metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(Ferrocenylthiophosphonato-κS)-(triphenylphosphane-κP)gold(I) dichloromethane monosolvate

Hendriette van der Walt,^a Alfred Muller,^a Richard J. Staples^b and Werner E. Van Zyl^c*

^aResearch Centre in Synthesis and Catalysis, Department of Chemistry, University of Johannesburg (APK Campus), PO Box 524, Auckland Park, Johannesburg 2006, South Africa, ^bDepartment of Chemistry, Michigan State University, East Lansing, MI 48824-1322, USA, and ^cSchool of Chemistry, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa Correspondence e-mail: vanzylw@ukzn.ac.za

Received 27 September 2010; accepted 30 September 2010

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.012 Å; disorder in solvent or counterion; R factor = 0.051; wR factor = 0.153; data-to-parameter ratio = 13.1.

In the title compound, $[AuFe(C_5H_5)(C_5H_5O_2PS)(C_{18}H_{15}P)]$ ·CH₂Cl₂, the two-coordinate gold(I) atom shows a slightly distorted linear arrangement, with a P-Au-S bond angle of 176.81 (6)°. The difference in P=O and P-O(H) bond lengths, which are 1.503 (6) and 1.541 (5) Å, respectively, implies there is apparently no delocalization between the P-O bonds, and the proton appears to be localized on one O atom only. In the crystal structure, intermolecular O-H···O hydrogen bonds link dinuclear molecules into chains propagated in the [010] direction. The dichloromethane solvent molecule was disordered between two positions in a 0.63 (3):0.37 (3) ratio.

Related literature

For information on dithiophosphonate complexes of Group 11 metals, see: Van Zyl (2010). For the synthesis of dithiophosphonate salt derivatives, see: Van Zyl & Fackler (2000). For gold complexes with thiophosphoryl-based ligands, see: Crespo *et al.* (2004). For gold complexes with dithiophosphate phosphine gold(I) complexes, see: Preisenberger *et al.* (1998). For the synthesis of ferrocenyl (Fc) dimers of the type $[PS_2(Fc)]_2$, see: Foreman *et al.* (1996). For general background, see: Allen (2002).

 $\beta = 112.831 \ (10)^{\circ}$

V = 2931.8 (9) Å³

Mo $K\alpha$ radiation

 $0.20 \times 0.18 \times 0.16 \ \mathrm{mm}$

13808 measured reflections

4924 independent reflections

4348 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

independent and constrained

 $\mu = 5.88 \text{ mm}^{-3}$

T = 173 K

 $R_{\rm int} = 0.112$

refinement $\Delta \rho_{\text{max}} = 2.14 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -1.63 \text{ e } \text{\AA}^{-3}$

Z = 4

Experimental

Crystal data [AuFe(C₅H₅)(C₅H₅O₂PS)-(C₁₈H₁₅P)]·CH₂Cl₂ $M_r = 825.22$ Monoclinic, $P2_1/c$ a = 15.122 (3) Å b = 9.3157 (18) Å c = 22.581 (3) Å

Data collection

```
Bruker APEXII CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
T_{min} = 0.386, T_{max} = 0.453
```

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.051$ $wR(F^2) = 0.153$ S = 1.104924 reflections 375 parameters 18 restraints

Table 1

Hydrogen-bond geometry (Å, °).

 $D-H\cdots A$ D-H $H\cdots A$ $D\cdots A$ $D-H\cdots A$
 $O2-H1\cdots O1^{i}$ 1.11 (11) 1.33 (11) 2.432 (7) 173 (9)

 Summatic code (i)
 $x = y + \frac{1}{2} = z + \frac{3}{2}$ $x = \frac{1}{2} + \frac{3}{2}$ $x = \frac{1}{2} + \frac{3}{2}$

Symmetry code: (i) $-x, y + \frac{1}{2}, -z + \frac{3}{2}$.

