Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Chloridodimethyl(thiosemicarbazide)tin(IV) chloride

Laura Cortes C., Ana E. Burgos C. and Coco K. Y. A. Okio*
Departamento de Quimíca, Universidad Nacional de Colombia, Sede Bogotá, Bogotá, Colombia
Correspondence e-mail: kaokio@unal.edu.co

Received 9 September 2010; accepted 27 September 2010

Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{N}-\mathrm{C})=0.005 \AA$; R factor $=0.037 ; w R$ factor $=0.103$; data-to-parameter ratio $=32.0$.

In the title salt, $\left[\mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Cl}\left(\mathrm{CH}_{4} \mathrm{~N}_{3} \mathrm{~S}\right)\right] \mathrm{Cl}$, the $\mathrm{Sn}^{\text {IV }}$ atom is five-coordinated in a distorted trigonal-bipyramidal geometry with two methyl groups and one S atom in the equatorial plane, and one N atom and one Cl atom occupying the apical positions. In the crystal, molecules are linked by intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds with set graph-motif $C(4)$ along [010]. N $-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds with graph-set motif $D(2)$ and $D_{3}{ }^{3}(10)$ link cations and anions.

Related literature

For a related structure, see: Delgado et al. (2009). For graphset motifs, see: Bernstein et al. (1995). For the biological activity of organotin(IV) complexes, see: Davies \& Smith (1982).

Experimental

Crystal data
$\left[\mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Cl}\left(\mathrm{CH}_{4} \mathrm{~N}_{3} \mathrm{~S}\right)\right] \mathrm{Cl}$
$M_{r}=309.79$
Monoclinic, $P 2 / c$
$V=1014.60(16) \AA^{3}$
$Z=4$
$a=13.4980$ (12) \AA
Mo $K \alpha$ radiation
$b=6.2470$ (5) A
$\mu=3.19 \mathrm{~mm}^{-1}$
$c=12.7160(13) \AA$
$T=293 \mathrm{~K}$
$\beta=108.871$ (10) ${ }^{\circ}$
$0.13 \times 0.10 \times 0.09 \mathrm{~mm}$

Data collection

Nonius KappaCCD diffractometer Absorption correction: multi-scan (SORTAV; Blessing, 1995)
$T_{\text {min }}=0.613, T_{\text {max }}=0.809$
4452 measured reflections 2915 independent reflections 2475 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.020$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037 \quad 91$ parameters
$w R\left(F^{2}\right)=0.103$
H -atom parameters constrained
$S=1.14$
2915 reflections
$\Delta \rho_{\text {max }}=1.04 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-1.52 \mathrm{e} \mathrm{A}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA,^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{Cl} 2^{\mathrm{i}}$	0.86	2.3555	$3.147(4)$	153.17
$\mathrm{~N} 2-\mathrm{H} 2 \cdots \mathrm{~S}^{\mathrm{ii}}$	0.86	2.5549	$3.327(3)$	149.90

Symmetry codes: (i) $-x+1,-y+2,-z+1$; (ii) $x, y+1, z$.

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Otwinowski \& Minor, 1997); data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

The authors are grateful to Richard Welter for the X-ray analysis.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2306).

References

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Davies, A. G. \& Smith, P. G. (1982). Comprehensive Organometallic Chemistry, edited by G. Wilkinson, F. Gordon, A. Stone \& E.W. Abel, pp. 519-616. New York: Pergamon Press.
Delgado, D. J. A., Okio, C. K. Y. A. \& Welter, R. (2009). Acta Cryst. E65, m426.
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Chloridodimethyl(thiosemicarbazide)tin(IV) chloride

