 (18)           | 0.0129 (17) |
| C4  | 0.0245 (10)     | 0.0233 (11)     | 0.0194 (11)     | -0.0038 (8)            | -0.0009 (8)            | 0.0087 (8)  |
| C5  | 0.0180 (19)     | 0.022 (2)       | 0.017 (2)       | 0.0020 (16)            | 0.0031 (15)            | 0.0010 (16) |
| C6  | 0.0204 (19)     | 0.023 (2)       | 0.020 (2)       | 0.0039 (16)            | 0.0012 (16)            | 0.0069 (16) |
| C7  | 0.0383 (14)     | 0.0406 (15)     | 0.0241 (13)     | -0.0015 (11)           | -0.0047 (11)           | 0.0154 (11) |
| C8  | 0.0189 (10)     | 0.0205 (10)     | 0.0220 (11)     | 0.0012 (8)             | 0.0013 (8)             | 0.0072 (8)  |
| C9  | 0.0189 (10)     | 0.0161 (9)      | 0.0211 (10)     | 0.0039 (8)             | 0.0038 (8)             | 0.0053 (8)  |
| C10 | 0.0187 (9)      | 0.0174 (10)     | 0.0175 (10)     | 0.0036 (8)             | 0.0033 (8)             | 0.0039 (8)  |
| C11 | 0.0169 (9)      | 0.0164 (9)      | 0.0186 (10)     | 0.0037 (7)             | 0.0031 (8)             | 0.0043 (8)  |
| C12 | 0.0175 (9)      | 0.0183 (10)     | 0.0204 (11)     | 0.0043 (8)             | 0.0032 (8)             | 0.0043 (8)  |
| C13 | 0.0200 (10)     | 0.0219 (10)     | 0.0221 (11)     | -0.0017 (8)            | 0.0005 (8)             | 0.0076 (8)  |
| C14 | 0.0207 (10)     | 0.0190 (10)     | 0.0213 (11)     | 0.0033 (8)             | 0.0040 (8)             | 0.0067 (8)  |
| C2′ | 0.0161 (19)     | 0.026 (2)       | 0.026 (2)       | 0.0033 (16)            | 0.0012 (16)            | 0.0100 (17) |
| C3′ | 0.0155 (19)     | 0.029 (2)       | 0.028 (2)       | -0.0003 (16)           | -0.0057 (17)           | 0.0122 (18) |
| C5′ | 0.033 (2)       | 0.026 (2)       | 0.020 (2)       | 0.0043 (19)            | 0.0007 (18)            | 0.0058 (18) |
| C6′ | 0.026 (2)       | 0.021 (2)       | 0.022(2)        | 0.0069 (17)            | -0.0035(17)            | 0.0092 (17) |

## Geometric parameters (Å, °)

|        |           |        |            | _ |
|--------|-----------|--------|------------|---|
| O1—C12 | 1.224 (2) | С6—Н6  | 0.9500     |   |
| O2—C14 | 1.232 (3) | C7—H7A | 0.980 (10) |   |
| N1—N2  | 1.351 (2) | C7—H7B | 0.975 (10) |   |
| N1—C9  | 1.366 (3) | C7—H7C | 0.977 (10) |   |
|        |           |        |            |   |