Data collection: *APEX2* (Bruker 2006); cell refinement: *SAINT-Plus* (Bruker, 2001); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SIR2002* (Burla *et al.*, 2003); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg & Berndt, 2001); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

The authors thank Mintek (Project AuTEK), South Africa, for financial support of this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2770).

metal-organic compounds

References

- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Brandenburg, K. & Berndt, M. (2001). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Bruker (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C.,
- Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.
- Crespo, O., Brusko, V. V., Gimeno, M. C., Tornil, M. L., Laguna, A. & Zabirov, N. G. (2004). *Eur. J. Inorg. Chem.* 2, 423–430.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Foreman, M. R. S., Slawin, A. M. Z. & Woollins, J. D. (1996). J. Chem. Soc. Dalton Trans. pp. 3653–3657
- Preisenberger, M., Schier, A. & Schmidbaur, H. (1998). Z. Naturforsch. Teil B, 53, 781–787.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Van Zyl, W. E. (2010). Comments Inorg. Chem. 31, 13-45.
- Van Zyl, W. E. & Fackler, J. P. (2000). Phosphorus Sulfur Silicon Relat. Elem. 167, 117–132.

supporting information

Acta Cryst. (2010). E**66**, m1364–m1365 [https://doi.org/10.1107/S1600536810039255]

$(Ferrocenylthiophosphonato-\kappa S)(triphenylphosphane-\kappa P)gold(I) dichloro$ methane monosolvate

Hendriette van der Walt, Alfred Muller, Richard J. Staples and Werner E. Van Zyl

S1. Comment

The dithiophosphonato dianion salt, $(NH_4)_2[S_2P(Fc)OCH_2CH_2O(Fc)PS_2]$ (Fc = ferrocenyl) was used in this study. It was obtained from the reaction between the dimer $[PS_2(Fc)]_2$ (Foreman *et al.*, 1996) and ethanediol, which formed a diacid. The diacid could be readily deprotonated by ammonia gas. The salt was then reacted with $[Au(PPh_3)Cl]$ to yield the complex $[(PPh_3)AuS_2(Fc)P(OC_2H_4O)P(Fc)S_2Au(PPh_3)]$ (I). The complex was fully characterized spectroscopically (see Experimental). During work-up for crystal growth, however, the ligand became oxidized, presumably as a result of water present in the solvent dichloromethane. This resulted in substitution of a terminal P=S bond with a P=O bond, a reaction that can readily occur with oxophilic phosphorus(V) in the presence of moisture. Additionally, it resulted in C—O bond cleavage to be replaced with H—O bond formation. A precise mechanism for the reaction is not proposed. The title compound I (see Fig 1) crystalizes in the $P2_1/c$ space group with molecules lying on general positions in the unit cell. All geometrical data for the compound are within the normal limits (Allen, 2002). In the crystal packing, there is a hydrogenbonding network along the *b* axis between the P= O···H—O—P moieties (see Fig 2 and Table 1).

S2. Experimental

The complex (I) was obtained as an oxidized product. The initial reaction was between the $(NH_4)_2[S_2P(Fc)OCH_2CH_2O(Fc)PS_2]$ salt (Fc = ferrocenyl) (0.122 g, 0.206 mmol) and $[Au(PPh_3)Cl]$ (0.200 g, 0.413 mmol) in a THF solution. The NH₄Cl was filtered off and the filtrate solvent removed under reduced pressure yielding a yellow colored powder. Yield: 0.127 g (41%). *M*.p.: 128°C. ¹H-NMR (CDCl₃) δ : 7.54 – 7.45 (m, 30H, PPh₃); 4.65 – 4.22 (d, 4H, Fc); 4.53 – 4.50 (d, 4H, Fc); 4.30 (s, 10H, Fc); 4.36 – 4.31 (t, 2H, CH₂); 3.99 – 3.93 (m, 2H, CH₂). ³¹P-NMR δ : 106.14 and 106.03 (d, 2P, P—S); 37.82 (s, 2P, PPh₃). ESI-MS: m/z 1539 (95%) for [(PPh₃)AuS_2(Fc)P(OC_2H_4O)P(Fc)S_2Au(PPh_3)].

S3. Refinement

The aromatic H atoms were placed in geometrically idealized positions (C—H = 0.95 Å) and constrained to ride on their parent atoms with $U_{iso}(H) = 1.2U_{eq}(C)$. The hydroxyl H was located in a Fourier difference map and refined isotropically. The disorder of the solvent molecule was refined over two positions that adds to unity. The final refinement shows a ratio of 37:63 for the two components. The neccesary bond and U^{ij} restraints were applied to keep the refinement stable.

