

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis(1*H*-pyrazole- κN^2)bis(2,4,6-triisopropylbenzoato- κO)cobalt(II)

Cristian G. Hrib, Steffen Blaurock and Frank T. Edelmann*

Chemisches Institut der Otto-von-Guericke-Universität, Universitätsplatz 2, D-39116 Magdeburg, Germany

Correspondence e-mail: frank.edelmann@ovgu.de

Received 22 September 2010; accepted 4 October 2010

Key indicators: single-crystal X-ray study; T = 153 K; mean σ (C–C) = 0.009 Å; R factor = 0.067; wR factor = 0.173; data-to-parameter ratio = 15.9.

The title compound, $[Co(C_{16}H_{23}O_2)_2(C_3H_4N_2)_2]$ or $(C_3H_4N_2)_2Co(O_2CC_6H_2^{i}Pr_3-2,4,6)$, is a rare example of a tetracoordinate cobalt(II) carboxylate stabilized by ancillary *N*-heterocyclic ligands. The Co(II) ion resides on a crystal-lographic twofold axis so that the asymmetric unit comprises one half-molecule. Due to the steric bulk of the 2,4,6-triisopropylphenyl substituents, the carboxylate ligands are both coordinated in a monodentate fashion despite the low coordination number. The coordination geometry around the central Co(II) ion is distorted tetrahedral with angles at Co ranging from 92.27 (18)° to 121.08 (14)°.

Related literature

For cobalt(II) carboxylate complexes containing *N*-coordinated heterocyclic ligands, see: Manhas *et al.* (1975); Catterick & Thornton (1976); Kumar & Gandotra (1980*a*,*b*); Kumar & Bajju (1999); Ju *et al.* (2006); Karmakar *et al.* (2007). Normally the carboxylate anions are either bidentate or bridging. For an exception in which the benzoate ligands are coordinated in a monodentate fashion, see: Hökelek & Necefouğlu (1999). Interesting supramolecular structures have also been reported, see: Boldog *et al.* (2001).

Experimental

Crystal data

 $\begin{array}{l} [\mathrm{Co}(\mathrm{C}_{16}\mathrm{H}_{23}\mathrm{O}_2)_2(\mathrm{C}_3\mathrm{H}_4\mathrm{N}_2)_2] \\ M_r = 689.78 \\ \text{Orthorhombic, } Pbcn \\ a = 9.6146 \ (19) \ \mathrm{\AA} \\ b = 12.792 \ (3) \ \mathrm{\AA} \\ c = 31.275 \ (6) \ \mathrm{\AA} \end{array}$

Data collection

Stoe STADI4 diffractometer Absorption correction: ψ scan (North *et al.*, 1968) $T_{\rm min} = 0.696, T_{\rm max} = 0.953$ 6256 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.067$ $wR(F^2) = 0.173$ S = 1.093378 reflections $V = 3846.5 (13) Å^{3}$ Z = 4 Mo K\alpha radiation \mu = 0.49 mm⁻¹ T = 153 K 0.80 \times 0.50 \times 0.10 mm

3378 independent reflections 2073 reflections with $I > 2\sigma(I)$ $R_{int} = 0.071$ 3 standard reflections every 120 min intensity decay: 3%

213 parameters H-atom parameters constrained $\Delta \rho_{max} = 0.43$ e Å^{-3} $\Delta \rho_{min} = -0.48$ e Å^{-3}

Data collection: *DIF4* (Stoe & Cie, 1992); cell refinement: *DIF4*; data reduction: *REDU4* (Stoe & Cie, 1992); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *XP* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

The authors thank the Otto-von-Guericke-Universität for financial support of this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2344).

