

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Tris(2,4-dimethylbenzenethiolato)phenyltin(IV)

Aarón Flores-Figueroa, Simón Hernández-Ortega* and Ivan Castillo*

Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México 04510, Mexico

Correspondence e-mail: simonho@unam.mx, joseivan@unam.mx

Received 20 September 2010; accepted 5 October 2010

Key indicators: single-crystal X-ray study: T = 298 K: mean σ (C–C) = 0.005 Å: R factor = 0.034; wR factor = 0.061; data-to-parameter ratio = 17.3.

In the title compound, $[Sn(C_6H_5)(C_8H_9S)_3]$, the Sn atom has an approximately tetrahedral SNCS₃ geometry, with angles at this atom ranging from 105.13 (3) to 113.54 (9) $^{\circ}$. The crystal packing does not involve any significant intermolecular interactions, although the benzene rings are involved in a number of weak intra- and intermolecular $C-H\cdots\pi$ interactions.

Related literature

For background to the development of synthetic methods for highly substituted thiophenols with varying degrees of steric hindrance, see: Lloyd-Jones et al. (2008); Fleischer (2005); Huber et al. (1997); Estudiante-Negrete et al. (2007). For the synthesis of phenol derivatives, see: Flores-Figueroa et al. (2005); Mondragón et al. (2010). For similar structures, see: Huber et al. (1997); Li et al. (2006). For bond-length data, see: Allen et al. (1987).

12493 measured reflections

 $R_{\rm int} = 0.036$

5416 independent reflections

4057 reflections with $I > 2\sigma(I)$

Experimental

Crystal data

$[Sn(C_6H_5)(C_8H_9S)_3]$	$\gamma = 105.800 \ (1)^{\circ}$
$M_r = 607.43$	$V = 1477.51 (19) \text{ Å}^3$
Triclinic, P1	Z = 2
a = 9.2717 (7) Å	Mo $K\alpha$ radiation
b = 10.6370 (8) Å	$\mu = 1.09 \text{ mm}^{-1}$
c = 15.6486 (11) Å	T = 298 K
$\alpha = 93.420 \ (2)^{\circ}$	$0.32 \times 0.26 \times 0.04 \text{ mm}$
$\beta = 93.520 \ (1)^{\circ}$	

Data collection

Bruker SMART APEX CCD areadetector diffractometer Absorption correction: multi-scan (SADABS: Sheldrick, 2008a) $T_{\min} = 0.705, T_{\max} = 0.958$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.034$	313 parameters
$vR(F^2) = 0.061$	H-atom parameters constrained
S = 0.86	$\Delta \rho_{\rm max} = 0.64 \ {\rm e} \ {\rm \AA}^{-3}$
416 reflections	$\Delta \rho_{\rm min} = -0.37 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C15-C20 and C7-C12 rings, respectively.

$D-H\cdots A$	<i>D</i> -H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C12-H12\cdots Cg1$ $C13-H13C\cdots Cg2^{i}$	0.93	2.72	3.557 (3)	149
	0.96	2.75	3.579 (3)	144

Symmetry code: (i) -x + 2, -y + 2, -z + 2.

Data collection: SMART (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: SHELXTL (Sheldrick, 2008b); software used to prepare material for publication: SHELXTL.

The authors thank the Instituto Rexaslan-CSIC, Spain for a license to use the Cambridge Structural Database (Allen, 2002).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2342).

References

- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Bruker (2007). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
- Estudiante-Negrete, F., Redón, R., Hernández-Ortega, S., Toscano, R. A. & Morales-Morales, D. (2007). Inorg. Chim. Acta, 360, 1651-1660.
- Fleischer, H. (2005). Coord. Chem. Rev. 249, 799-827.
- Flores-Figueroa, A., Arista-M, V., Talancón-Sánchez, D. & Castillo, I. (2005). J. Braz. Chem. Soc. 16, 397-403.

Huber, F., Schmiedgen, R., Schurmann, M., Barbieri, R., Ruisi, G. & Silvestri, A. (1997). Appl. Organomet. Chem. 11, 869-888.