Figure 1

View of (I) (30% probability displacement ellipsoids). Hydrogen atoms omitted for clarity.

Figure 2

Packing diagram of (I) showing the infinite hydrogen bonding interactions (dashed lines) along the *b* axis. Solvent molecules omitted for clarity.

(Ferrocenylthiophosphonato-*kS*)(triphenylphosphane-*kP*)gold(I) dichloromethane monosolvate

Crystal data

$[AuFe(C_5H_5)(C_5H_5O_2PS)(C_{18}H_{15}P)] \cdot CH_2Cl_2$	<i>b</i> = 9.3157 (18) Å
$M_r = 825.22$	c = 22.581 (3) Å
Monoclinic, $P2_1/c$	$\beta = 112.831 (10)^{\circ}$
Hall symbol: -P 2ybc	$V = 2931.8 (9) \text{ Å}^3$
a = 15.122 (3) Å	Z = 4

F(000) = 1608 $D_x = 1.87 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9574 reflections $\theta = 2.2-27.9^{\circ}$

Data collection

Bruker CCD
diffractometer
Graphite monochromator
φ scans
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
$T_{\min} = 0.386, T_{\max} = 0.453$
13808 measured reflections

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.051$	Hydrogen site location: inferred from
$wR(F^2) = 0.153$	neighbouring sites
S = 1.10	H atoms treated by a mixture of independent
4924 reflections	and constrained refinement
375 parameters	$w = 1/[\sigma^2(F_0^2) + (0.095P)^2]$
18 restraints	where $P = (F_0^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.001$
direct methods	$\Delta ho_{ m max} = 2.14 \ m e \ m \AA^{-3}$
	$\Delta \rho_{\rm min} = -1.63 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Experimental. The intensity data was collected on a Bruker CCD based diffractometer equipped with an Oxford Cryostream low-temperature apparatus operating at 173 K diffractometer using an exposure time of 30 s/frame. A total of 1276 frames were collected with a frame width of 0.5° covering up to $\theta = 28.63\%$ with 86.5% completeness accomplished. Due to decomposition and the weak diffracting nature of the title compound, refinement of data was restricted to $\theta = 25.0\%$ to reach a completeness of 95.5%.

 $\mu = 5.88 \text{ mm}^{-1}$ T = 173 K

 $R_{\rm int} = 0.112$

 $h = -16 \rightarrow 17$ $k = -11 \rightarrow 11$ $l = -26 \rightarrow 20$

Block, orange-brown

 $0.2 \times 0.18 \times 0.16 \text{ mm}$

 $\theta_{\rm max} = 25^{\circ}, \ \theta_{\rm min} = 1.5^{\circ}$

4924 independent reflections 4348 reflections with $I > 2\sigma(I)$

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	r	v	7	Uins*/Un	Occ (<1)
A.1.1	0 227778 (18)	0.21/10(3)	0 700726 (13)		000.(1)
Fe1	-0.15433(8)	0.21410(3) 0.30798(11)	0.60212 (6)	0.0463(3)	
S1	0.17770 (13)	0.35983 (19)	0.77340 (10)	0.0499 (4)	
P1	0.28030 (12)	0.08231 (19)	0.64580 (9)	0.0407 (4)	
P2	0.03846 (15)	0.29088 (17)	0.74410 (11)	0.0443 (5)	
01	0.0279 (4)	0.1480 (6)	0.7716 (3)	0.0528 (13)	
O2	-0.0137 (4)	0.4034 (6)	0.7688 (3)	0.0502 (12)	