## supporting information

| N1—C1                               | 1.436 (3)            | C8—C9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.493 (3)         |
|-------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| N2—C11                              | 1.343 (3)            | C8—H8A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.9800            |
| N3—C14                              | 1.319 (3)            | C8—H8B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.9800            |
| N3—H31                              | 0.88 (3)             | C8—H8C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.9800            |
| N3—H32                              | 0.89 (3)             | C9—C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.386 (3)         |
| C1—C2                               | 1.365 (5)            | C10—C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.427 (3)         |
| C1—C6                               | 1.372 (5)            | C10—C14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.492 (3)         |
| C1—C6′                              | 1.381(5)             | C11—C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1485(3)           |
| C1-C2'                              | 1.301(3)<br>1 408(4) | C12-C13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.102(3)          |
| $C^2 - C^3$                         | 1 380 (6)            | C13—H13A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.9800            |
| C2H2                                | 0.9500               | C13_H13B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.9800            |
| $C_2 = 112$                         | 1.412(5)             | C13 H13C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.9800            |
| $C_3 = U_4$                         | 1.412(3)             | C15—1115C<br>C2' $C2'$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 370 (6)         |
| $C_3 = 115$                         | 1.344(5)             | $C_2 = C_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.379(0)          |
| C4 = C5                             | 1.344(3)<br>1.205(5) | $C_2 - n_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.9300            |
| C4 = C3                             | 1.595 (5)            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.9300            |
| C4 - C3                             | 1.408 (5)            | $C_{3} = C_{6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.390 (6)         |
|                                     | 1.507 (3)            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.9500            |
| C5—C6                               | 1.386 (6)            | Сб'—Нб'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.9500            |
| С5—Н5                               | 0.9500               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |
| NA N4 60                            |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100 (2)           |
| N2—N1—C9                            | 112.79 (16)          | H/B - C/ - H/C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 108 (3)           |
| N2—N1—C1                            | 119.30 (15)          | С9—С8—Н8А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 109.5             |
| C9—N1—C1                            | 127.38 (16)          | С9—С8—Н8В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 109.5             |
| C11—N2—N1                           | 105.11 (15)          | H8A—C8—H8B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 109.5             |
| C14—N3—H31                          | 119 (2)              | С9—С8—Н8С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 109.5             |
| C14—N3—H32                          | 117 (2)              | H8A—C8—H8C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 109.5             |
| H31—N3—H32                          | 124 (3)              | H8B—C8—H8C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 109.5             |
| C2—C1—C6                            | 122.6 (3)            | N1—C9—C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 106.38 (17)       |
| C2—C1—C6′                           | 96.6 (3)             | N1—C9—C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 121.63 (18)       |
| C6—C1—C6′                           | 50.4 (3)             | C10—C9—C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 131.98 (18)       |
| C2—C1—C2′                           | 51.4 (3)             | C9—C10—C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 104.86 (17)       |
| C6—C1—C2′                           | 99.4 (3)             | C9—C10—C14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 121.36 (17)       |
| C6'—C1—C2'                          | 118.4 (3)            | C11—C10—C14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 133.68 (18)       |
| C2—C1—N1                            | 120.7 (2)            | N2-C11-C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 110.85 (17)       |
| C6—C1—N1                            | 116.7 (2)            | N2—C11—C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 116.22 (17)       |
| C6'—C1—N1                           | 120.4 (2)            | C10-C11-C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 132.92 (18)       |
| C2′—C1—N1                           | 121.1 (2)            | O1—C12—C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 121.39 (18)       |
| C1—C2—C3                            | 118.2 (4)            | O1-C12-C13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 120.63 (18)       |
| C1—C2—H2                            | 120.9                | C11—C12—C13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 117.98 (18)       |
| C3—C2—H2                            | 120.9                | C12—C13—H13A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 109.5             |
| $C^2 - C^3 - C^4$                   | 122.5 (4)            | C12— $C13$ — $H13B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 109.5             |
| C2—C3—H3                            | 118.8                | $H_{13A}$ $-C_{13}$ $-H_{13B}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 109.5             |
| C4-C3-H3                            | 118.8                | C12 - C13 - H13C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 109.5             |
| $C_{2}^{2} - C_{2}^{2} - C_{3}^{2}$ | 120.3(3)             | $H_{13}A$ $C_{13}$ $H_{13}C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 109.5             |
| $C_5 = C_4 = C_3$                   | 120.5(3)<br>1150(3)  | H13B C13 H12C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 109.5             |
| $C_{5} - C_{4} - C_{5}$             | 110.7(3)<br>110.8(3) | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 107.3<br>121.8(2) |
| $C_{5} = C_{4} = C_{7}$             | 117.0(3)<br>120.2(2) | $O_2 = C_1 + C_1 O_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 121.0(2)          |
| $C_3 - C_4 - C_7$                   | 120.3(3)             | $\begin{array}{c} 02 - 0.14 - 0.10 \\ 0.12 - 0.14 - 0.10 \\ 0.12 - 0.14 - 0.10 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.12 - 0.14 \\ 0.14 - 0.14 \\ 0.14 - 0.14 \\ 0.14 - 0.14 \\ 0.14 - 0.14 \\ 0.14 - 0.14 \\ 0.14 - 0.14 \\ 0.14 - 0.14 \\ 0.14 - 0.14 \\ 0.14 - 0.14 \\ 0.14 - 0.14 \\ 0.14 - 0.14 \\ 0.14 - 0.14 \\ 0.14 - 0.14 \\ 0.14 - 0.14 \\ 0.14 - 0.14 \\ 0.14 - 0.14 \\ 0.14 - 0.14 \\ 0.14 - 0.14 \\ 0.14 - 0.14 \\ 0.14 - 0.14 \\ 0.14 - 0.14 \\ 0.14 - 0.14 \\ 0.14$ | 119.07 (19)       |
| U3-U4-U/                            | 119.9 (3)            | N3-C14-C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 118.44 (18)       |

