organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(2-Hydroxy-7-methoxynaphthalen-1-yl)-(4-methylphenyl)methanone

Atsushi Nagasawa, Ryosuke Mitsui, Akiko Okamoto and Noriyuki Yonezawa*

Department of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology, 2-24-16 Naka-machi, Koganei, Tokyo 184-8588, Japan Correspondence e-mail: yonezawa@cc.tuat.ac.jp

Received 7 October 2010; accepted 10 October 2010

Key indicators: single-crystal X-ray study; T = 193 K; mean σ (C–C) = 0.002 Å; R factor = 0.038; wR factor = 0.106; data-to-parameter ratio = 13.4.

In the title compound, $C_{19}H_{16}O_3$, an intramolecular O-H···O=C hydrogen bond is formed between the hydroxy and carbonyl groups on the naphthalene ring system, resulting in an *S*(6) ring. The angles between the C=O bond vector and the least-squares planes of the naphthalene ring system and the benzene ring are 27.63 (6) and 47.99 (7)°, respectively. The dihedral angle between the latter planes is 61.39 (5)°. In the crystal, two molecules are connected by pairs of intermolecular O-H···O=C hydrogen bonds, forming centrosymmetric dimers with an $R_2^2(4)$ graph-set motif. The molecular packing features C-H··· π interactions.

Related literature

For electrophilic aromatic substitution of naphthalene derivatives, see: Okamoto & Yonezawa (2009). For the structures of closely related compounds, see: Mitsui *et al.* (2008); Nagasawa *et al.* (2010*a,b,c*). For hydrogen-bond motifs, see: Bernstein *et al.* (1995); Etter *et al.* (1990).

Experimental

Crystal data

 $\begin{array}{l} C_{19}H_{16}O_3 \\ M_r = 292.32 \\ \text{Monoclinic, } P2_1/c \\ a = 11.1599 \ (2) \ \text{\AA} \\ b = 6.05387 \ (11) \ \text{\AA} \\ c = 22.0153 \ (4) \ \text{\AA} \\ \beta = 90.317 \ (1)^\circ \end{array}$

 $V = 1487.35 (5) Å^{3}$ Z = 4Cu Ka radiation $\mu = 0.71 \text{ mm}^{-1}$ T = 193 K0.60 × 0.50 × 0.30 mm

Data collection

Rigaku R-AXIS RAPID diffractometer Absorption correction: numerical (*NUMABS*; Higashi, 1999) $T_{\rm min} = 0.676, T_{\rm max} = 0.816$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.106$ S = 1.042729 reflections 204 parameters 1 restraint 25155 measured reflections 2729 independent reflections 2493 reflections with $I > 2\sigma(I)$ $R_{int} = 0.029$

H atoms treated by a mixture of independent and constrained refinement
$$\begin{split} &\Delta\rho_{max}=0.28~\text{e}~\text{\AA}^{-3}\\ &\Delta\rho_{min}=-0.15~\text{e}~\text{\AA}^{-3} \end{split}$$

Table 1Hydrogen-bond geometry (Å, °).

CT1 and CT2 are the centroids of the C5-C10 and C12-C17 rings, respectively.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O1−H1···O3	0.95 (2)	1.70 (2)	2.5618 (14)	148 (2)
$O1 - H1 \cdots O3^{i}$	0.95 (2)	2.33 (2)	3.0083 (16)	128 (1)
C6-H6···CT1 ⁱⁱ	0.95	2.71	3.5203 (13)	144
C17−H17···CT1 ⁱⁱⁱ	0.95	2.76	3.5492 (12)	141
C19−H19C···CT2 ^{iv}	0.98	2.88	3.7834 (16)	154

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) $-x + 1, y - \frac{1}{2}, -z + \frac{1}{2}$; (iii) x, y + 1, z; (iv) -x + 2, -y + 1, -z + 1.

Data collection: *PROCESS-AUTO* (Rigaku, 1998); cell refinement: *PROCESS-AUTO*; data reduction: *CrystalStructure* (Rigaku/ MSC, 2004); program(s) used to solve structure: *SIR2004* (Burla *et al.*, 2005); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEPIII* (Burnett & Johnson, 1996), *ORTEP* -3 for Windows (Farrugia, 1997) and *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL97*.