Li, Y.-X., Zhang, R.-F. & Ma, C.-L. (2006). Acta Cryst. E62, m957-m958.

Lloyd-Jones, G. C., Moseley, J. D. & Renny, J. S. (2008). *Synthesis*, pp. 661–689. Mondragón, A., Monsalvo, I., Regla, I. & Castillo, I. (2010). *Tetrahedron Lett.* **51**, 767–770.

Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.

supporting information

Acta Cryst. (2010). E66, m1389-m1390 [https://doi.org/10.1107/S1600536810039851]

Tris(2,4-dimethylbenzenethiolato)phenyltin(IV)

Aarón Flores-Figueroa, Simón Hernández-Ortega and Ivan Castillo

S1. Comment

The development of synthetic methods for highly substituted thiophenols with varying degrees of steric hindrance has been an active field of research (Lloyd-Jones *et al.*, 2008), due in part to the potential of sterically encumbered thiophenols to emulate the active site of sulfur-rich metalloenzymes (Fleischer, 2005). In this context, we developed a series of 2,4-disubstituted thiophenols (Flores-Figueroa *et al.*, 2005, Mondragón *et al.*, 2010), among which 2,4-dimethylthiophenol represents a commercially available ligand. In order to assess the steric properties of this thiophenol, we soughtout to prepare a metal-thiolate derivative amenable to structural characterization. Since phenyl- and diphenyltin (IV) derivatives tend to be crystalline materials (Huber *et al.*, 1997 & Estudiante-Negrete *et al.*, 2007), we decided to employ PhSnCl₃ to introduce the 2,4-dimethylthiophenolate moiety. Thus, the reaction of 3 equivalents of 2,4-MagCh₃SH with PhSnCl₃ in the presence of 3 equivalents of triethylamine afforded the title compound phenyl tris(2,4-dimethylphenyl-thiolate)tin (IV) (I) in good yield.

The structure of the title compound (PhSn(S-2,4-Me₂C₆H₃)₃) is shown with numbering scheme in Figure 1. According to the bond angles, (I) exhibits a slightly distorted tetrahedral geometry. The phenyl ring (C1—C6) is in a close to coplanar disposition with respect to one of the 2,4-dimethylphenyl groups (C23–C30), forming a dihedral angle of 25.3 (2)°. The Sn—C distance (2.114 (3) Å) is slightly shorter than those described for the related compounds (Allen *et al.*, 1987) phenyl tris(pyridinthiolate)tin [2.139 (5) Å, PhSn(SPy)₃ (Huber *et al.*, 1997)] and phenyl tris(pyrimidinethiol-ato)tin [2.139 (3) Å, PhSn(SPym)₃ (Li *et al.*, 2006)]. The Sn—S distances are shorter than those in PhSn(SPy)₃ [2.491–2.576 Å], and PhSn(SPym)₃[2.455–2.552 Å]. Due to the geometry adopted, in the crystal structure, there are C—H- π , intra and intermolecular interactions.

S2. Experimental

To a tetrahydrofuran solution of 2,4-dimethylthiophenol (0.50 g, 3.70 mmol) was added triethylamine (0.65 ml, 4.07 mmol) under an atmosphere of N₂. After stirring for 1 h, PhSnCl₃ (0.20 mL, 1.23 mmol) was added *via* syringe, and the mixture was stirred overnight. The volatile materials were evaporated under reduced pressure, and the solid was extracted with hexane (2 *x* 15 ml), and X-ray quality crystals were obtained by slow evaporation of the solution. Yield: 0.48 g (64%); m.p. 320–323 K; IR (KBr, cm⁻¹) 3056, 3012, 2916, 2859, 2728, 1898, 1753, 1598, 1471, 1434, 1373, 1266,1229, 1162, 1138, 1069, 1042, 876, 811, 728, 695, 620, 543, 443, 372, 299; ¹H NMR (300 MHz, CDCl₃, TMS internal reference δ p.p.m.)7.20 (2*H*, m, Ph) 7.11 (3*H*, d,ArH), 7.08 (1*H*, s, Ph), 6.95 (2*H*, d, Ph), 6.85 (3*H*, s, ArH), 6.69 (3*H*, d,ArH), 2.18 (18*H*, s, ArMe); ¹³C NMR (75 MHz, CDCl₃, TMS internal reference, δ p.p.m.)142.29, 139.48, 137.62, 136. 60, 135.17, 131.58, 130.44, 128.69, 127.32, 123.88, 22.19, 21.03.

