Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# 1-[Phenyl(pyridin-2-ylamino)methyl]-2naphthol

### Jie Xiao and Hong Zhao\*

School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China Correspondence e-mail: zhaohong@seu.edu.cn

Received 13 October 2010; accepted 19 October 2010

Key indicators: single-crystal X-ray study; T = 295 K; mean  $\sigma$ (C–C) = 0.006 Å; R factor = 0.097; wR factor = 0.218; data-to-parameter ratio = 16.7.

The title compound,  $C_{22}H_{18}N_2O$ , was synthesized from naphthalen-2-ol, benzaldehyde and pyridin-2-amine. In the crystal, molecules are linked into centrosymmetric  $R_2^2(16)$ dimers by pairs of  $O-H\cdots N$  hydrogen bonds. The molecular conformation is stabilized by an  $N-H\cdots O$  hydrogen bond. The dihedral angle between the naphthylene ring system and the phenyl ring is 72.86 (12)°.

### **Related literature**

For the application of compounds derived from naphthalen-2ol in catalytic asymmetric synthesis, see: Szatmari & Fulop (2004). For related structures, see: Wang & Zhao (2009); Zhao & Sun (2005). For graph-set motifs, see: Bernstein *et al.* (1995).



### Experimental

### Crystal data

 $C_{22}H_{18}N_2O$   $\gamma = 90.83 (3)^\circ$ 
 $M_r = 326.38$   $V = 851.7 (2) Å^3$  

 Triclinic,  $P\overline{1}$  Z = 2 

 a = 7.5841 (10) Å Mo K $\alpha$  radiation

 b = 10.1890 (15) Å  $\mu = 0.08 \text{ mm}^{-1}$  

 c = 11.9745 (15) Å T = 295 K 

  $\alpha = 111.00 (3)^\circ$   $0.18 \times 0.15 \times 0.12 \text{ mm}$ 

#### Data collection

Rigaku SCXmini diffractometer Absorption correction: multi-scan (*CrystalClear*; Rigaku, 2005)  $T_{\rm min} = 0.982, T_{\rm max} = 0.990$ 

#### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.097$  $wR(F^2) = 0.218$ S = 1.103841 reflections 230 parameters

# Table 1

Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$                                 | D-H          | $H \cdot \cdot \cdot A$ | $D \cdots A$           | $D - \mathbf{H} \cdots A$ |
|--------------------------------------------------|--------------|-------------------------|------------------------|---------------------------|
| $O1 - H1A \cdots N2^{i}$<br>$N1 - H1B \cdots O1$ | 0.82<br>0.86 | 1.87<br>2.35            | 2.677 (4)<br>2.767 (4) | 170<br>110                |
| 2                                                | 1.2 1.1      | 1.0                     |                        |                           |

8701 measured reflections

 $R_{\rm int} = 0.078$ 

refinement  $\Delta \rho_{\text{max}} = 0.23 \text{ e } \text{\AA}^{-3}$ 

 $\Delta \rho_{\rm min} = -0.22 \text{ e} \text{ Å}^{-3}$ 

3841 independent reflections

1655 reflections with  $I > 2\sigma(I)$ 

H atoms treated by a mixture of

independent and constrained

Symmetry code: (i) -x + 2, -y + 1, -z + 2.

Data collection: *CrystalClear* (Rigaku, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL/PC* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL/PC*.

This work was supported financially by Southeast University for Young Researchers (4007041027).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2316).

#### References

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.

Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Szatmari, I. & Fulop, F. (2004). Curr. Org. Synth. 1, 155-165.

Wang, W. X. & Zhao, H. (2009). Acta Cryst. E65, o1277.

Zhao, B. & Sun, Y.-X. (2005). Acta Cryst. E61, m652-m653.