The authors would express their gratitude to Professor Keiichi Noguchi, Instrumentation Analysis Center, Tokyo University of Agriculture & Technology, for technical advice.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2608).

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
- Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.

Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

- Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.
- Mitsui, R., Nakaema, K., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, 02497.
- Nagasawa, A., Mitsui, R., Kato, Y., Okamoto, A. & Yonezawa, N. (2010*a*). *Acta Cryst.* E66, 02498.
- Nagasawa, A., Mitsui, R., Kato, Y., Okamoto, A. & Yonezawa, N. (2010b). Acta Cryst. E66, 02677.

Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010c). Acta Cryst. E66, o2738. Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914–915.

Rigaku (1998). *PROCESS-AUTO*. Rigaku Corporation, Tokyo, Japan. Rigaku/MSC (2004). *CrystalStructure*. Rigaku/MSC, The Woodlands, Texas, USA.

Sheldrick, G. M. (2008). Acta Cryst. A**64**, 112–122. Spek, A. L. (2009). Acta Cryst. D**65**, 148–155.

Acta Cryst. (2010). E66, o2820–o2821 [https://doi.org/10.1107/S1600536810040614] (2-Hydroxy-7-methoxynaphthalen-1-yl)(4-methylphenyl)methanone Atsushi Nagasawa, Ryosuke Mitsui, Akiko Okamoto and Noriyuki Yonezawa

S1. Comment

In the course of our study on selective *peri*-aroylation of 2,7-dimethoxynaphthalene (Okamoto & Yonezawa, 2009), the crystal structures of several 1-monoaroylated naphthalene compounds have been clarified along with 1,8-diaroyl-naphthalene. Furthermore, selective demethylation reaction of the 1-monoaroylated 2,7-dimethoxynaphthalene compounds has been proved to yield the 1-monoaroyl-2-hydroxynaphthalene compounds, which are rather susceptible to imination reaction. In this course, we recently reported crystal structure of several imine compounds prepared from 1-monoaroylated naphthalene derivatives having 2-hydroxy group exemplified by 1-[(4-chlorophenyl)(phenylimino)-methyl]-7-methoxy-2-naphthol-1,4- diazabicyclo[2.2.2]octane (2/1) (Nagasawa *et al.*, 2010*a*) and 1-[phenyl(3-nitro-phenylimino)methyl]-7-methoxy-2-naphthol (Nagasawa *et al.*, 2010*c*) derived from (4-chlorophenyl)(2-hydroxy-7-methoxynaphthalen-1-yl)(phenyl)methanone (Mitsui *et al.*, 2008) and (2-hydroxy-7-methoxynaphthalen-1-yl)(phenyl)methanone (Nagasawa *et al.*, 2010*b*), respectively. As a part of our ongoing studies on the synthesis and crystal structure analysis of aroylated naphthalene homologues, we prepared and analysed the crystal structure of the title compound (I).

In the molecule (I), the intramolecular O—H···O=C hydrogen bond that forms a six-membered S(6) ring (Etter *et al.*, 1990; Bernstein *et al.*, 1995) including carbonyl and hydroxy groups on the naphthalene ring (Table 1, Fig. 1). The conformation of these groups resembles to that of (2-hydroxy-7-methoxynaphthalen-1-yl)(phenyl)methanone (Nagasawa *et al.*, 2010*b*). The angles of C=O bond vector against the least-squares plane of the naphthalene ring (C1–C10) and benzene ring (C12–C17) are 27.63 (6) and 47.99 (7)°, respectively. The dihedral angle between the naphthalene ring (C1–C10) and benzene ring (C12–C17) is 61.39 (5)°.

In the crystal structure, O—H···O=C intermolecular hydrogen bonds between the hydroxy group and the carbonyl one on the naphthalene ring (Table 1) form a centrosymmetric dimer (Fig. 2) with a $R_2^2(4)$ graph set motif (Etter *et al.*, 1990; Bernstein *et al.*, 1995). The molecular packing of (I) is mainly stabilized by intermolecular C—H··· π hydrogen bond involving the centroid CT1 of the C5—C10 ring and the centroid CT2 of the C12–C17 phenyl ring. (Table 1).