References

- Boldog, I., Rusanov, E. B., Chernega, A. N., Sieler, J. & Domasevitch, K. V. (2001). Dalton Trans. pp. 893–897.
- Catterick, J. & Thornton, P. (1976). J. Chem. Soc. Dalton Trans. pp. 1634–1640. Hökelek, T. & Necefouğlu, H. (1999). Acta Cryst. C55, 545–547.
- Ju, W.-Z., Jiao, R.-H., Cao, P. & Fang, R.-Q. (2006). Acta Cryst. E62, m1012– m1013.
- Karmakar, A., Sarma, R. J. & Baruah, J. B. (2007). *Polyhedron*, **26**, 1347–1355.
- Kumar, N. & Bajju, G. D. (1999). Indian J. Chem. Sect. A. 38, 291–294.Kumar, N. & Gandotra, A. K. (1980a). J. Inorg. Nucl. Chem. 42, 1247–1252.
- Kumar, N. & Gandotra, A. K. (1980b). Transition Met. Chem. **5**, 365–367.
- Manhas, B. S., Jolly, G. S., Kumar, N. & Gandotra, A. K. (1975). J. Chem. Sci. 1, 1–12.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Stoe & Cie (1992). DIF4 and REDU4. Stoe & Cie, Darmstadt, Germany.

supporting information

Acta Cryst. (2010). E66, m1387 [https://doi.org/10.1107/S1600536810039553] Bis(1H-pyrazole- κN^2)bis(2,4,6-triisopropylbenzoato- κO)cobalt(II)

Cristian G. Hrib, Steffen Blaurock and Frank T. Edelmann

S1. Comment

Cobalt(II) carboxylate complexes containing *N*-coordinated heterocyclic ligands have been the subject of detailed structural investigations in the past [Manhas *et al.* (1975); Catterick *et al.* (1976); Kumar *et al.* (1980a,b, 1999); Ju *et al.* (2006); Karmakar *et al.* (2007)]. The most frequently employed co-ligands are pyridine derivatives. Normally the carboxylate anions are either bidentate or bridging. A notable exception is the octahedral complex *trans*-diaqua-bis-(benzoato-*O*)-bis(nicotinamide-N1)cobalt(II), in which the benzoate ligands are coordinated in a monodentate fashion [Hökelek *et al.* (1999)]. Interesting supramolecular structures have have also been reported in this chemistry [Boldog *et al.* (2001)]. These compounds contained the heterocyclic co-ligand 3,3',5,5'-tetramethyl-4,4'-bipyrazolyl. The title compound, which contains unsubstituted pyrazole as co-ligand, was obtained in small amounts from a reaction of cobalt(II) hydroxide with 2,4,6-triisopropylbenzoic acid in aqueous solution in the presence of pyrazole. The coordination geometry around the central cobalt atom is distorted tetrahedral. Due to the steric bulk of the 2,4,6-triisopropylphenyl substituents the carboxylate ligands in the title compound are monodentate despite the low coordination number of 4 around Co.

S2. Experimental

Small amounts of blue single crystals of the title compound were obtained from a reaction of cobalt(II) hydroxide with 2,4,6-triisopropylbenzoic acid in aqueous solution in the presence of pyrazole.

S3. Refinement

The hydrogen atoms were included using a riding model, with N2—H2 = 0.88 Å, aromatic C—H = 0.95 Å, methyn C—H = 1.00 Å [$U_{iso}(H) = 1.2Ueq(C)$] and methyl C—H = 0.98 Å [$U_{iso}(H) = 1.5Ueq(C)$].

Figure 1

The molecule of the title compound in the crystal. Thermal ellipsoids represent 50% probability levels.

Bis(1*H*-pyrazole- κN^3)bis(2,4,6-triisopropylbenzoato- κO)cobalt(II)

Crystal data

$[Co(C_{16}H_{23}O_2)_2(C_3H_4N_2)_2]$
$M_r = 689.78$
Orthorhombic, Pbcn
Hall symbol: -P 2n 2ab
<i>a</i> = 9.6146 (19) Å
b = 12.792 (3) Å
<i>c</i> = 31.275 (6) Å
$V = 3846.5 (13) \text{ Å}^3$
Z = 4