C11	0.2290 (5)	0.1421 (7)	0.5625 (3)	0.0439 (15)
C12	0.2703 (5)	0.1110 (8)	0.5188 (4)	0.0515 (17)
H12	0.3305	0.0634	0.5326	0.062*
C13	0.2237 (6)	0.1493 (8)	0.4552 (4)	0.0544 (18)
H13	0.2521	0.1274	0.4254	0.065*
C14	0.1361 (7)	0.2190 (8)	0.4340 (5)	0.058(2)
H14	0.1054	0.2476	0.3904	0.069*
C15	0.0933 (7)	0.2469 (10)	0.4779 (4)	0.058(2)
H15	0.0317	0.2903	0.4639	0.069*
C16	0.1411 (6)	0.2112 (7)	0.5408(4)	0.0514 (19)
H16	0.1132	0.2344	0.5707	0.062*
C21	0.4100 (5)	0.0891 (7)	0.6701 (3)	0.0435 (15)
C22	0.4526 (6)	0.2000 (8)	0.6510 (4)	0.0516 (19)
H22	0.4133	0.2703	0.6224	0.062*
C23	0.5507 (6)	0.2118(7)	0.6723 (5)	0.055(2)
H23	0.579	0.2881	0.6579	0.067*
C24	0.6073 (5)	0.1112 (9)	0.7150 (4)	0.0542 (18)
H24	0.6751	0.118	0.7295	0.065*
C25	0.5671 (5)	0.0007 (9)	0.7369 (4)	0.063(2)
H25	0.6069	-0.0661	0.7674	0.075*
C26	0.4683 (5)	-0.0116(8)	0.7141 (4)	0.0522 (17)
H26	0.44	-0.0884	0.7282	0.063*
C31	0.2488 (5)	-0.1068(7)	0.6423 (3)	0.0428 (15)
C32	0.2881 (6)	-0.2077(7)	0.6148 (4)	0.0499 (19)
H32	0.3353	-0.18	0.599	0.06*
C33	0.2582 (6)	-0.3508 (8)	0.6105 (4)	0.0540 (18)
H33	0.2868	-0.4213	0.5931	0.065*
C34	0.1871 (5)	-0.3890 (9)	0.6314 (4)	0.0559 (19)
H34	0.1657	-0.4858	0.6274	0.067*
C35	0.1471 (6)	-0.2889 (8)	0.6581 (5)	0.058 (2)
H35	0.0991	-0.3167	0.6732	0.07*
C36	0.1766 (5)	-0.1480 (8)	0.6628 (4)	0.0505 (17)
H36	0.1476	-0.0784	0.6803	0.061*
C41	-0.0125 (5)	0.2862 (7)	0.6583 (4)	0.0452 (18)
C42	-0.0462 (5)	0.1626 (8)	0.6188 (4)	0.0476 (17)
H42	-0.0448	0.0669	0.6336	0.057*
C43	-0.0826 (6)	0.2068 (8)	0.5530 (4)	0.0490 (18)
H43	-0.1094	0.1461	0.5166	0.059*
C44	-0.0713 (5)	0.3575 (8)	0.5522 (4)	0.0504 (17)
H44	-0.0896	0.4162	0.5149	0.061*
C45	-0.0278 (5)	0.4060 (8)	0.6169 (4)	0.0467 (16)
H45	-0.0117	0.5027	0.6302	0.056*
C51	-0.2328 (6)	0.4488 (10)	0.6316 (5)	0.070(2)
H51	-0.2125	0.5385	0.6524	0.083*
C52	-0.2765 (6)	0.4242 (12)	0.5630 (5)	0.074 (3)
H52	-0.2884	0.4942	0.5302	0.089*
C53	-0.2981 (6)	0.2771 (10)	0.5542 (5)	0.069 (3)
Н53	-0.329	0.2308	0.5139	0.082*