S2. Experimental

To a solution of 1-(4-methylbenzoyl)-2,7-dimethoxynaphthalene (3.07 g, 10 mmol) in CH_2Cl_2 (100 ml) was added $AlCl_3$ (6.65 g, 50 mmol). The reaction mixture was refluxed for 30 min giving a dark red solution, which was then poured into H_2O (30 ml). The aqueous layer was extracted with $CHCl_3$ (30 ml × 3). The combined organic layers were washed with brine (30 ml × 3) and dried over MgSO₄ overnight. The solvent was removed *in vacuo* and the crude material was purified by recrystallization from hexane to give compound (I) as yellow platelets (m.p. 385.5–386.00 K, yield 1.76 g, 60%).

Spectroscopic Data: ¹H NMR (300 MHz, CDCl₃) δ 11.40 (s, 1H), 7.83 (d, J = 8.9 Hz, 1H), 7.61 (d, J = 8.6 Hz, 1H), 7.52 (d, J = 7.9 Hz, 2H), 7.22 (d, J = 7.9 Hz, 2H), 7.07 (d, J = 8.9 Hz, 1H), 6.89 (dd, J = 8.9, 2.4 Hz, 1H), 6.64 (d, J = 2.4 Hz, 1H), 3.31 (s, 3H), 2.41 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 200.0, 162.3, 158.1, 143.2, 138.0, 136.1, 134.2, 130.0,

129.5, 129.3, 123.8, 116.5, 115.8, 114.0, 106.6, 54.5, 21.7; IR (KBr): 3443, 2929, 1620, 1561, 1514, 1233; HRMS (*m/z*): [*M* + H]⁺ calcd for C₁₉H₁₇O₃, 293.1178; found, 293.1189.

S3. Refinement

All the H-atoms could be located in difference Fourier maps. The coordinates of the OH hydrogen atom were refined using restraint (O1—H1 = 0.95 (2) Å) with $U_{iso}(H) = 1.5U_{eq}(O)$. The H atoms attached to carbon were introduced in calculated positions and treated as riding on their parent atoms with C—H= 0.98 Å (methyl) or 0.95 Å (aromatic) with $U_{iso}(H) = 1.2U_{eq}(C_{aromatic})$ or $U_{iso}(H) = 1.5U_{eq}(C_{methyl})$.

Figure 1

The asymmetric unit of compound (I) with the atom labeling scheme. Displacement ellipsoids are drawn at the 50% probability. H atoms are represented as small spheres of arbitrary radii. Intramolecular hydrogen bond is shown as a dashed line.

A crystal packing diagram of compound (I), viewed down the *b* axis. Intermolecular hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bondings have been omitted for clarity.

(2-Hydroxy-7-methoxynaphthalen-1-yl)(4-methylphenyl)methanone

Crystal data

C₁₉H₁₆O₃ $M_r = 292.32$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 11.1599 (2) Å b = 6.05387 (11) Å c = 22.0153 (4) Å $\beta = 90.317$ (1)° V = 1487.35 (5) Å³ Z = 4

Data collection

25155 measured reflections
2729 independent reflections
2493 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.029$
$\theta_{\rm max} = 68.2^\circ, \ \theta_{\rm min} = 4.0^\circ$
$h = -13 \rightarrow 13$
$k = -7 \longrightarrow 7$
$l = -26 \rightarrow 26$