Laura Cortes C., Ana E. Burgos C. and Coco K. Y. A. Okio

S1. Comment

Organotin(IV) complexes have been extensively studied due to the diversity of structures that such compounds can form and to their potential biological activities as well as their wide industrial and agricultural applications (Davies \& Smith, 1982). In the framework of our research for new organotin(IV) compounds (Delgado et al., 2009), we report here the crystal structure of the title compound (I). The asymmetric unit is formed by one cation and one anion. The Sn atom is five-coordinate in a distorted trigonal-bipyramidal geometry. The distorted trigonal-bipyramidal coordination polyhedron has two methyl groups and one S atom in the equatorial plane, the N 2 and Cl 1 atom occupying the apical positions. In the crystal, molecules are linked by intermolecular $\mathrm{N} — \mathrm{H} \cdots \mathrm{S}$ hydrogen bonds with set graph-motif C(4) along [010]. N—H \cdots Cl hydrogen bond linking cations and anions with set graph-motif $\mathrm{D}(2)$ and $\mathrm{D}_{3}{ }^{3}(10)$, Table 1 and Fig.2. The C1-S and C1-N1 bond distances are quite shorter than the ones reported for $\mathrm{C}-\mathrm{S}$ and $\mathrm{C}-\mathrm{N}$ single bonds (1.755 (4), 1.366 (6)) (Delgado et al., 2009), suggesting the delocalization of the $\mathrm{C}=\mathrm{S}$ double bond on the SCN moiety.

S2. Experimental

Compound (I) was obtained by reacting dimethyltin (IV) dichloride ($220 \mathrm{mg}, 1 \mathrm{mmol}$) with thiosemicarbazide (68 mg , 0.75 mmol) in methanol under reflux for 3 h . Colourless crystals suitable for X-ray analysis were grown by slow solvent evaporation.

S3. Refinement

H atoms were positioned geometrically, with $\mathrm{C}-\mathrm{H}, \mathrm{N}-\mathrm{H}$ distances of 0.96 and $0.86 \AA$ respectively, and constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=1.5 \mathrm{U}_{\mathrm{eq}}(\mathrm{C})$ and $1.2 \mathrm{U}_{\mathrm{eq}}(\mathrm{N})$

Figure 1
The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted.

Figure 2
Unit-cell packing diagram for (I). Hydrogen bonds are shown as dashed lines.

Chloridodimethyl(thiosemicarbazide)tin(IV) chloride

Crystal data

$\left[\mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Cl}\left(\mathrm{CH}_{4} \mathrm{~N}_{3} \mathrm{~S}\right)\right] \mathrm{Cl}$
$M_{r}=309.79$
Monoclinic, $P 2 / c$
Hall symbol: -P 2yc
$a=13.4980(12) \AA$
$b=6.2470(5) \AA$
$c=12.7160(13) \AA$
$\beta=108.871(10)^{\circ}$
$V=1014.60(16) \AA^{3}$
$Z=4$
$F(000)=596$
$D_{\mathrm{x}}=2.028 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1915 reflections
$\theta=1.0-30.0^{\circ}$
$\mu=3.19 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Prism, colorless
$0.13 \times 0.10 \times 0.09 \mathrm{~mm}$

Data collection

Nonius KappaCCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
π scans
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
$T_{\text {min }}=0.613, T_{\text {max }}=0.809$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.103$
$S=1.14$
2915 reflections
91 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

> 4452 measured reflections
> 2915 independent reflections
> 2475 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.020$
> $\theta_{\max }=30.0^{\circ}, \theta_{\min }=1.6^{\circ}$
> $h=-18 \rightarrow 18$
> $k=-7 \rightarrow 8$
> $l=-17 \rightarrow 17$

```
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
\(w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0482 P)^{2}+1.1794 P\right]\)
where \(P=\left(F_{0}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3\)
\((\Delta / \sigma)_{\text {max }}=0.001\)
\(\Delta \rho_{\text {max }}=1.04 \mathrm{e}_{\AA^{-3}}\)
\(\Delta \rho_{\text {min }}=-1.52 \mathrm{e} \AA^{-3}\)
```