S3. Refinement

H atoms were included in calculated positions (C—H = 0.93Å arom, and 0.96 Å CH₃), and refined using a riding model, with Uiso~(H) = 1.2 U_{eq} and 1.5 U_{eq} respectively of the carrier atom.

Figure 1

The molecular structure of PhSn(SMe₂Ph)₃ with numbering scheme. Displacement ellipsoids are drawn at the 40% probability level. Only the H atoms involved in C—H- π and S- π interactions are shown.

Tris(2,4-dimethylbenzenethiolato)phenyltin(IV)

Crystal data	
$[Sn(C_6H_5)(C_8H_9S)_3]$	$\alpha = 93.420 \ (2)^{\circ}$
$M_r = 607.43$	$\beta = 93.520 \ (1)^{\circ}$
Triclinic, P1	$\gamma = 105.800 \ (1)^{\circ}$
Hall symbol: -P 1	$V = 1477.51 (19) \text{ Å}^3$
a = 9.2717 (7) Å	Z = 2
b = 10.6370 (8) Å	F(000) = 620
c = 15.6486 (11) Å	$D_{\rm x} = 1.365 {\rm ~Mg} {\rm ~m}^{-3}$

Mo K α radiation, $\lambda = 0.71073$ Å Cell parameters from 6072 reflections $\theta = 2.3-25.4^{\circ}$ $\mu = 1.09 \text{ mm}^{-1}$	T = 298 K Prism-lamina, colourless $0.32 \times 0.26 \times 0.04 \text{ mm}$
Data collection	
Bruker SMART APEX CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 0.83 pixels mm ⁻¹ ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 2008 <i>a</i>) $T_{min} = 0.705, T_{max} = 0.958$	12493 measured reflections 5416 independent reflections 4057 reflections with $I > 2\sigma(I)$ $R_{int} = 0.036$ $\theta_{max} = 25.4^{\circ}, \theta_{min} = 1.3^{\circ}$ $h = -11 \rightarrow 11$ $k = -12 \rightarrow 12$ $l = -18 \rightarrow 18$
Refinement	
Refinement on F^2 Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.034$ wR(F ²) = 0.061	Hydrogen site location: inferred from neighbouring sites
<i>S</i> = 0.86	H-atom parameters constrained
5416 reflections	$w = 1/[\sigma^2(F_o^2) + (0.021P)^2]$
313 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.002$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.64 \text{ e A}^{-3}$
direct methods	$\Delta ho_{\min} = -0.37 \text{ e} \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	y	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Sn	0.76585 (2)	0.68776 (2)	0.732737 (14)	0.04856 (8)
S1	0.79793 (10)	0.74342 (8)	0.88495 (5)	0.0604 (2)
S2	0.76443 (10)	0.46303 (9)	0.70323 (6)	0.0713 (3)
S3	0.97179 (9)	0.83866 (9)	0.67586 (6)	0.0649 (3)
C1	0.5620 (3)	0.7073 (3)	0.6745 (2)	0.0493 (8)
C2	0.4930 (4)	0.7944 (3)	0.7097 (2)	0.0613 (9)
H2	0.5331	0.8414	0.7617	0.074*
C3	0.3652 (4)	0.8137 (4)	0.6695 (3)	0.0784 (11)
Н3	0.3188	0.8721	0.6949	0.094*
C4	0.3072 (4)	0.7475 (4)	0.5931 (3)	0.0784 (12)
H4	0.2211	0.7607	0.5659	0.094*
C5	0.3745 (4)	0.6615 (4)	0.5557 (2)	0.0799 (12)