# supporting information

Acta Cryst. (2010). E66, o2938 [https://doi.org/10.1107/S1600536810042327]

# 1-[Phenyl(pyridin-2-ylamino)methyl]-2-naphthol

# Jie Xiao and Hong Zhao

## S1. Comment

Compounds derived from naphthalen-2-ol have been of great interest in organic chemistry due to their application in catalytic asymmetric synthesis (Szatmari & Fulop, 2004; Zhao & Sun, 2005). As an extension of our work on the structural characterization of naphthol compounds (Wang & Zhao, 2009), we report here the structure of the title compound. In the title compound (Fig. 1) bond lengths and angles have normal values. The dihedral angle between the naphthylene ring system and the benzene ring is 72.86 (12)°, and the pyridine ring is 72.61 (11)° respectively. The dihedral angle between benzene ring and the pyridine ring is 74.80 (13)°. In the solid state the molecules are linked into centrosymmetric  $R^2_2(16)$  dimers by a simple O—H…N interaction, (Bernstein *et al.*, 1995), (Fig. 2). The molecular conformation is stabilized by one N—H…O hydrogen bonding, Table 1.

## **S2.** Experimental

A dry 50 ml flask was charged with benzaldehyde (10 mmol), naphthalen-2-ol (10 mmol) and pyridin-2-amine (10 mmol). The mixture was stirred at 100°C for 12 h and then added ethanol (15 ml), after heated under reflux for 1 h, the precipitate was filtrated out and washed with ethanol for 3 times to give the title compound. Colourless crystals suitable for X-ray diffraction were obtained by slow evaporation of a dichloromethane solution.

### **S3. Refinement**

All H atoms were detected in a difference map, the H-atom bonded to C1 was refined freely, but all other H-atoms were placed in calculated positions and refined using a riding motion approxmation, with C—H = 0.93–0.98 Å, with  $U_{iso}(H) = 1.2U_{eq}(C)$ ; O—H = 0.82 Å, with  $U_{iso}(H) = 1.5U_{eq}(O)$ ; N—H = 0.86 Å, with  $U_{iso}(H) = 1.2U_{eq}(N)$ .



Figure 1

The molecular structure of the title compound, showing the atomic numbering scheme. The displacement ellipsoids are drawn at the 30% probability level.



Figure 2

Diagram of the molecules linked into centrosymmetric  $R_2^2(16)$  dimers by a simple O—H…N interaction .The H atoms not involved in hydrogen bonding have been omitted. The atoms no-labelled are related with labelled atoms by symmetry code: (a) -x+2, -y+1, -z+2.

1-[Phenyl(pyridin-2-ylamino)methyl]-2-naphthol

Crystal data

 $C_{22}H_{18}N_{2}O$   $M_{r} = 326.38$ Triclinic, *P*1 Hall symbol: -P 1 a = 7.5841 (10) Å b = 10.1890 (15) Å c = 11.9745 (15) Å  $a = 111.00 (3)^{\circ}$   $\beta = 98.64 (5)^{\circ}$   $\gamma = 90.83 (3)^{\circ}$  $V = 851.7 (2) \text{ Å}^{3}$ 

### Data collection

| Rigaku SCXmini                                       | 8701 measured reflections                                           |
|------------------------------------------------------|---------------------------------------------------------------------|
| diffractometer                                       | 3841 independent reflections                                        |
| Radiation source: fine-focus sealed tube             | 1655 reflections with $I > 2\sigma(I)$                              |
| Graphite monochromator                               | $R_{\rm int} = 0.078$                                               |
| Detector resolution: 13.6612 pixels mm <sup>-1</sup> | $\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 2.7^{\circ}$ |
| CCD_Profile_fitting scans                            | $h = -9 \longrightarrow 9$                                          |
| Absorption correction: multi-scan                    | $k = -13 \rightarrow 13$                                            |
| (CrystalClear; Rigaku, 2005)                         | $l = -15 \rightarrow 15$                                            |
| $T_{\min} = 0.982, T_{\max} = 0.990$                 |                                                                     |