supporting information

C54	-0.2672 (7)	0.2106 (10)	0.6135 (6)	0.066 (3)		
H54	-0.2727	0.1112	0.6207	0.08*		
C55	-0.2263 (6)	0.3149 (10)	0.6614 (5)	0.060(2)		
H55	-0.1988	0.2976	0.7064	0.072*		
H1	-0.020(7)	0.512 (12)	0.747 (4)	0.09 (3)*		
C1A	0.539 (6)	-0.310 (3)	0.556 (4)	0.18 (4)	0.37 (3)	
H1A1	0.5102	-0.3393	0.51	0.217*	0.37 (3)	
H1A2	0.6083	-0.3287	0.5704	0.217*	0.37 (3)	
Cl1A	0.528 (3)	-0.134 (3)	0.5549 (15)	0.094 (5)	0.37 (3)	
Cl2A	0.4991 (7)	-0.427 (2)	0.5939 (16)	0.117 (8)	0.37 (3)	
C1B	0.5793 (14)	-0.284 (2)	0.6005 (13)	0.093 (8)	0.63 (3)	
H1B1	0.5783	-0.3424	0.5636	0.112*	0.63 (3)	
H1B2	0.6472	-0.2746	0.6303	0.112*	0.63 (3)	
Cl1B	0.5391 (15)	-0.1218 (16)	0.5733 (8)	0.081 (3)	0.63 (3)	
Cl2B	0.5235 (9)	-0.3745 (11)	0.6373 (9)	0.106 (5)	0.63 (3)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	<i>U</i> ¹³	<i>U</i> ²³
Au1	0.0426 (2)	0.0476 (2)	0.0452 (2)	-0.00013 (9)	0.02019 (16)	-0.00134 (11)
Fe1	0.0409 (6)	0.0511 (5)	0.0486 (7)	-0.0013 (4)	0.0191 (5)	-0.0046 (5)
S1	0.0459 (9)	0.0530 (10)	0.0529 (11)	-0.0054 (7)	0.0215 (8)	-0.0097 (9)
P1	0.0396 (9)	0.0443 (8)	0.0418 (10)	-0.0003(7)	0.0196 (7)	0.0001 (8)
P2	0.0471 (11)	0.0430 (10)	0.0443 (11)	-0.0016 (7)	0.0192 (9)	-0.0016 (8)
01	0.072 (3)	0.042 (3)	0.048 (3)	-0.005 (2)	0.028 (3)	0.001 (2)
O2	0.056 (3)	0.050 (3)	0.054 (3)	0.000 (2)	0.031 (3)	-0.002 (2)
C11	0.045 (4)	0.047 (4)	0.041 (4)	-0.003 (3)	0.018 (3)	-0.001 (3)
C12	0.049 (4)	0.054 (4)	0.051 (4)	0.003 (3)	0.019 (3)	0.000 (4)
C13	0.065 (5)	0.057 (4)	0.046 (4)	0.003 (4)	0.027 (4)	0.008 (4)
C14	0.060 (5)	0.059 (5)	0.047 (5)	-0.001 (3)	0.013 (4)	0.009 (4)
C15	0.060 (5)	0.064 (4)	0.050 (5)	0.013 (4)	0.022 (4)	0.010 (4)
C16	0.042 (4)	0.061 (5)	0.059 (5)	0.005 (3)	0.028 (4)	0.008 (4)
C21	0.036 (3)	0.048 (3)	0.047 (4)	-0.005 (3)	0.017 (3)	-0.009 (3)
C22	0.053 (5)	0.049 (4)	0.053 (5)	0.003 (3)	0.021 (4)	0.002 (3)
C23	0.046 (4)	0.056 (5)	0.070 (6)	-0.006 (3)	0.028 (4)	-0.004 (4)
C24	0.045 (4)	0.065 (4)	0.054 (5)	-0.003 (3)	0.020 (3)	-0.007 (4)
C25	0.046 (4)	0.068 (5)	0.071 (5)	0.009 (4)	0.019 (4)	0.007 (4)
C26	0.051 (4)	0.056 (4)	0.053 (5)	-0.003 (3)	0.023 (3)	0.006 (4)
C31	0.044 (4)	0.043 (3)	0.044 (4)	0.003 (3)	0.020 (3)	0.002 (3)
C32	0.056 (5)	0.053 (4)	0.050 (5)	-0.004 (3)	0.031 (4)	0.000 (3)
C33	0.056 (4)	0.047 (4)	0.059 (5)	0.000 (3)	0.022 (4)	-0.002 (4)
C34	0.062 (5)	0.053 (4)	0.054 (5)	-0.014 (3)	0.024 (4)	-0.002 (4)
C35	0.050 (5)	0.061 (5)	0.069 (6)	-0.009 (3)	0.028 (4)	0.001 (4)
C36	0.050 (4)	0.050 (4)	0.054 (5)	-0.002 (3)	0.024 (3)	0.001 (4)
C41	0.040 (4)	0.051 (4)	0.049 (5)	0.001 (3)	0.023 (3)	-0.004 (3)
C42	0.044 (4)	0.049 (4)	0.050 (4)	-0.003 (3)	0.019 (3)	-0.005 (4)
C43	0.045 (4)	0.060 (5)	0.042 (4)	0.000 (3)	0.017 (3)	-0.007 (3)
C44	0.049 (4)	0.060 (4)	0.045 (4)	0.003 (3)	0.021 (3)	0.009 (4)