Н5	0.3355	0.6172	0.5027	0.096*
C6	0.5015 (4)	0.6405 (4)	0.5974 (2)	0.0698 (10)
H6	0.5460	0.5803	0.5726	0.084*
C7	0.9858 (3)	0.8485 (3)	0.88924 (18)	0.0480 (8)
C8	1.0125 (4)	0.9837 (3)	0.88760 (18)	0.0503 (8)
C9	1.1612 (4)	1.0570 (3)	0.89292 (19)	0.0615 (9)
Н9	1.1811	1.1475	0.8925	0.074*
C10	1.2818 (4)	1.0050 (4)	0.8988 (2)	0.0627 (9)
C11	1.2497 (4)	0.8703 (4)	0.8994 (2)	0.0652 (10)
H11	1.3281	0.8313	0.9029	0.078*
C12	1.1045 (4)	0.7937 (3)	0.89512 (19)	0.0558 (9)
H12	1.0855	0.7034	0.8961	0.067*
C13	0.8877 (4)	1.0482 (3)	0.8784 (2)	0.0729 (10)
H13A	0.8203	1.0071	0.8294	0.109*
H13B	0.9292	1.1395	0.8707	0.109*
H13C	0.8338	1.0392	0.9292	0.109*
C14	1.4406 (4)	1.0917 (4)	0.9042 (3)	0.1016 (14)
H14A	1.4584	1.1336	0.8517	0.152*
H14B	1.5094	1.0398	0.9131	0.152*
H14C	1.4553	1.1572	0.9513	0.152*
C15	0.9354 (3)	0.4663 (3)	0.7653 (2)	0.0525 (8)
C16	0.9311 (3)	0.4193 (3)	0.8463 (2)	0.0519 (8)
C17	1.0672 (4)	0.4228 (3)	0.8900 (2)	0.0564 (9)
H17	1.0661	0.3920	0.9444	0.068*
C18	1.2041 (4)	0.4697 (3)	0.8564 (2)	0.0584 (9)
C19	1.2029 (4)	0.5147 (3)	0.7760 (2)	0.0673 (10)
H19	1.2935	0.5469	0.7517	0.081*
C20	1.0702 (4)	0.5132 (3)	0.7307 (2)	0.0645 (9)
H20	1.0720	0.5441	0.6763	0.077*
C21	0.7866 (4)	0.3664 (3)	0.8865 (2)	0.0773 (11)
H21A	0.7355	0.4334	0.8922	0.116*
H21B	0.8074	0.3391	0.9422	0.116*
H21C	0.7240	0.2928	0.8508	0.116*
C22	1.3519 (4)	0.4742 (4)	0.9061 (2)	0.0858 (12)
H22A	1.4186	0.4506	0.8676	0.129*
H22B	1.3332	0.4137	0.9500	0.129*
H22C	1.3970	0.5613	0.9322	0.129*
C23	0.8789 (3)	0.8297 (3)	0.5717 (2)	0.0579 (9)
C24	0.8116 (4)	0.9252 (3)	0.5474 (2)	0.0661 (10)
C25	0.7413 (5)	0.9110 (4)	0.4651 (3)	0.0882 (13)
H25	0.6951	0.9741	0.4485	0.106*
C26	0.7372 (5)	0.8077 (5)	0.4068 (3)	0.0920 (14)
C27	0.8052 (5)	0.7156 (4)	0.4322 (3)	0.0902 (13)
H27	0.8037	0.6447	0.3941	0.108*
C28	0.8759 (4)	0.7266 (4)	0.5136 (2)	0.0759 (11)
H28	0.9223	0.6632	0.5294	0.091*
C29	0.8112 (5)	1.0413 (4)	0.6079 (3)	0.0950 (13)
H29A	0.7519	1.0114	0.6547	0.143*