Special details

Experimental. Absorption correction: multi-scan from symmetry-related measurements (SORTAV; Blessing, 1995)
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\mathrm{eq}}$
Sn	$0.18008(2)$	$0.64590(4)$	$0.54686(2)$	$0.03327(10)$
$\mathrm{Cl1}$	$0.10951(9)$	$0.27486(19)$	$0.52290(13)$	$0.0570(3)$
C 2	$0.37205(8)$	$0.89418(16)$	$0.34229(9)$	$0.0384(2)$
S	$0.34762(8)$	$0.45496(15)$	$0.57559(10)$	$0.0394(2)$
N 1	$0.4153(3)$	$0.8592(5)$	$0.6156(3)$	$0.0304(6)$
H 1	0.4647	0.9508	0.6420	0.036^{*}
N 2	$0.3105(2)$	$0.9290(5)$	$0.5800(3)$	$0.0348(7)$
H 2	0.2937	1.0621	0.5707	0.042^{*}
N 3	$0.5392(3)$	$0.6073(5)$	$0.6316(3)$	$0.0371(7)$
H 3 AN	0.5859	0.7063	0.6494	0.045^{*}
H 3 BN	0.5575	0.4762	0.6282	0.045^{*}
C 1	$0.4390(3)$	$0.6566(6)$	$0.6093(3)$	$0.0291(7)$
C 2	$0.1509(4)$	$0.7230(10)$	$0.6955(4)$	$0.0548(12)$
H 2 A	0.1548	0.8753	0.7060	0.082^{*}
H 2 B	0.2022	0.6549	0.7569	0.082^{*}

H2C	0.0823	0.6738	0.6913	0.082^{*}
C3	$0.1119(4)$	$0.7551(9)$	$0.3820(4)$	$0.0471(10)$
H3A	0.0640	0.8695	0.3806	0.071^{*}
H3B	0.0749	0.6396	0.3362	0.071^{*}
H3C	0.1658	0.8060	0.3542	0.071^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sn	$0.03237(15)$	$0.03147(15)$	$0.03651(16)$	$-0.00300(10)$	$0.01187(11)$	$-0.00248(10)$
C 11	$0.0403(5)$	$0.0344(5)$	$0.0951(9)$	$-0.0086(5)$	$0.0201(6)$	$-0.0063(6)$
C 12	$0.0369(5)$	$0.0377(5)$	$0.0413(5)$	$-0.0039(4)$	$0.0138(4)$	$0.0036(4)$
S	$0.0352(5)$	$0.0245(4)$	$0.0595(6)$	$-0.0027(4)$	$0.0168(4)$	$-0.0017(4)$
N 1	$0.0299(15)$	$0.0266(14)$	$0.0342(15)$	$-0.0046(12)$	$0.0097(12)$	$-0.0039(12)$
N 2	$0.0285(15)$	$0.0259(14)$	$0.0494(19)$	$0.0002(13)$	$0.0117(13)$	$0.0017(14)$
N 3	$0.0316(16)$	$0.0367(17)$	$0.0444(19)$	$-0.0017(14)$	$0.0141(14)$	$-0.0064(14)$
C 1	$0.0322(18)$	$0.0308(17)$	$0.0262(15)$	$0.0006(14)$	$0.0121(13)$	$0.0015(13)$
C 2	$0.062(3)$	$0.067(3)$	$0.046(3)$	$-0.017(3)$	$0.031(2)$	$-0.010(2)$
C 3	$0.042(2)$	$0.057(3)$	$0.038(2)$	$-0.002(2)$	$0.0072(17)$	$0.002(2)$