Z = 2 F(000) = 344  $D_x = 1.273 \text{ Mg m}^{-3}$ Mo K $\alpha$  radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1326 reflections  $\theta = 2.7-27.4^{\circ}$   $\mu = 0.08 \text{ mm}^{-1}$ T = 295 K Prism, colourless  $0.18 \times 0.15 \times 0.12 \text{ mm}$  Refinement

| 0                                               |                                                            |
|-------------------------------------------------|------------------------------------------------------------|
| Refinement on $F^2$                             | Secondary atom site location: difference Fourier           |
| Least-squares matrix: full                      | map                                                        |
| $R[F^2 > 2\sigma(F^2)] = 0.097$                 | Hydrogen site location: inferred from                      |
| $wR(F^2) = 0.218$                               | neighbouring sites                                         |
| S = 1.10                                        | H atoms treated by a mixture of independent                |
| 3841 reflections                                | and constrained refinement                                 |
| 230 parameters                                  | $w = 1/[\sigma^2(F_o^2) + (0.0643P)^2]$                    |
| 0 restraints                                    | where $P = (F_{o}^{2} + 2F_{c}^{2})/3$                     |
| Primary atom site location: structure-invariant | $(\Delta/\sigma)_{\rm max} < 0.001$                        |
| direct methods                                  | $\Delta \rho_{\rm max} = 0.23 \ { m e} \ { m \AA}^{-3}$    |
|                                                 | $\Delta \rho_{\rm min} = -0.22 \ {\rm e} \ {\rm \AA}^{-3}$ |

## Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F<sup>2</sup>, conventional R-factors R are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2sigma(F^2)$  is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F<sup>2</sup> are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|     | x          | у           | Ζ          | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|-----|------------|-------------|------------|-----------------------------|--|
| 01  | 1.0666 (3) | 0.3873 (3)  | 0.8523 (2) | 0.0617 (8)                  |  |
| H1A | 1.1414     | 0.4523      | 0.8658     | 0.093*                      |  |
| N1  | 0.7935 (4) | 0.2729 (3)  | 0.9263 (3) | 0.0566 (9)                  |  |
| H1B | 0.8964     | 0.3093      | 0.9682     | 0.068*                      |  |
| N2  | 0.6664 (4) | 0.4120 (3)  | 1.0857 (3) | 0.0530 (8)                  |  |
| C1  | 0.7861 (5) | 0.1892 (4)  | 0.7972 (3) | 0.0485 (9)                  |  |
| C2  | 0.7985 (5) | 0.2805 (4)  | 0.7231 (3) | 0.0470 (9)                  |  |
| C3  | 0.9439 (5) | 0.3761 (4)  | 0.7531 (3) | 0.0520 (10)                 |  |
| C4  | 0.9660 (6) | 0.4595 (4)  | 0.6832 (4) | 0.0642 (11)                 |  |
| H4  | 1.0659     | 0.5228      | 0.7041     | 0.077*                      |  |
| C5  | 0.8400 (6) | 0.4467 (5)  | 0.5847 (4) | 0.0700 (12)                 |  |
| H5  | 0.8559     | 0.5009      | 0.5384     | 0.084*                      |  |
| C6  | 0.6862 (6) | 0.3526 (4)  | 0.5520 (3) | 0.0604 (11)                 |  |
| C7  | 0.6633 (5) | 0.2706 (4)  | 0.6231 (3) | 0.0545 (10)                 |  |
| C8  | 0.5032 (6) | 0.1824 (4)  | 0.5882 (4) | 0.0720 (13)                 |  |
| H8  | 0.4822     | 0.1276      | 0.6331     | 0.086*                      |  |
| C9  | 0.3793 (7) | 0.1749 (5)  | 0.4913 (5) | 0.0960 (17)                 |  |
| H9  | 0.2751     | 0.1165      | 0.4718     | 0.115*                      |  |
| C10 | 0.4070 (8) | 0.2538 (6)  | 0.4213 (5) | 0.0990 (19)                 |  |
| H10 | 0.3222     | 0.2467      | 0.3542     | 0.119*                      |  |
| C11 | 0.5562 (7) | 0.3408 (5)  | 0.4499 (4) | 0.0817 (14)                 |  |
| H11 | 0.5740     | 0.3932      | 0.4024     | 0.098*                      |  |
| C12 | 0.9204 (5) | 0.0761 (4)  | 0.7796 (3) | 0.0488 (9)                  |  |
| C13 | 0.9214 (6) | -0.0125 (4) | 0.8453 (3) | 0.0650 (11)                 |  |