Data collection

Stoe STADI4
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ω – θ –scans
Absorption correction: ψ scan
(North <i>et al.</i> , 1968)
$T_{\min} = 0.696, \ T_{\max} = 0.953$
6256 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.067$ $wR(F^2) = 0.173$ S = 1.093378 reflections 213 parameters 0 restraints Primary atom site location: structure-invariant direct methods F(000) = 1476 $D_x = 1.191 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 25 reflections $\theta = 15-25^{\circ}$ $\mu = 0.49 \text{ mm}^{-1}$ T = 153 KPlatelet, violet $0.80 \times 0.50 \times 0.10 \text{ mm}$

3378 independent reflections 2073 reflections with $I > 2\sigma(I)$ $R_{int} = 0.071$ $\theta_{max} = 25.0^{\circ}, \theta_{min} = 2.5^{\circ}$ $h = -11 \rightarrow 11$ $k = -15 \rightarrow 0$ $l = -37 \rightarrow 0$ 3 standard reflections every 120 min intensity decay: 3%

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0566P)^2 + 5.530P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.43$ e Å⁻³ $\Delta\rho_{min} = -0.48$ e Å⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Col	0.0000	0.38310 (6)	0.2500	0.0350 (3)	
01	0.0464 (3)	0.4910 (2)	0.20630 (10)	0.0408 (8)	
O2	0.0446 (4)	0.3536 (2)	0.16381 (11)	0.0516 (9)	
N1	0.1650 (4)	0.2895 (3)	0.25715 (12)	0.0407 (9)	
N2	0.2189 (6)	0.2259 (4)	0.22795 (17)	0.0756 (15)	
H2	0.1940	0.2265	0.2009	0.091*	
C1	0.1346 (5)	0.5130 (4)	0.13559 (15)	0.0406 (11)	
C2	0.2789 (5)	0.5234 (4)	0.13413 (17)	0.0514 (13)	
C3	0.3346 (6)	0.5847 (5)	0.1010 (2)	0.0731 (18)	
H3	0.4323	0.5955	0.0999	0.088*	
C4	0.2509 (7)	0.6304 (5)	0.0697 (2)	0.0778 (19)	
C5	0.1112 (7)	0.6181 (5)	0.07273 (19)	0.0701 (17)	
H5	0.0537	0.6506	0.0519	0.084*	
C6	0.0485 (5)	0.5603 (4)	0.10495 (16)	0.0501 (13)	
C7	0.3722 (6)	0.4637 (5)	0.16474 (19)	0.0630 (16)	
H7A	0.3170	0.4485	0.1911	0.076*	
C8	0.4125 (7)	0.3596 (5)	0.1447 (2)	0.090 (2)	
H8A	0.3282	0.3214	0.1365	0.135*	
H8B	0.4656	0.3182	0.1654	0.135*	
H8C	0.4696	0.3722	0.1193	0.135*	
C9	0.5041 (7)	0.5219 (6)	0.1784 (3)	0.099 (2)	
H9A	0.4785	0.5884	0.1918	0.149*	
H9B	0.5622	0.5354	0.1532	0.149*	
H9C	0.5561	0.4791	0.1989	0.149*	
C10	0.3147 (9)	0.6955 (6)	0.0337 (3)	0.113 (3)	
H10A	0.2387	0.6935	0.0119	0.135*	
C11	0.4247 (10)	0.6439 (8)	0.0113 (3)	0.143 (4)	
H11A	0.4581	0.6889	-0.0119	0.214*	
H11B	0.3901	0.5780	-0.0007	0.214*	
H11C	0.5013	0.6293	0.0311	0.214*	
C12	0.3206 (11)	0.8054 (6)	0.0431 (2)	0.134 (4)	
H12A	0.3590	0.8429	0.0185	0.200*	
H12B	0.3800	0.8170	0.0681	0.200*	