Geometric parameters $\left({ }^{(},{ }^{\circ}\right)$

$\mathrm{Sn}-\mathrm{C} 2$	2.107 (4)	N3-C1	1.325 (5)
$\mathrm{Sn}-\mathrm{C} 3$	2.112 (4)	N3-H3AN	0.8600
$\mathrm{Sn}-\mathrm{N} 2$	2.434 (3)	N3-H3BN	0.8600
$\mathrm{Sn}-\mathrm{S}$	2.4771 (11)	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9600
$\mathrm{Sn}-\mathrm{Cl1}$	2.4870 (12)	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	0.9600
S-C1	1.718 (4)	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	0.9600
N1-C1	1.315 (5)	C3-H3A	0.9600
N1-N2	1.408 (4)	C3-H3B	0.9600
N1-H1	0.8600	C3-H3C	0.9600
N2-H2	0.8600		
$\mathrm{C} 2-\mathrm{Sn}-\mathrm{C} 3$	132.0 (2)	C1-N3-H3BN	120.0
$\mathrm{C} 2-\mathrm{Sn}-\mathrm{N} 2$	90.75 (17)	H3AN-N3-H3BN	120.0
$\mathrm{C} 3-\mathrm{Sn}-\mathrm{N} 2$	89.75 (16)	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 3$	117.6 (3)
$\mathrm{C} 2-\mathrm{Sn}-\mathrm{S}$	113.85 (17)	N1-C1-S	123.5 (3)
$\mathrm{C} 3-\mathrm{Sn}-\mathrm{S}$	112.70 (14)	N3-C1-S	118.9 (3)
N2-Sn-S	75.51 (8)	$\mathrm{Sn}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.5
$\mathrm{C} 2-\mathrm{Sn}-\mathrm{Cl1}$	98.48 (16)	$\mathrm{Sn}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.5
$\mathrm{C} 3-\mathrm{Sn}-\mathrm{Cl1}$	98.80 (15)	$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.5
$\mathrm{N} 2-\mathrm{Sn}-\mathrm{Cl} 1$	157.72 (8)	$\mathrm{Sn}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.5
$\mathrm{S}-\mathrm{Sn}-\mathrm{Cl} 1$	82.21 (4)	$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.5
$\mathrm{C} 1-\mathrm{S}-\mathrm{Sn}$	103.38 (13)	$\mathrm{H} 2 \mathrm{~B}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.5
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{N} 2$	121.2 (3)	$\mathrm{Sn}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	109.5
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1$	119.4	$\mathrm{Sn}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	109.5
N2-N1-H1	119.4	H3A-C3-H3B	109.5
N1-N2-Sn	115.2 (2)	$\mathrm{Sn}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$	109.5

$\mathrm{N} 1-\mathrm{N} 2-\mathrm{H} 2$	122.4
$\mathrm{Sn}-\mathrm{N} 2-\mathrm{H} 2$	122.4

$\mathrm{C} 2-\mathrm{Sn}-\mathrm{S}-\mathrm{C} 1$
C3-Sn-S-C1
-79.8 (2)
$\mathrm{N} 2-\mathrm{Sn}-\mathrm{S}-\mathrm{C} 1$
88.0 (2)
$\mathrm{Cl1}-\mathrm{Sn}-\mathrm{S}-\mathrm{C} 1$
4.48 (15)

C1—N1—N2-Sn
-175.69 (14)
13.1 (4)
$\mathrm{C} 2-\mathrm{Sn}-\mathrm{N} 2-\mathrm{N} 1$
105.2 (3)
$\mathrm{C} 3-\mathrm{Sn}-\mathrm{N} 2-\mathrm{N} 1$ -122.9 (3)

$\mathrm{H} 3 \mathrm{~A}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$	109.5
$\mathrm{H} 3 \mathrm{~B}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$	109.5

$$
\mathrm{S}-\mathrm{Sn}-\mathrm{N} 2-\mathrm{N} 1
$$

$$
\mathrm{Cl} 1-\mathrm{Sn}-\mathrm{N} 2-\mathrm{N} 1
$$

$$
\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 3
$$

N2-N1-C1—S
$\mathrm{Sn}-\mathrm{S}-\mathrm{C} 1-\mathrm{N} 1$
$\mathrm{Sn}-\mathrm{S}-\mathrm{C} 1-\mathrm{N} 3$
109.5
109.5
-9.3 (2)
-9.7 (4)
172.0 (3)
-8.9 (5)
0.0 (4)
179.2 (3)

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 \cdots \mathrm{Cl}^{\mathrm{i}}$	0.86	2.3555	$3.147(4)$	153.17
$\mathrm{~N} 2 — \mathrm{H} 2 \cdots \mathrm{~S}^{\mathrm{ii}}$	0.86	2.5549	$3.327(3)$	149.90

Symmetry codes: (i) $-x+1,-y+2,-z+1$; (ii) $x, y+1, z$.