| H13 | 0.8439     | 0.0007      | 0.9010     | 0.078*      |
|-----|------------|-------------|------------|-------------|
| C14 | 1.0357 (7) | -0.1196 (5) | 0.8290 (4) | 0.0769 (13) |
| H14 | 1.0342     | -0.1783     | 0.8732     | 0.092*      |
| C15 | 1.1510 (6) | -0.1395 (5) | 0.7479 (4) | 0.0793 (13) |
| H15 | 1.2311     | -0.2094     | 0.7388     | 0.095*      |
| C16 | 1.1481 (6) | -0.0558 (4) | 0.6801 (4) | 0.0739 (13) |
| H16 | 1.2231     | -0.0718     | 0.6226     | 0.089*      |
| C17 | 1.0346 (5) | 0.0526 (4)  | 0.6962 (3) | 0.0607 (11) |
| H17 | 1.0355     | 0.1096      | 0.6506     | 0.073*      |
| C18 | 0.6481 (5) | 0.2977 (4)  | 0.9857 (3) | 0.0476 (9)  |
| C19 | 0.4937 (5) | 0.2068 (4)  | 0.9475 (4) | 0.0648 (12) |
| H19 | 0.4829     | 0.1254      | 0.8784     | 0.078*      |
| C20 | 0.3584 (6) | 0.2405 (5)  | 1.0143 (4) | 0.0775 (13) |
| H20 | 0.2535     | 0.1820      | 0.9890     | 0.093*      |
| C21 | 0.3736 (6) | 0.3571 (5)  | 1.1164 (4) | 0.0780 (13) |
| H21 | 0.2824     | 0.3802      | 1.1625     | 0.094*      |
| C22 | 0.5309 (6) | 0.4390 (5)  | 1.1480 (4) | 0.0689 (12) |
| H22 | 0.5443     | 0.5195      | 1.2181     | 0.083*      |
| H66 | 0.668 (4)  | 0.142 (3)   | 0.776 (3)  | 0.041 (9)*  |
|     |            |             |            |             |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | U <sup>22</sup> | U <sup>33</sup> | $U^{12}$     | <i>U</i> <sup>13</sup> | U <sup>23</sup> |
|-----|-------------|-----------------|-----------------|--------------|------------------------|-----------------|
| 01  | 0.0546 (17) | 0.0668 (18)     | 0.0604 (17)     | -0.0142 (13) | -0.0016 (13)           | 0.0244 (15)     |
| N1  | 0.0449 (19) | 0.068 (2)       | 0.0469 (18)     | -0.0050 (15) | 0.0048 (14)            | 0.0102 (17)     |
| N2  | 0.054 (2)   | 0.053 (2)       | 0.0499 (18)     | 0.0025 (15)  | 0.0178 (15)            | 0.0124 (17)     |
| C1  | 0.043 (2)   | 0.050(2)        | 0.046 (2)       | -0.0056 (18) | 0.0043 (17)            | 0.0101 (19)     |
| C2  | 0.054 (2)   | 0.042 (2)       | 0.043 (2)       | 0.0036 (18)  | 0.0096 (17)            | 0.0126 (18)     |
| C3  | 0.050(2)    | 0.056 (2)       | 0.050(2)        | 0.0035 (19)  | 0.0076 (19)            | 0.019 (2)       |