H12C	0.2266	0.8313	0.0491	0.200*	
C13	-0.1072 (6)	0.5466 (4)	0.10610 (17)	0.0563 (14)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H13A	-0.1330	0.5261	0.1359	0.068*	
C14	-0.1865 (6)	0.6474 (5)	0.0955 (2)	0.079 (2)	
H14A	-0.1570	0.7032	0.1150	0.118*	
H14B	-0.2866	0.6353	0.0988	0.118*	
H14C	-0.1666	0.6680	0.0659	0.118*	
C15	-0.1521 (8)	0.4578 (6)	0.0765 (2)	0.106 (3)	
H15A	-0.1009	0.3941	0.0839	0.160*	
H15B	-0.1320	0.4769	0.0468	0.160*	
H15C	-0.2521	0.4455	0.0798	0.160*	
C16	0.2320 (6)	0.2617 (4)	0.29427 (18)	0.0594 (15)	
H16	0.2176	0.2921	0.3216	0.071*	
C17	0.3225 (6)	0.1830 (4)	0.2852 (2)	0.0651 (17)	
H17	0.3820	0.1489	0.3050	0.078*	
C18	0.3129 (4)	0.1623 (3)	0.24355 (14)	0.0316 (10)	
H18	0.3642	0.1113	0.2281	0.038*	
C19	0.0713 (5)	0.4460 (4)	0.16973 (15)	0.0375 (11)	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
Col	0.0309 (4)	0.0278 (4)	0.0463 (5)	0.000	0.0002 (4)	0.000
01	0.0410 (18)	0.0424 (18)	0.0391 (18)	0.0000 (14)	0.0033 (15)	0.0010 (15)
O2	0.060 (2)	0.0385 (19)	0.057 (2)	-0.0102 (16)	0.0027 (17)	-0.0018 (16)
N1	0.040 (2)	0.0349 (19)	0.048 (3)	0.0090 (17)	-0.0004 (19)	-0.0039 (19)
N2	0.079 (4)	0.069 (3)	0.079 (4)	-0.004 (3)	0.001 (3)	-0.002 (3)
C1	0.044 (3)	0.039 (3)	0.038 (3)	0.000 (2)	0.008 (2)	0.002 (2)
C2	0.044 (3)	0.052 (3)	0.059 (3)	0.003 (2)	0.014 (3)	0.004 (3)
C3	0.055 (4)	0.070 (4)	0.095 (5)	-0.005 (3)	0.033 (4)	0.012 (4)
C4	0.079 (4)	0.065 (4)	0.090 (5)	0.014 (3)	0.038 (4)	0.032 (4)
C5	0.071 (4)	0.077 (4)	0.063 (4)	0.021 (3)	0.020 (3)	0.030 (3)
C6	0.058 (3)	0.048 (3)	0.045 (3)	0.003 (3)	0.006 (3)	0.010 (3)
C7	0.042 (3)	0.079 (4)	0.068 (4)	-0.001 (3)	0.002 (3)	0.006 (3)
C8	0.081 (5)	0.082 (5)	0.107 (6)	0.023 (4)	-0.008 (4)	0.011 (4)
С9	0.049 (3)	0.116 (6)	0.133 (7)	-0.003 (4)	-0.013 (4)	-0.012 (5)
C10	0.113 (6)	0.087 (6)	0.138 (7)	0.013 (5)	0.071 (6)	0.051 (5)
C11	0.138 (8)	0.177 (10)	0.113 (7)	0.020 (7)	0.069 (6)	0.060 (7)
C12	0.221 (11)	0.100 (6)	0.079 (5)	-0.080 (7)	0.038 (6)	0.004 (5)
C13	0.052 (3)	0.069 (4)	0.048 (3)	0.002 (3)	0.000 (3)	0.008 (3)
C14	0.054 (4)	0.099 (5)	0.084 (5)	0.023 (4)	0.002 (3)	0.025 (4)
C15	0.076 (5)	0.121 (7)	0.122 (7)	-0.009(5)	-0.014 (5)	-0.031 (5)
C16	0.054 (3)	0.069 (4)	0.055 (3)	0.024 (3)	-0.008(3)	-0.007 (3)
C17	0.046 (3)	0.062 (4)	0.088 (5)	0.026 (3)	-0.006 (3)	0.017 (3)
C18	0.034 (2)	0.0270 (19)	0.034 (3)	0.0153 (18)	0.002 (2)	0.0022 (19)
C19	0.032 (2)	0.045 (3)	0.036 (3)	0.000 (2)	-0.004(2)	0.001 (2)

Geometric parameters (Å, °)