| C3—C4—C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 123.7 (3)            | C3′—C2′—C1                           | 120.2 (4)             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------|-----------------------|
| C6—C5—C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 122.4 (4)            | C3'—C2'—H2'                          | 119.9                 |
| С6—С5—Н5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 118.8                | C1—C2′—H2′                           | 119.9                 |
| C4—C5—H5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 118.8                | C2'—C3'—C4                           | 119.6 (4)             |
| C1—C6—C5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 118.3 (4)            | C2'—C3'—H3'                          | 120.2                 |
| С1—С6—Н6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 120.9                | C4—C3'—H3'                           | 120.2                 |
| C5—C6—H6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 120.9                | C4-C5'-C6'                           | 120.4(4)              |
| C4 - C7 - H7A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 111 (2)              | C4—C5'—H5'                           | 119.8                 |
| C4-C7-H7B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 108(2)               | C6' - C5' - H5'                      | 119.8                 |
| $H_{7A} = C_{7} = H_{7B}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100(2)<br>114(3)     | $C_{0} = C_{0} = C_{1}$              | 117.0<br>121 1 (4)    |
| $\Gamma_{A} = C_{A} = \Gamma_{A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 114(3)<br>100.8(10)  | C1 = C0 = C3                         | 121.1 (+)             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 109.8(19)            |                                      | 119.5                 |
| H/A - C - H/C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100 (3)              | С5-С6-Н6                             | 119.5                 |
| C9—N1—N2—C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.3 (2)             | N1—C9—C10—C14                        | 176.00 (18)           |
| C1—N1—N2—C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 171.92 (17)          | C8—C9—C10—C14                        | -3.1 (3)              |
| N2—N1—C1—C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 64.4 (3)             | N1—N2—C11—C10                        | -0.3(2)               |
| C9—N1—C1—C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -124.6(3)            | N1—N2—C11—C12                        | -179.27 (16)          |
| $N_{2}-N_{1}-C_{1}-C_{6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -1137(3)             | C9-C10-C11-N2                        | 07(2)                 |
| C9-N1-C1-C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 57 3 (3)             | C14-C10-C11-N2                       | -175.6(2)             |
| $N_2 - N_1 - C_1 - C_6'$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -55.8(3)             | C9-C10-C11-C12                       | 179.5(2)              |
| $C_{9}$ N1 $C_{1}$ $C_{6}'$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 115 2 (3)            | $C_{14} - C_{10} - C_{11} - C_{12}$  | $\frac{179.5}{2}$     |
| $N_2 N_1 C_1 C_2'$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 115.2(5)<br>125.1(3) | $N_2 = C_{11} = C_{12} = C_{12}$     | 5.2(+)<br>176 23 (10) |
| $\frac{1}{12} - \frac{1}{12} $ | -63.8(3)             | $R_{2}$ $-C_{11}$ $-C_{12}$ $-O_{1}$ | -25(3)                |
| $C_{2} = N_{1} = C_{1} = C_{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14(5)                | 10 - 11 - 12 - 01                    | 2.3(3)                |
| $C_0 - C_1 - C_2 - C_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1.4(3)              | $N_2 = C_{11} = C_{12} = C_{13}$     | -3.4(3)               |