| C4  | 0.068 (3)   | 0.061 (3)       | 0.070 (3)       | 0.006 (2)    | 0.021 (2)              | 0.028 (2)       |
| C5  | 0.087 (3)   | 0.074 (3)       | 0.063 (3)       | 0.027 (3)    | 0.021 (2)              | 0.038 (3)       |
| C6  | 0.066 (3)   | 0.054 (3)       | 0.052 (2)       | 0.018 (2)    | 0.007 (2)              | 0.010 (2)       |
| C7  | 0.062 (3)   | 0.047 (2)       | 0.048 (2)       | 0.0171 (19)  | 0.0106 (19)            | 0.009 (2)       |
| C8  | 0.062 (3)   | 0.061 (3)       | 0.077 (3)       | 0.000(2)     | -0.012 (2)             | 0.016 (2)       |
| C9  | 0.085 (4)   | 0.076 (3)       | 0.102 (4)       | -0.002 (3)   | -0.030 (3)             | 0.020 (3)       |
| C10 | 0.110 (5)   | 0.081 (4)       | 0.072 (3)       | 0.024 (3)    | -0.030(3)              | 0.005 (3)       |
| C11 | 0.102 (4)   | 0.080 (3)       | 0.058 (3)       | 0.037 (3)    | 0.003 (3)              | 0.022 (3)       |
| C12 | 0.050(2)    | 0.050(2)        | 0.041 (2)       | -0.0084 (17) | 0.0033 (17)            | 0.0112 (19)     |
| C13 | 0.078 (3)   | 0.060 (3)       | 0.058 (3)       | -0.003(2)    | 0.012 (2)              | 0.023 (2)       |
| C14 | 0.106 (4)   | 0.056 (3)       | 0.075 (3)       | 0.015 (3)    | 0.015 (3)              | 0.032 (3)       |
| C15 | 0.085 (4)   | 0.064 (3)       | 0.089 (3)       | 0.017 (2)    | 0.022 (3)              | 0.024 (3)       |
| C16 | 0.086 (3)   | 0.053 (3)       | 0.085 (3)       | 0.011 (2)    | 0.033 (3)              | 0.019 (3)       |
| C17 | 0.070 (3)   | 0.054 (3)       | 0.060(2)        | 0.006 (2)    | 0.019 (2)              | 0.020 (2)       |
| C18 | 0.046 (2)   | 0.051 (2)       | 0.048 (2)       | -0.0019 (17) | 0.0073 (17)            | 0.020 (2)       |
| C19 | 0.060 (3)   | 0.064 (3)       | 0.057 (2)       | -0.010 (2)   | 0.013 (2)              | 0.006 (2)       |
| C20 | 0.054 (3)   | 0.096 (4)       | 0.083 (3)       | -0.010 (2)   | 0.017 (2)              | 0.032 (3)       |
| C21 | 0.063 (3)   | 0.096 (4)       | 0.078 (3)       | 0.009 (3)    | 0.033 (2)              | 0.027 (3)       |
| C22 | 0.072 (3)   | 0.066 (3)       | 0.064 (3)       | 0.009 (2)    | 0.024 (2)              | 0.013 (2)       |