F(000) = 616 $D_x = 1.305 \text{ Mg m}^{-3}$ Melting point = 385.5–386.0 K Cu K\alpha radiation, $\lambda = 1.54187 \text{ Å}$ Cell parameters from 21159 reflections $\theta = 4.0-68.2^{\circ}$ $\mu = 0.71 \text{ mm}^{-1}$ T = 193 KBlock, colorless $0.60 \times 0.50 \times 0.30 \text{ mm}$ Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.038$	Hydrogen site location: inferred from
$wR(F^2) = 0.106$	neighbouring sites
S = 1.04	H atoms treated by a mixture of independent
2729 reflections	and constrained refinement
204 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0563P)^2 + 0.4274P]$
1 restraint	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta ho_{ m max} = 0.28 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.15 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.39263 (8)	0.16739 (19)	0.46840 (5)	0.0479 (3)	
H1	0.4401 (16)	0.298 (3)	0.4719 (9)	0.072*	
O2	0.83634 (10)	-0.07553 (19)	0.23277 (5)	0.0539 (3)	
03	0.56764 (8)	0.43447 (17)	0.45225 (4)	0.0464 (3)	
C1	0.55371 (10)	0.1035 (2)	0.39700 (5)	0.0324 (3)	
C2	0.44354 (11)	0.0500 (2)	0.42366 (6)	0.0391 (3)	
C3	0.38007 (12)	-0.1414 (3)	0.40634 (7)	0.0476 (4)	
H3	0.3062	-0.1761	0.4254	0.057*	
C4	0.42384 (12)	-0.2755 (3)	0.36282 (7)	0.0473 (4)	
H4	0.3814	-0.4065	0.3527	0.057*	
C5	0.53176 (12)	-0.2259 (2)	0.33185 (6)	0.0390 (3)	
C6	0.57478 (13)	-0.3633 (2)	0.28499 (6)	0.0456 (4)	
H6	0.5324	-0.4947	0.2752	0.055*	
C7	0.67500 (14)	-0.3123 (2)	0.25359 (6)	0.0473 (4)	
H7	0.7032	-0.4082	0.2226	0.057*	
C8	0.73726 (12)	-0.1148 (2)	0.26736 (6)	0.0401 (3)	
C9	0.69806 (11)	0.0239 (2)	0.31228 (5)	0.0344 (3)	
H9	0.7394	0.1584	0.3198	0.041*	
C10	0.59639 (11)	-0.0312 (2)	0.34765 (5)	0.0325 (3)	
C11	0.62050 (10)	0.2897 (2)	0.42351 (5)	0.0316 (3)	
C12	0.75391 (10)	0.3095 (2)	0.42076 (5)	0.0297 (3)	
C13	0.82996 (11)	0.1359 (2)	0.43596 (5)	0.0340 (3)	
H13	0.7978	-0.0045	0.4462	0.041*	
C14	0.95292 (11)	0.1683 (2)	0.43615 (6)	0.0385 (3)	

H14	1.0042	0.0491	0.4468	0.046*	
C15	1.00296 (11)	0.3713 (2)	0.42111 (6)	0.0386 (3)	
C16	0.92554 (12)	0.5426 (2)	0.40584 (6)	0.0399 (3)	
H16	0.9577	0.6822	0.3949	0.048*	
C17	0.80264 (11)	0.5137 (2)	0.40630 (6)	0.0349 (3)	
H17	0.7513	0.6341	0.3967	0.042*	
C18	0.90578 (16)	0.1156 (3)	0.24644 (8)	0.0635 (5)	
H18A	0.8577	0.2483	0.2389	0.095*	
H18B	0.9770	0.1183	0.2206	0.095*	
H18C	0.9304	0.1118	0.2892	0.095*	
C19	1.13644 (12)	0.4059 (3)	0.42216 (7)	0.0555 (4)	
H19A	1.1608	0.4843	0.3853	0.083*	
H19B	1.1769	0.2623	0.4240	0.083*	
H19C	1.1586	0.4935	0.4579	0.083*	