supporting information

H29B	0.7690	1.1005	0.5776	0.143*
H29C	0.9124	1.0857	0.6299	0.143*
C30	0.6584 (6)	0.7974 (5)	0.3179 (3)	0.146 (2)
H30A	0.5860	0.8471	0.3188	0.219*
H30B	0.6081	0.7072	0.3006	0.219*
H30C	0.7310	0.8315	0.2780	0.219*
H30C	0.7310	0.8315	0.2780	0.219*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sn	0.04127 (13)	0.05660 (15)	0.04794 (14)	0.01525 (11)	-0.00392 (9)	0.00492 (10)
S 1	0.0608 (6)	0.0633 (6)	0.0494 (5)	0.0041 (5)	0.0036 (4)	0.0058 (4)
S2	0.0706 (6)	0.0607 (6)	0.0782 (7)	0.0212 (5)	-0.0255 (5)	-0.0114 (5)
S3	0.0442 (5)	0.0874 (7)	0.0578 (6)	0.0085 (5)	0.0002 (4)	0.0123 (5)
C1	0.0378 (18)	0.057 (2)	0.053 (2)	0.0136 (16)	0.0015 (15)	0.0104 (17)
C2	0.050 (2)	0.066 (2)	0.069 (2)	0.0185 (19)	-0.0010 (18)	0.0057 (19)
C3	0.060 (3)	0.080 (3)	0.104 (3)	0.036 (2)	0.005 (2)	0.009 (2)
C4	0.048 (2)	0.098 (3)	0.094 (3)	0.026 (2)	-0.006 (2)	0.034 (3)
C5	0.058 (2)	0.112 (3)	0.063 (3)	0.021 (2)	-0.0156 (19)	-0.003(2)
C6	0.050 (2)	0.089 (3)	0.074 (3)	0.029 (2)	-0.0029 (19)	-0.008 (2)
C7	0.057 (2)	0.047 (2)	0.0360 (18)	0.0095 (17)	-0.0030 (15)	-0.0001 (14)
C8	0.062 (2)	0.049 (2)	0.0385 (18)	0.0144 (18)	-0.0052 (15)	0.0018 (15)
C9	0.081 (3)	0.046 (2)	0.048 (2)	0.005 (2)	-0.0101 (18)	0.0026 (16)
C10	0.057 (2)	0.073 (3)	0.050(2)	0.005 (2)	-0.0043 (17)	0.0099 (19)
C11	0.062 (2)	0.083 (3)	0.054 (2)	0.028 (2)	-0.0076 (17)	0.0047 (19)
C12	0.066 (2)	0.052 (2)	0.049 (2)	0.017 (2)	-0.0063 (17)	0.0040 (16)
C13	0.087 (3)	0.061 (2)	0.074 (3)	0.031 (2)	-0.008 (2)	0.0000 (19)
C14	0.069 (3)	0.115 (3)	0.098 (3)	-0.014 (3)	-0.015 (2)	0.027 (3)
C15	0.054 (2)	0.0442 (19)	0.060 (2)	0.0171 (17)	-0.0060 (17)	-0.0017 (16)
C16	0.051 (2)	0.0379 (18)	0.067 (2)	0.0131 (16)	0.0047 (17)	0.0106 (16)
C17	0.059 (2)	0.047 (2)	0.065 (2)	0.0169 (18)	0.0013 (18)	0.0151 (17)
C18	0.053 (2)	0.047 (2)	0.077 (3)	0.0186 (18)	-0.0001 (19)	0.0082 (18)
C19	0.052 (2)	0.066 (2)	0.090 (3)	0.0209 (19)	0.020 (2)	0.018 (2)
C20	0.074 (3)	0.069 (2)	0.060 (2)	0.030 (2)	0.014 (2)	0.0170 (18)
C21	0.061 (2)	0.068 (2)	0.103 (3)	0.013 (2)	0.011 (2)	0.029 (2)
C22	0.059 (2)	0.087 (3)	0.113 (3)	0.027 (2)	-0.013 (2)	0.010 (2)
C23	0.052 (2)	0.068 (2)	0.050 (2)	0.0091 (19)	0.0078 (16)	0.0087 (19)
C24	0.075 (3)	0.062 (2)	0.054 (2)	0.005 (2)	0.0029 (19)	0.0147 (19)
C25	0.106 (3)	0.079 (3)	0.075 (3)	0.018 (3)	-0.007 (3)	0.027 (2)
C26	0.113 (4)	0.091 (3)	0.055 (3)	0.002 (3)	-0.007 (2)	0.015 (3)
C27	0.116 (4)	0.089 (3)	0.058 (3)	0.020 (3)	0.007 (2)	-0.008 (2)
C28	0.074 (3)	0.090 (3)	0.066 (3)	0.025 (2)	0.009 (2)	0.006 (2)
C29	0.125 (4)	0.072 (3)	0.092 (3)	0.031 (3)	0.005 (3)	0.015 (2)
C30	0.197 (6)	0.145 (5)	0.072 (3)	0.017 (4)	-0.044 (3)	0.016 (3)