Co1—O1 ⁱ	1.993 (3)	C8—H8C	0.9800	
Col—Ol	1.993 (3)	С9—Н9А	0.9800	
Col—N1	2.000 (4)	С9—Н9В	0.9800	
Co1—N1 ⁱ	2.000 (4)	С9—Н9С	0.9800	
O1—C19	1.303 (5)	C10-C11	1.431 (10)	
O2—C19	1.223 (5)	C10—C12	1.437 (10)	
N1—N2	1.328 (6)	C10—H10A	1.0000	
N1—C16	1.375 (6)	C11—H11A	0.9800	
N2—C18	1.310 (6)	C11—H11B	0.9800	
N2—H2	0.8800	C11—H11C	0.9800	
C1—C2	1.394 (7)	C12—H12A	0.9800	
C1—C6	1.403 (7)	C12—H12B	0.9800	
C1—C19	1.499 (6)	C12—H12C	0.9800	
C2—C3	1.404 (7)	C13—C15	1.527 (8)	
C2—C7	1.518 (7)	C13—C14	1.534 (8)	
C3—C4	1.397 (9)	C13—H13A	1.0000	
С3—Н3	0.9500	C14—H14A	0.9800	
C4—C5	1.355 (9)	C14—H14B	0.9800	
C4—C10	1.529 (8)	C14—H14C	0.9800	
C5—C6	1.388 (7)	C15—H15A	0.9800	
С5—Н5	0.9500	C15—H15B	0.9800	
C6—C13	1.507 (8)	C15—H15C	0.9800	
C7—C8	1.522 (8)	C16—C17	1.360 (7)	
С7—С9	1.531 (8)	C16—H16	0.9500	
С7—Н7А	1.0000	C17—C18	1.331 (7)	
C8—H8A	0.9800	C17—H17	0.9500	
C8—H8B	0.9800	C18—H18	0.9500	
Ol ⁱ —Col—Ol	92.32 (18)	C11—C10—C12	121.6 (8)	
O1 ⁱ —Co1—N1	121.02 (14)	C11—C10—C4	113.9 (6)	
O1—Co1—N1	108.28 (14)	C12—C10—C4	113.5 (7)	
O1 ⁱ —Co1—N1 ⁱ	108.28 (14)	C11—C10—H10A	101.2	
O1—Co1—N1 ⁱ	121.02 (14)	C12-C10-H10A	101.2	
N1—Co1—N1 ⁱ	106.5 (2)	C4—C10—H10A	101.2	
C19—O1—Co1	109.7 (3)	C10-C11-H11A	109.5	
N2—N1—C16	103.8 (4)	C10—C11—H11B	109.5	
N2—N1—Co1	126.8 (3)	H11A—C11—H11B	109.5	
C16—N1—Co1	128.4 (3)	C10—C11—H11C	109.5	
C18—N2—N1	113.2 (5)	H11A—C11—H11C	109.5	
C18—N2—H2	123.4	H11B—C11—H11C	109.5	
N1—N2—H2	123.4	C10—C12—H12A	109.5	
C2—C1—C6	121.6 (5)	C10—C12—H12B	109.5	
C2—C1—C19	118.8 (4)	H12A—C12—H12B	109.5	
C6—C1—C19	119.5 (4)	C10—C12—H12C	109.5	
C1—C2—C3	117.2 (5)	H12A—C12—H12C	109.5	
C1—C2—C7	121.3 (5)	H12B-C12-H12C	109.5	