supporting information

C45	0.047 (4)	0.047 (4)	0.052 (4)	-0.003 (3)	0.026 (3)	0.000 (3)
C51	0.048 (4)	0.072 (5)	0.092 (7)	0.004 (4)	0.032 (5)	-0.020 (5)
C52	0.047 (4)	0.090 (6)	0.081 (7)	0.017 (4)	0.021 (4)	0.000 (6)
C53	0.039 (5)	0.094 (7)	0.072 (7)	-0.013 (4)	0.020 (4)	-0.030 (5)
C54	0.053 (5)	0.075 (6)	0.082 (7)	-0.009 (4)	0.039 (5)	-0.008 (5)
C55	0.054 (5)	0.082 (5)	0.055 (5)	-0.006 (4)	0.032 (4)	-0.006 (5)
C1A	0.19 (7)	0.101 (13)	0.34 (11)	0.00 (4)	0.20 (8)	0.00 (4)
Cl1A	0.070 (6)	0.100(7)	0.098 (13)	-0.005 (6)	0.016 (10)	0.011 (8)
Cl2A	0.077 (5)	0.108 (9)	0.147 (17)	0.009 (5)	0.020 (7)	0.040 (12)
C1B	0.051 (10)	0.097 (12)	0.13 (2)	0.014 (8)	0.029 (11)	0.029 (13)
Cl1B	0.076 (6)	0.079 (3)	0.084 (7)	0.002 (3)	0.026 (6)	-0.008(4)
Cl2B	0.098 (5)	0.090 (4)	0.149 (11)	0.016 (4)	0.068 (7)	0.034 (5)

Geometric parameters (Å, °)

Au1—P1	2.2609 (18)	С32—Н32	0.95
Au1—S1	2.3084 (19)	C33—C34	1.379 (11)
S1—P2	2.050 (3)	С33—Н33	0.95
P1—C31	1.819 (7)	C34—C35	1.372 (12)
P1—C21	1.821 (6)	C34—H34	0.95
P1—C11	1.822 (7)	C35—C36	1.377 (11)
P2—O1	1.503 (6)	С35—Н35	0.95
P2—O2	1.541 (5)	С36—Н36	0.95
P2—C41	1.786 (9)	C41—C45	1.416 (10)
O2—H1	1.11 (11)	C41—C42	1.424 (11)
C11—C16	1.384 (10)	C42—C43	1.428 (11)
C11—C12	1.387 (10)	C42—H42	0.95
C12—C13	1.379 (11)	C43—C44	1.416 (11)
C12—H12	0.95	C43—H43	0.95
C13—C14	1.383 (12)	C44—C45	1.424 (11)
C13—H13	0.95	C44—H44	0.95
C14—C15	1.402 (13)	C45—H45	0.95
C14—H14	0.95	C51—C55	1.403 (13)
C15—C16	1.361 (12)	C51—C52	1.446 (13)
C15—H15	0.95	C51—H51	0.95
C16—H16	0.95	C52—C53	1.405 (14)
C21—C22	1.372 (10)	С52—Н52	0.95
C21—C26	1.402 (10)	C53—C54	1.382 (15)
C22—C23	1.375 (12)	С53—Н53	0.95
C22—H22	0.95	C54—C55	1.406 (13)
C23—C24	1.378 (12)	C54—H54	0.95
C23—H23	0.95	С55—Н55	0.95
C24—C25	1.381 (11)	C1A—Cl2A	1.642 (17)
C24—H24	0.95	C1A—Cl1A	1.645 (17)
C25—C26	1.383 (10)	C1A—H1A1	0.99
С25—Н25	0.95	C1A—H1A2	0.99
С26—Н26	0.95	C1B—Cl2B	1.629 (14)
C31—C32	1.381 (10)	C1B—C11B	1.656 (14)