Geometric parameters (Å, °)

Sn—C1	2.114 (3)	C15—C20	1.371 (4)	
Sn—S3	2.3927 (9)	C15—C16	1.390 (4)	
Sn—S1	2.4002 (9)	C16—C17	1.388 (4)	
Sn—S2	2.4037 (9)	C16—C21	1.498 (4)	
S1—C7	1.790 (3)	C17—C18	1.380 (4)	
S2—C15	1.798 (3)	C17—H17	0.9300	
S3—C23	1.782 (3)	C18—C19	1.373 (4)	
C1—C6	1.368 (4)	C18—C22	1.521 (4)	
C1—C2	1.370 (4)	C19—C20	1.378 (4)	
C2—C3	1.378 (4)	C19—H19	0.9300	
С2—Н2	0.9300	C20—H20	0.9300	
C3—C4	1.353 (5)	C21—H21A	0.9600	
С3—Н3	0.9300	C21—H21B	0.9600	
C4—C5	1.363 (5)	C21—H21C	0.9600	
C4—H4	0.9300	C22—H22A	0.9600	
C5—C6	1.389 (4)	C22—H22B	0.9600	
С5—Н5	0.9300	C22—H22C	0.9600	
С6—Н6	0.9300	C23—C28	1.375 (4)	
C7—C12	1.379 (4)	C23—C24	1.388 (4)	
C7—C8	1.394 (4)	C24—C25	1.388 (5)	
C8—C9	1.381 (4)	C24—C29	1.512 (5)	
C8—C13	1.501 (4)	C25—C26	1.376 (5)	
C9—C10	1.377 (4)	C25—H25	0.9300	
С9—Н9	0.9300	C26—C27	1.365 (5)	
C10—C11	1.382 (4)	C26—C30	1.516 (5)	
C10—C14	1.504 (4)	C27—C28	1.380 (5)	
C11—C12	1.365 (4)	С27—Н27	0.9300	
C11—H11	0.9300	C28—H28	0.9300	
C12—H12	0.9300	С29—Н29А	0.9600	
C13—H13A	0.9600	C29—H29B	0.9600	
C13—H13B	0.9600	С29—Н29С	0.9600	
C13—H13C	0.9600	С30—Н30А	0.9600	
C14—H14A	0.9600	C30—H30B	0.9600	
C14—H14B	0.9600	С30—Н30С	0.9600	
C14—H14C	0.9600			
C1—Sn—S3	108.97 (8)	C16—C15—S2	120.6 (3)	
C1—Sn—S1	113.54 (9)	C17—C16—C15	117.5 (3)	
S3—Sn—S1	105.13 (3)	C17—C16—C21	120.3 (3)	
C1—Sn—S2	106.68 (9)	C15—C16—C21	122.2 (3)	
S3—Sn—S2	112.83 (4)	C18—C17—C16	123.1 (3)	
S1—Sn—S2	109.83 (3)	C18—C17—H17	118.5	
C7—S1—Sn	97.37 (10)	C16—C17—H17	118.5	
C15—S2—Sn	98.83 (10)	C19—C18—C17	117.4 (3)	
C23—S3—Sn	95.05 (11)	C19—C18—C22	120.6 (3)	
C6—C1—C2	118.1 (3)	C17—C18—C22	122.0 (3)	