Atomic displacement parameters $(Å^2)$

	I 711	I 722	T 733	1 /12	1713	1/23
	0	0	U	0	0	0
01	0.0303 (5)	0.0623 (7)	0.0510 (6)	0.0003 (4)	0.0060 (4)	0.0009 (5)
O2	0.0604 (6)	0.0584 (7)	0.0431 (5)	0.0026 (5)	0.0108 (5)	-0.0121 (5)
O3	0.0406 (5)	0.0471 (6)	0.0514 (6)	0.0026 (4)	0.0110 (4)	-0.0114 (5)
C1	0.0291 (6)	0.0354 (7)	0.0327 (6)	0.0000 (5)	-0.0054(5)	0.0051 (5)
C2	0.0296 (6)	0.0481 (8)	0.0396 (7)	-0.0002 (6)	-0.0050(5)	0.0082 (6)
C3	0.0324 (7)	0.0561 (9)	0.0541 (8)	-0.0112 (6)	-0.0057 (6)	0.0105 (7)
C4	0.0416 (7)	0.0441 (8)	0.0560 (8)	-0.0145 (6)	-0.0166 (6)	0.0096 (7)
C5	0.0435 (7)	0.0334 (7)	0.0398 (7)	-0.0028 (6)	-0.0157 (5)	0.0046 (5)
C6	0.0557 (9)	0.0342 (7)	0.0466 (8)	-0.0024(6)	-0.0201 (6)	-0.0019 (6)
C7	0.0633 (9)	0.0395 (8)	0.0389 (7)	0.0102 (7)	-0.0136 (6)	-0.0106 (6)
C8	0.0470 (7)	0.0423 (8)	0.0309 (6)	0.0055 (6)	-0.0032(5)	-0.0022(5)
C9	0.0398 (7)	0.0318 (6)	0.0314 (6)	-0.0002(5)	-0.0057 (5)	-0.0008(5)
C10	0.0333 (6)	0.0318 (6)	0.0322 (6)	0.0004 (5)	-0.0096 (5)	0.0043 (5)
C11	0.0321 (6)	0.0348 (6)	0.0281 (6)	0.0017 (5)	0.0015 (4)	0.0013 (5)
C12	0.0318 (6)	0.0309 (6)	0.0263 (5)	-0.0006 (5)	-0.0018 (4)	-0.0041 (5)
C13	0.0373 (6)	0.0297 (6)	0.0350 (6)	-0.0010(5)	-0.0019 (5)	0.0011 (5)
C14	0.0364 (7)	0.0419 (7)	0.0371 (6)	0.0080 (6)	-0.0061(5)	0.0001 (5)
C15	0.0331 (6)	0.0498 (8)	0.0330 (6)	-0.0039 (6)	-0.0020(5)	-0.0047(6)
C16	0.0407 (7)	0.0354 (7)	0.0436 (7)	-0.0088(6)	-0.0003(5)	-0.0008(6)
C17	0.0377 (7)	0.0293 (6)	0.0377 (6)	0.0008 (5)	-0.0033(5)	-0.0015(5)
C18	0.0617(10)	0.0691(11)	0.0600(10)	-0.0069(9)	0.0244(8)	-0.0082(8)
C19	0.0334(7)	0.0789(12)	0.0542(9)	-0.0074(7)	-0.0031(6)	-0.0031(8)

Geometric parameters (Å, °)

01—C2	1.3433 (17)	C9—C10	1.4195 (18)
01—H1	0.953 (15)	С9—Н9	0.9500
O2—C8	1.3670 (17)	C11—C12	1.4953 (16)
O2—C18	1.424 (2)	C12—C17	1.3885 (18)
O3—C11	1.2332 (15)	C12—C13	1.3907 (17)