Geometric parameters (Å, °)

| 01—C3      | 1.363 (4)  | С9—Н9       | 0.9300    |  |
|------------|------------|-------------|-----------|--|
| O1—H1A     | 0.8194     | C10—C11     | 1.349 (7) |  |
| N1-C18     | 1.378 (4)  | C10—H10     | 0.9300    |  |
| N1—C1      | 1.466 (4)  | C11—H11     | 0.9300    |  |
| N1—H1B     | 0.8596     | C12—C17     | 1.378 (5) |  |
| N2-C18     | 1.325 (4)  | C12—C13     | 1.393 (5) |  |
| N2-C22     | 1.335 (5)  | C13—C14     | 1.381 (6) |  |
| C1—C2      | 1.508 (5)  | C13—H13     | 0.9300    |  |
| C1C12      | 1.528 (5)  | C14—C15     | 1.366 (6) |  |
| C1—H66     | 0.97 (3)   | C14—H14     | 0.9300    |  |
| C2—C3      | 1.376 (5)  | C15—C16     | 1.371 (6) |  |
| C2—C7      | 1.427 (5)  | C15—H15     | 0.9300    |  |
| C3—C4      | 1.415 (5)  | C16—C17     | 1.386 (5) |  |
| C4—C5      | 1.367 (5)  | C16—H16     | 0.9300    |  |
| C4—H4      | 0.9300     | C17—H17     | 0.9300    |  |
| C5—C6      | 1.413 (6)  | C18—C19     | 1.394 (5) |  |
| С5—Н5      | 0.9300     | C19—C20     | 1.368 (5) |  |
| C6—C7      | 1.416 (5)  | C19—H19     | 0.9300    |  |
| C6—C11     | 1.418 (5)  | C20—C21     | 1.354 (6) |  |
| С7—С8      | 1.415 (5)  | C20—H20     | 0.9300    |  |
| С8—С9      | 1.357 (6)  | C21—C22     | 1.368 (6) |  |
| С8—Н8      | 0.9300     | C21—H21     | 0.9300    |  |
| C9—C10     | 1.388 (7)  | C22—H22     | 0.9300    |  |
|            |            |             |           |  |
| C3—O1—H1A  | 109.5      | C9—C10—H10  | 119.8     |  |
| C18—N1—C1  | 125.0 (3)  | C10—C11—C6  | 120.3 (5) |  |
| C18—N1—H1B | 117.5      | C10—C11—H11 | 119.9     |  |
| C1—N1—H1B  | 117.5      | C6—C11—H11  | 119.9     |  |
| C18—N2—C22 | 117.9 (3)  | C17—C12—C13 | 118.2 (4) |  |
| N1-C1-C2   | 112.2 (3)  | C17—C12—C1  | 122.6 (3) |  |
| N1-C1-C12  | 110.8 (3)  | C13—C12—C1  | 119.0 (3) |  |
| C2-C1-C12  | 114.6 (3)  | C14—C13—C12 | 121.1 (4) |  |
| N1—C1—H66  | 102.0 (18) | C14—C13—H13 | 119.5     |  |
| С2—С1—Н66  | 109.0 (18) | C12—C13—H13 | 119.5     |  |
| С12—С1—Н66 | 107.4 (19) | C15—C14—C13 | 120.0 (4) |  |
| C3—C2—C7   | 119.2 (3)  | C15—C14—H14 | 120.0     |  |
| C3—C2—C1   | 119.0 (3)  | C13—C14—H14 | 120.0     |  |
| C7—C2—C1   | 121.7 (3)  | C14—C15—C16 | 119.6 (4) |  |
| O1—C3—C2   | 117.8 (3)  | C14—C15—H15 | 120.2     |  |
| O1—C3—C4   | 121.0 (3)  | C16—C15—H15 | 120.2     |  |
| C2—C3—C4   | 121.2 (4)  | C15—C16—C17 | 120.8 (4) |  |
| C5—C4—C3   | 119.7 (4)  | C15—C16—H16 | 119.6     |  |
| C5—C4—H4   | 120.2      | C17—C16—H16 | 119.6     |  |
| C3—C4—H4   | 120.2      | C12—C17—C16 | 120.2 (4) |  |
| C4—C5—C6   | 121.2 (4)  | C12—C17—H17 | 119.9     |  |
| C4—C5—H5   | 119.4      | C16—C17—H17 | 119.9     |  |