| $C_0 - C_1 - C_2 - C_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -48.0(4)             | C10-C11-C12-C13                      | 177.8(2)              |
| $C_2 - C_1 - C_2 - C_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | /3.4 (4)             | $C_{9}$ $C_{10}$ $C_{14}$ $C_{2}$    | 12.5 (3)              |
| NI - CI - C2 - C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -1/9.4 (3)           | C11-C10-C14-O2                       | -1/1.7(2)             |
| C1—C2—C3—C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1.2 (6)             | C9—C10—C14—N3                        | -163.9 (2)            |
| C2—C3—C4—C5′                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50.2 (5)             | C11—C10—C14—N3                       | 12.0 (4)              |
| C2—C3—C4—C5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.0 (5)              | C2-C1-C2'-C3'                        | -76.6 (4)             |
| C2—C3—C4—C3′                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -75.0 (4)            | C6—C1—C2′—C3′                        | 48.0 (4)              |
| C2—C3—C4—C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -178.6 (3)           | C6'—C1—C2'—C3'                       | -1.9 (5)              |
| C5'—C4—C5—C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -77.4 (4)            | N1—C1—C2′—C3′                        | 177.2 (3)             |
| C3'—C4—C5—C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 46.3 (4)             | C1—C2′—C3′—C4                        | 1.2 (6)               |
| C3—C4—C5—C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -4.5 (5)             | C5'—C4—C3'—C2'                       | -0.4 (5)              |
| C7—C4—C5—C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 178.0 (3)            | C5—C4—C3'—C2'                        | -46.8 (4)             |
| C2-C1-C6-C5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.0 (5)              | C3—C4—C3′—C2′                        | 70.1 (4)              |
| C6'—C1—C6—C5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 70.3 (4)             | C7—C4—C3′—C2′                        | -178.8 (3)            |
| C2'—C1—C6—C5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -48.9 (4)            | C5—C4—C5′—C6′                        | 72.9 (4)              |
| N1—C1—C6—C5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 179.0 (3)            | C3'—C4—C5'—C6'                       | 0.3 (6)               |
| C4—C5—C6—C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.2 (6)              | C3—C4—C5′—C6′                        | -47.5 (4)             |
| N2—N1—C9—C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.8 (2)              | C7—C4—C5′—C6′                        | 178.7 (3)             |
| C1—N1—C9—C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -170.69 (18)         | C2-C1-C6'-C5'                        | 51.2 (4)              |
| N2—N1—C9—C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -179.98 (17)         | C6—C1—C6′—C5′                        | -76.3 (4)             |
| C1—N1—C9—C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.5 (3)              | C2'—C1—C6'—C5'                       | 1.8 (5)               |
| N1—C9—C10—C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.9(2)              | N1—C1—C6′—C5′                        | -177.3 (3)            |
| C8—C9—C10—C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -180.0 (2)           | C4—C5′—C6′—C1                        | -1.0 (6)              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | × /                  |                                      | × /                   |

## Hydrogen-bond geometry (Å, °)

| D—H···A                      | D—H      | H···A    | D···A     | D—H…A   |
|------------------------------|----------|----------|-----------|---------|
| N3—H31…O1                    | 0.88 (3) | 1.95 (2) | 2.771 (2) | 154 (3) |
| N3— $H32$ ···O2 <sup>i</sup> | 0.89 (3) | 2.02 (1) | 2.906 (3) | 177 (3) |

Symmetry code: (i) -x+1, -y+1, -z+1.