C1—C2	1.4031 (17)	C13—C14	1.3862 (18)
C1—C10	1.4414 (18)	C13—H13	0.9500
C1—C11	1.4704 (17)	C14—C15	1.390 (2)
C2—C3	1.410 (2)	C14—H14	0.9500
C3—C4	1.349 (2)	C15—C16	1.390 (2)
С3—Н3	0.9500	C15—C19	1.5043 (18)
C4—C5	1.420 (2)	C16—C17	1.3827 (18)
C4—H4	0.9500	C16—H16	0.9500
C5—C6	1.411 (2)	С17—Н17	0.9500
C5—C10	1.4237 (18)	C18—H18A	0.9800
C6-C7	1 354 (2)	C18—H18B	0.9800
С6—Н6	0.9500	C18—H18C	0.9800
C7-C8	1.415(2)	C19H19A	0.9800
C7 H7	0.9500	C10 H10R	0.9800
C°	1 2708 (18)		0.9800
C8-C9	1.5708 (18)	C19—m19C	0.9800
C2—O1—H1	105.1 (11)	O3—C11—C12	116.30 (11)
C8-02-C18	117.68 (11)	C1-C11-C12	123.23 (11)
C2-C1-C10	118.60 (12)	C17—C12—C13	119.27 (11)
C_{2} C_{1} C_{11}	117.02(11)	C17 - C12 - C11	118.17(11)
C10-C1-C11	124 33 (11)	C13 - C12 - C11	122 42 (11)
01-C2-C1	124.04(12)	C14 - C13 - C12	122.12(11) 119.75(12)
01 - 02 - 03	124.04(12) 114.79(12)	C14 - C13 - H13	120.1
$C_1 = C_2 = C_3$	114.79(12) 121.11(13)	C12 C13 H13	120.1
$C_1 = C_2 = C_3$	121.11(13) 120.21(12)	C12 - C13 - H15	120.1 121.57(12)
C4 - C3 - C2	120.21 (15)	C13 - C14 - C13	121.37(12)
C4—C3—H3	119.9	C13C14H14	119.2
С2—С3—Н3	119.9	C15C14H14	119.2
C3—C4—C5	121.68 (13)	C16—C15—C14	117.84 (12)
C3—C4—H4	119.2	C16—C15—C19	120.94 (13)
С5—С4—Н4	119.2	C14—C15—C19	121.22 (13)
C6—C5—C4	121.28 (13)	C17—C16—C15	121.28 (12)
C6—C5—C10	119.50 (13)	C17—C16—H16	119.4
C4—C5—C10	119.21 (13)	C15—C16—H16	119.4
C7—C6—C5	121.63 (13)	C16—C17—C12	120.26 (12)
С7—С6—Н6	119.2	C16—C17—H17	119.9
С5—С6—Н6	119.2	C12—C17—H17	119.9
C6—C7—C8	119.29 (13)	O2—C18—H18A	109.5
С6—С7—Н7	120.4	O2-C18-H18B	109.5
С8—С7—Н7	120.4	H18A—C18—H18B	109.5
O2—C8—C9	123.90 (13)	O2—C18—H18C	109.5
O2—C8—C7	115.18 (12)	H18A—C18—H18C	109.5
C9—C8—C7	120.92 (13)	H18B—C18—H18C	109.5
C8—C9—C10	120.74 (12)	С15—С19—Н19А	109.5
С8—С9—Н9	119.6	C15—C19—H19B	109.5
C10—C9—H9	119.6	H19A—C19—H19B	109.5
C9—C10—C5	117.76 (12)	C15—C19—H19C	109.5
C9-C10-C1	123 31 (11)	H19A - C19 - H19C	109 5
C_{5} C_{10} C_{10}	123.31(11) 118.90(12)	H19B-C19-H19C	109.5
	110.20 (14)		107.0

O3—C11—C1 120.38 (11)

Hydrogen-bond geometry (Å, °)

CT1 and CT2 are the centroids of the C5-C10 and C12-C17 rings, respectively.

<i>D</i> —Н	H···A	D····A	D—H···A
0.95 (2)	1.70 (2)	2.5618 (14)	148 (2)
0.95 (2)	2.33 (2)	3.0083 (16)	128 (1)
0.95	2.71	3.5203 (13)	144
0.95	2.76	3.5492 (12)	141
0.98	2.88	3.7834 (16)	154
	<i>D</i> —H 0.95 (2) 0.95 (2) 0.95 0.95 0.95 0.98	D—H H···A 0.95 (2) 1.70 (2) 0.95 (2) 2.33 (2) 0.95 2.71 0.95 2.76 0.98 2.88	D—HH···AD···A0.95 (2)1.70 (2)2.5618 (14)0.95 (2)2.33 (2)3.0083 (16)0.952.713.5203 (13)0.952.763.5492 (12)0.982.883.7834 (16)

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) -*x*+1, *y*-1/2, -*z*+1/2; (iii) *x*, *y*+1, *z*; (iv) -*x*+2, -*y*+1, -*z*+1.