C6—C1—Sn	120.8 (2)	C18—C19—C20	121.3 (3)
C2—C1—Sn	120.9 (2)	C18—C19—H19	119.4
C1—C2—C3	121.3 (3)	C20—C19—H19	119.4
C1—C2—H2	119.3	C15—C20—C19	120.4 (3)
С3—С2—Н2	119.3	C15—C20—H20	119.8
C4—C3—C2	119.8 (4)	С19—С20—Н20	119.8
C4—C3—H3	120.1	C16—C21—H21A	109.5
C2—C3—H3	120.1	C16—C21—H21B	109 5
C_{3} $-C_{4}$ $-C_{5}$	120.3 (3)	$H_{21}A = C_{21} = H_{21}B$	109.5
$C_3 - C_4 - H_4$	119.8	C16-C21-H21C	109.5
C5-C4-H4	119.8	$H_{21}^{-1}A = C_{21}^{-1} = H_{21}^{-1}C$	109.5
C4-C5-C6	119.6 (4)	$H_{21B} = C_{21} = H_{21C}$	109.5
C4-C5-H5	120.2	C_{18} C_{22} H_{22A}	109.5
C6-C5-H5	120.2	C18 - C22 - H22B	109.5
$C_1 - C_2 - C_5$	120.2	$H_{22} = H_{22} = H$	109.5
C1-C6-H6	119.6	C18 - C22 - H22C	109.5
$C_{1} = C_{0} = H_{0}$	119.0	$H_{22}^{-10} = C_{22}^{-1122} = H_{22}^{-1122} = H_{22}$	109.5
$C_{12} = C_{7} = C_{8}$	119.0 120.2(2)	$H_{22}A = C_{22} = H_{22}C$	109.5
$C_{12} = C_7 = C_8$	120.2(3)	$n_{22} = 0.22 = 0.22$	109.3 110.4(2)
$C_{12} - C_{7} - S_{1}$	119.0(2)	$C_{20} = C_{23} = C_{24}$	119.4(3)
C_{0}	120.8(3)	$C_{20} = C_{23} = S_{3}$	119.0(3)
$C_{9} = C_{8} = C_{7}$	110.0(3)	$C_{24} = C_{23} = S_{3}$	121.0(3)
$C_{2} = C_{3} = C_{12}$	120.8(3)	$C_{23} = C_{24} = C_{23}$	118.1(4) 122.1(2)
C/-C8-C13	122.5 (3)	$C_{23} = C_{24} = C_{29}$	122.1(3)
C10 - C9 - C8	124.3 (3)	$C_{25} - C_{24} - C_{29}$	119.8 (4)
С10—С9—Н9	117.8	C26—C25—C24	122.8 (4)
С8—С9—Н9	117.8	С26—С25—Н25	118.6
C9—C10—C11	116.9 (3)	С24—С25—Н25	118.6
C9—C10—C14	121.0 (4)	C27—C26—C25	117.9 (4)
C11—C10—C14	122.0 (4)	C27—C26—C30	121.8 (5)
C12—C11—C10	120.9 (3)	C25—C26—C30	120.4 (5)
C12—C11—H11	119.5	C26—C27—C28	120.9 (4)
C10—C11—H11	119.5	С26—С27—Н27	119.6
C11—C12—C7	121.0 (3)	С28—С27—Н27	119.6
C11—C12—H12	119.5	C23—C28—C27	121.0 (4)
C7—C12—H12	119.5	C23—C28—H28	119.5
C8—C13—H13A	109.5	C27—C28—H28	119.5
C8—C13—H13B	109.5	С24—С29—Н29А	109.5
H13A—C13—H13B	109.5	С24—С29—Н29В	109.5
C8—C13—H13C	109.5	H29A—C29—H29B	109.5
H13A—C13—H13C	109.5	С24—С29—Н29С	109.5
H13B—C13—H13C	109.5	H29A—C29—H29C	109.5
C10—C14—H14A	109.5	H29B—C29—H29C	109.5
C10-C14-H14B	109.5	С26—С30—Н30А	109.5
H14A—C14—H14B	109.5	С26—С30—Н30В	109.5
C10-C14-H14C	109.5	H30A—C30—H30B	109.5
H14A—C14—H14C	109.5	С26—С30—Н30С	109.5
H14B—C14—H14C	109.5	H30A—C30—H30C	109.5
C20—C15—C16	120.3 (3)	H30B-C30-H30C	109.5