C31—C36	1.396 (10)	C1B—H1B1	0.99
C32—C33	1.399 (11)	C1B—H1B2	0.99
P1—Au1—S1	176.81 (6)	С33—С32—Н32	120.1
P2—S1—Au1	99.14 (9)	C34—C33—C32	119.7 (8)
C31—P1—C21	106.3 (3)	С34—С33—Н33	120.2
C31—P1—C11	104.6 (3)	С32—С33—Н33	120.2
C21—P1—C11	106.1 (3)	C35—C34—C33	120.7 (7)
C31—P1—Au1	113.8 (2)	С35—С34—Н34	119.6
C21—P1—Au1	113.1 (2)	С33—С34—Н34	119.6
C11—P1—Au1	112.3 (2)	C34—C35—C36	119.8 (8)
O1—P2—O2	107.6 (3)	С34—С35—Н35	120.1
O1—P2—C41	110.8 (3)	С36—С35—Н35	120.1
O2—P2—C41	110.1 (3)	C35—C36—C31	120.5 (7)
O1—P2—S1	113.9 (3)	С35—С36—Н36	119.7
O2—P2—S1	106.0 (2)	С31—С36—Н36	119.7
C41 - P2 - S1	108.3 (3)	C45—C41—C42	107.2 (7)
P2-02-H1	115 (5)	C45—C41—P2	126.0(5)
C16-C11-C12	118.7 (7)	C42-C41-P2	126.8 (6)
C16-C11-P1	118 3 (6)	C41 - C42 - C43	108.6(7)
C12-C11-P1	122.8 (5)	C41 - C42 - H42	125.7
C13 - C12 - C11	1199(7)	C43 - C42 - H42	125.7
C13 - C12 - H12	120.1	C44 - C43 - C42	123.7 107.5(7)
C11 - C12 - H12	120.1	C44-C43-H43	126.3
C12 - C13 - C14	121.0 (8)	C_{42} C_{43} H_{43}	126.3
C12 - C13 - C14	119 5	$C_{42} = C_{43} = \Pi_{43}$	120.3 108 1 (7)
C12 - C13 - H13	119.5	C43 - C44 - H44	125.9
C_{13} C_{14} C_{15} C_{15}	119.0 (8)	C45 - C44 - H44	125.9
C_{13} C_{14} H_{14}	120.5	C41 - C45 - C44	108.6 (6)
C15 - C14 - H14	120.5	$C_{41} = C_{45} = C_{44}$	125 7
C_{15} C_{14} C_{14} C_{14}	110.2 (8)	C_{44} C_{45} H_{45}	125.7
$C_{10} = C_{15} = C_{14}$	119.2 (0)	$C_{44} = C_{43} = 1143$	125.7
$C_{10} = C_{15} = H_{15}$	120.4	$C_{55} = C_{51} = C_{52}$	100.9 (8)
$C_{14} = C_{15} = 1115$	120.4	$C_{55} = C_{51} = H_{51}$	120.5
$C_{15} = C_{16} = C_{11}$	122.1 (6)	$C_{52} = C_{51} = H_{51}$	120.3 106.0 (10)
C11 C16 H16	119	$C_{53} = C_{52} = C_{51}$	100.9 (10)
C12 C21 C26	119	$C_{55} - C_{52} - H_{52}$	120.5
$C_{22} = C_{21} = C_{20}$	118.9(0)	$C_{51} = C_{52} = C_{52}$	120.3
C_{22} C_{21} P_1	120.9 (0)	$C_{54} = C_{52} = C_{52}$	109.1 (9)
$C_{20} = C_{21} = F_1$	119.9(3)	C52 C52 H52	125.5
$C_{21} = C_{22} = C_{23}$	121.7 (8)	С52—С55—П55	123.3
C21—C22—H22	119.2	$C_{53} = C_{54} = C_{55}$	108.0 (8)
C23—C22—H22	119.2	C55_C54_H54	125.7
$C_{22} = C_{23} = C_{24}$	110.9(/)	$C_{53} - C_{54} - H_{54}$	123./
C_{22} — C_{23} — H_{23}	120.0	C_{51} C_{55} U_{55}	108.5 (9)
$C_{24} = C_{23} = H_{23}$	120.0	C51-C55-H55	125.8
(23) - (24) - (23)	121.1 (/)	$C_{12} = C_{12} = C_{12} = C_{12}$	123.8
C23-C24-H24	119.4	CIZA—CIA—CIIA	128 (3)
C25—C24—H24	119.4	CI2A—CIA—HIAI	105.3