| С6—С5—Н5      | 119.4      | N2—C18—N1       | 115.6 (3)  |
|---------------|------------|-----------------|------------|
| C5—C6—C7      | 119.0 (4)  | N2-C18-C19      | 121.3 (3)  |
| C5—C6—C11     | 120.6 (4)  | N1-C18-C19      | 123.1 (4)  |
| C7—C6—C11     | 120.4 (4)  | C20-C19-C18     | 118.2 (4)  |
| C8—C7—C6      | 116.1 (4)  | С20—С19—Н19     | 120.9      |
| C8—C7—C2      | 124.3 (4)  | C18—C19—H19     | 120.9      |
| C6—C7—C2      | 119.6 (4)  | C21—C20—C19     | 121.5 (4)  |
| C9—C8—C7      | 122.3 (5)  | C21—C20—H20     | 119.2      |
| С9—С8—Н8      | 118.9      | С19—С20—Н20     | 119.2      |
| С7—С8—Н8      | 118.9      | C20—C21—C22     | 116.2 (4)  |
| C8—C9—C10     | 120.5 (5)  | C20—C21—H21     | 121.9      |
| С8—С9—Н9      | 119.8      | C22—C21—H21     | 121.9      |
| С10—С9—Н9     | 119.8      | N2—C22—C21      | 124.8 (4)  |
| C11—C10—C9    | 120.4 (5)  | N2—C22—H22      | 117.6      |
| С11—С10—Н10   | 119.8      | C21—C22—H22     | 117.6      |
|               |            |                 |            |
| C18—N1—C1—C2  | 102.8 (4)  | C8—C9—C10—C11   | -1.1 (8)   |
| C18—N1—C1—C12 | -127.8 (4) | C9—C10—C11—C6   | -0.1 (8)   |
| N1—C1—C2—C3   | 56.8 (4)   | C5—C6—C11—C10   | -178.0 (5) |
| C12—C1—C2—C3  | -70.6 (4)  | C7—C6—C11—C10   | 1.7 (6)    |
| N1—C1—C2—C7   | -122.9 (4) | N1—C1—C12—C17   | -132.7 (4) |
| C12—C1—C2—C7  | 109.6 (4)  | C2-C1-C12-C17   | -4.6 (5)   |
| C7—C2—C3—O1   | 177.1 (3)  | N1-C1-C12-C13   | 51.0 (4)   |
| C1—C2—C3—O1   | -2.7 (5)   | C2-C1-C12-C13   | 179.1 (3)  |
| C7—C2—C3—C4   | -3.2 (5)   | C17—C12—C13—C14 | 1.1 (6)    |
| C1—C2—C3—C4   | 177.1 (3)  | C1-C12-C13-C14  | 177.5 (4)  |
| O1—C3—C4—C5   | -179.5 (3) | C12-C13-C14-C15 | 0.4 (7)    |
| C2—C3—C4—C5   | 0.8 (6)    | C13-C14-C15-C16 | -2.3 (7)   |
| C3—C4—C5—C6   | 0.8 (6)    | C14—C15—C16—C17 | 2.6 (7)    |
| C4—C5—C6—C7   | 0.1 (6)    | C13—C12—C17—C16 | -0.7 (6)   |
| C4—C5—C6—C11  | 179.8 (4)  | C1—C12—C17—C16  | -177.0 (3) |
| C5—C6—C7—C8   | 177.7 (4)  | C15-C16-C17-C12 | -1.1 (6)   |
| C11—C6—C7—C8  | -2.0 (5)   | C22—N2—C18—N1   | -178.6 (3) |
| C5—C6—C7—C2   | -2.4 (5)   | C22—N2—C18—C19  | -1.1 (5)   |
| C11—C6—C7—C2  | 177.9 (4)  | C1—N1—C18—N2    | -156.4 (3) |
| C3—C2—C7—C8   | -176.2 (4) | C1—N1—C18—C19   | 26.2 (6)   |
| C1—C2—C7—C8   | 3.6 (6)    | N2-C18-C19-C20  | 1.7 (6)    |
| C3—C2—C7—C6   | 4.0 (5)    | N1-C18-C19-C20  | 179.0 (4)  |
| C1—C2—C7—C6   | -176.3 (3) | C18—C19—C20—C21 | -1.4 (7)   |
| C6—C7—C8—C9   | 0.8 (6)    | C19—C20—C21—C22 | 0.4 (7)    |
| C2—C7—C8—C9   | -179.1 (4) | C18—N2—C22—C21  | 0.1 (6)    |
| C7—C8—C9—C10  | 0.7 (7)    | C20-C21-C22-N2  | 0.3 (7)    |

# Hydrogen-bond geometry (Å, °)

| D—H···A                   | <i>D</i> —Н | H···A | D····A    | <i>D</i> —H··· <i>A</i> |
|---------------------------|-------------|-------|-----------|-------------------------|
| O1—H1A····N2 <sup>i</sup> | 0.82        | 1.87  | 2.677 (4) | 170                     |

# supporting information

| N1—H1 <i>B</i> …O1 | 0.86 | 2.35 | 2.767 (4) | 110 |
|--------------------|------|------|-----------|-----|
|                    |      |      |           |     |

Symmetry code: (i) -x+2, -y+1, -z+2.