C20—C15—S2	119.0 (3)		
C1—Sn—S1—C7	-131.63 (14)	C14—C10—C11—C12	179.5 (3)
S3—Sn—S1—C7	-12.61 (11)	C10-C11-C12-C7	0.6 (5)
S2—Sn—S1—C7	109.04 (11)	C8—C7—C12—C11	0.0 (5)
C1—Sn—S2—C15	-175.21 (14)	S1—C7—C12—C11	-179.3 (2)
S3—Sn—S2—C15	65.16 (12)	Sn—S2—C15—C20	-81.6 (3)
S1—Sn—S2—C15	-51.77 (12)	Sn—S2—C15—C16	99.9 (2)
C1—Sn—S3—C23	-32.90 (16)	C20-C15-C16-C17	0.4 (5)
S1—Sn—S3—C23	-154.93 (13)	S2-C15-C16-C17	178.9 (2)
S2—Sn—S3—C23	85.39 (13)	C20-C15-C16-C21	-179.6 (3)
S3—Sn—C1—C6	85.5 (3)	S2-C15-C16-C21	-1.1 (4)
S1—Sn—C1—C6	-157.8 (2)	C15—C16—C17—C18	-0.3 (5)
S2—Sn—C1—C6	-36.6 (3)	C21-C16-C17-C18	179.7 (3)
S3—Sn—C1—C2	-89.7 (3)	C16-C17-C18-C19	0.1 (5)
S1—Sn—C1—C2	27.1 (3)	C16—C17—C18—C22	179.1 (3)
S2—Sn—C1—C2	148.2 (2)	C17—C18—C19—C20	0.0 (5)
C6—C1—C2—C3	0.7 (5)	C22-C18-C19-C20	-179.0 (3)
Sn—C1—C2—C3	176.0 (3)	C16—C15—C20—C19	-0.3 (5)
C1—C2—C3—C4	-1.1 (6)	S2-C15-C20-C19	-178.8 (3)
C2—C3—C4—C5	0.2 (6)	C18—C19—C20—C15	0.1 (5)
C3—C4—C5—C6	1.1 (6)	Sn—S3—C23—C28	-81.4 (3)
C2-C1-C6-C5	0.6 (5)	Sn—S3—C23—C24	99.6 (3)
Sn—C1—C6—C5	-174.6 (3)	C28—C23—C24—C25	1.0 (5)
C4—C5—C6—C1	-1.6 (6)	S3—C23—C24—C25	-179.9 (3)
Sn—S1—C7—C12	-85.7 (2)	C28—C23—C24—C29	-179.8 (3)
Sn—S1—C7—C8	95.0 (2)	S3—C23—C24—C29	-0.8 (5)
C12—C7—C8—C9	-0.6 (4)	C23—C24—C25—C26	-0.7 (6)
S1—C7—C8—C9	178.7 (2)	C29—C24—C25—C26	-179.8 (4)
C12—C7—C8—C13	178.0 (3)	C24—C25—C26—C27	0.3 (7)
S1—C7—C8—C13	-2.7 (4)	C24—C25—C26—C30	179.9 (4)
C7—C8—C9—C10	0.6 (5)	C25—C26—C27—C28	-0.2 (7)
C13—C8—C9—C10	-178.0 (3)	C30—C26—C27—C28	-179.8 (4)
C8—C9—C10—C11	-0.1 (5)	C24—C23—C28—C27	-1.0 (5)
C8—C9—C10—C14	179.9 (3)	S3—C23—C28—C27	179.9 (3)
C9-C10-C11-C12	-0.6 (5)	C26—C27—C28—C23	0.6 (6)

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C15–C20 and C7–C12 rings, respectively.

D—H···A	D—H	H···A	D··· A	D—H··· A	
C12—H12…Cg1	0.93	2.72	3.557 (3)	149	
C13—H13 C ··· $Cg2^{i}$	0.96	2.75	3.579 (3)	144	

Symmetry code: (i) -x+2, -y+2, -z+2.