C24—C25—C26	119.4 (8)	Cl1A—C1A—H1A1	105.3
С24—С25—Н25	120.3	Cl2A—C1A—H1A2	105.3
С26—С25—Н25	120.3	Cl1A—C1A—H1A2	105.3
C25—C26—C21	120.0 (7)	H1A1—C1A—H1A2	106
C25—C26—H26	120	Cl2B—C1B—Cl1B	118.3 (16)
C21—C26—H26	120	Cl2B—C1B—H1B1	107.7
C32—C31—C36	119.4 (7)	Cl1B—C1B—H1B1	107.7
C32—C31—P1	121.9 (5)	Cl2B—C1B—H1B2	107.7
C36—C31—P1	118.5 (5)	Cl1B—C1B—H1B2	107.7
C31—C32—C33	119.8 (7)	H1B1—C1B—H1B2	107.1
C31—C32—H32	120.1		
	120.1		
Au1—S1—P2—O1	76.2 (3)	C11—P1—C31—C32	68.3 (7)
Au1—S1—P2—O2	-165.7 (2)	Au1—P1—C31—C32	-168.8 (6)
Au1—S1—P2—C41	-47.6 (2)	C21—P1—C31—C36	142.1 (6)
C31—P1—C11—C16	97.8 (6)	C11—P1—C31—C36	-105.9 (6)
C21—P1—C11—C16	-150.0 (6)	Au1—P1—C31—C36	17.0 (7)
Au1—P1—C11—C16	-26.0(6)	C36—C31—C32—C33	-2.8(12)
C31—P1—C11—C12	-76.7 (7)	P1—C31—C32—C33	-176.9 (6)
C21—P1—C11—C12	35.4 (7)	C31—C32—C33—C34	2.4 (13)
Au1—P1—C11—C12	159.5 (5)	C32—C33—C34—C35	-1.7(13)
C16—C11—C12—C13	0.2 (11)	C33—C34—C35—C36	1.3 (14)
P1—C11—C12—C13	174.7 (6)	C34—C35—C36—C31	-1.6(13)
C11—C12—C13—C14	0.2 (12)	C32—C31—C36—C35	2.4 (12)
C12—C13—C14—C15	-1.9 (12)	P1—C31—C36—C35	176.8 (7)
C13—C14—C15—C16	3.2 (12)	O1—P2—C41—C45	170.2 (6)
C14—C15—C16—C11	-2.9(13)	O2—P2—C41—C45	51.3 (7)
C12—C11—C16—C15	1.2 (11)	S1—P2—C41—C45	-64.2 (7)
P1-C11-C16-C15	-173.5(7)	O1—P2—C41—C42	-9.0 (8)
C31—P1—C21—C22	150.7 (6)	O2—P2—C41—C42	-127.9 (6)
C11—P1—C21—C22	39.8 (7)	S1—P2—C41—C42	116.6 (6)
Au1—P1—C21—C22	-83.8 (7)	C45—C41—C42—C43	-0.2(8)
C31—P1—C21—C26	-35.8 (7)	P2—C41—C42—C43	179.1 (6)
C11—P1—C21—C26	-146.7 (6)	C41—C42—C43—C44	-0.1 (8)
Au1—P1—C21—C26	89.7 (6)	C42—C43—C44—C45	0.3 (8)
C26—C21—C22—C23	2.1 (12)	C42—C41—C45—C44	0.4 (8)
P1—C21—C22—C23	175.7 (7)	P2—C41—C45—C44	-178.9 (5)
C21—C22—C23—C24	-1.4 (13)	C43—C44—C45—C41	-0.4 (8)
C22—C23—C24—C25	-0.7 (13)	C55—C51—C52—C53	2.3 (10)
C23—C24—C25—C26	2.0 (13)	C51—C52—C53—C54	-1.9 (10)
C24—C25—C26—C21	-1.3 (12)	C52—C53—C54—C55	0.7 (10)
C22—C21—C26—C25	-0.8 (11)	C52—C51—C55—C54	-1.9 (9)
P1—C21—C26—C25	-174.4 (6)	C53—C54—C55—C51	0.7 (10)
C21—P1—C31—C32	-43.7 (8)		
	× /		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
O2—H1…O1 ⁱ	1.11 (11)	1.33 (11)	2.432 (7)	173 (9)

Symmetry code: (i) -x, y+1/2, -z+3/2.