$C_{3} - C_{2} - C_{7}$	121 4 (5)	C6-C13-C15	110.6(5)
$C_{4} - C_{3} - C_{2}$	121.4 (5)	C6-C13-C14	113.0(5)
C4-C3-H3	118.9	C15-C13-C14	110.0(5)
$C_2 - C_3 - H_3$	118.9	C6_C13_H13A	107.4
$C_2 = C_3 = H_3$	118.2 (5)	C15-C13-H13A	107.4
$C_5 = C_4 = C_5$	110.2(3)	C14 $C13$ $H13A$	107.4
$C_{3} = C_{4} = C_{10}$	120.9(7)	C14 - C13 - III 5A	107.4
C_{3}	120.9 (7)	C13 - C14 - H14A	109.5
C4 - C5 - C0	122.9 (0)	U13 - U14 - U14D	109.5
C4—C5—H5	118.5	H14A - C14 - H14B	109.5
С6—С5—Н5	118.5	C13—C14—H14C	109.5
C5—C6—C1	117.9 (5)	H14A—C14—H14C	109.5
C5—C6—C13	120.7 (5)	H14B—C14—H14C	109.5
C1—C6—C13	121.3 (5)	C13—C15—H15A	109.5
C2—C7—C8	109.3 (5)	C13—C15—H15B	109.5
С2—С7—С9	114.9 (5)	H15A—C15—H15B	109.5
С8—С7—С9	109.2 (5)	C13—C15—H15C	109.5
С2—С7—Н7А	107.7	H15A—C15—H15C	109.5
С8—С7—Н7А	107.7	H15B—C15—H15C	109.5
С9—С7—Н7А	107.7	C17—C16—N1	108.3 (5)
С7—С8—Н8А	109.5	C17—C16—H16	125.8
C7—C8—H8B	109.5	N1—C16—H16	125.8
H8A—C8—H8B	109.5	C18—C17—C16	107.9(5)
C7 - C8 - H8C	109.5	C18 - C17 - H17	126.0
$H_{8A} = C_{8} = H_{8C}$	109.5	C16 - C17 - H17	126.0
	109.5	$N_2 = C_{18} = C_{17}$	106.8 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5	$N_2 = C_{18} = C_{17}$	100.8 (4)
$C_{1} = C_{2} = H_{2}$	109.5	$N_2 - C_{10} - H_{10}$	120.0
	109.5	C1/-C18-H18	120.0
H9A—C9—H9B	109.5	02 - 019 - 01	121.5 (4)
C/C9H9C	109.5	02-019-01	122.0 (4)
H9A—C9—H9C	109.5	01	116.5 (4)
Н9В—С9—Н9С	109.5		
O1 ^L —Co1—O1—C19	-174.0 (3)	C2C1C6C13	178.5 (5)
N1—Co1—O1—C19	62.1 (3)	C19—C1—C6—C13	1.2 (8)
N1 ⁱ —Co1—O1—C19	-61.0 (3)	C1—C2—C7—C8	90.8 (7)
O1 ⁱ —Co1—N1—N2	-169.3 (4)	C3—C2—C7—C8	-84.0 (7)
O1—Co1—N1—N2	-64.9 (4)	C1—C2—C7—C9	-146.0 (6)
N1 ⁱ —Co1—N1—N2	66.7 (4)	C3—C2—C7—C9	39.2 (8)
O1 ⁱ —Co1—N1—C16	23.7 (5)	C5-C4-C10-C11	-130.1 (9)
O1-Co1-N1-C16	128.1 (4)	C3-C4-C10-C11	51.9 (11)
N1 ⁱ —Co1—N1—C16	-100.4(5)	C5-C4-C10-C12	85.1 (11)
C16—N1—N2—C18	-0.3 (6)	C3—C4—C10—C12	-92.8 (10)
Co1—N1—N2—C18	-169.9 (3)	C5—C6—C13—C15	82.9 (7)
C6-C1-C2-C3	1.0 (8)	C1—C6—C13—C15	-95.5 (6)
C19-C1-C2-C3	178.4 (5)	C_{5} — C_{6} — C_{13} — C_{14}	-419(8)
C6-C1-C2-C7	-1740(5)	C1 - C6 - C13 - C14	139 7 (5)
C19-C1-C2-C7	3 4 (8)	N2-N1-C16-C17	0.1(6)
$C_{1} = C_{2} = C_{2} = C_{1}$	-25(0)	C_{01} N1 C16 C17	160 A (A)
01 - 02 - 03 - 04	2.2 (7)	01 - 11 - 010 - 017	107.4(4)

supporting information

C7—C2—C3—C4	172.5 (6)	N1-C16-C17-C18	0.2 (7)
C2—C3—C4—C5	2.8 (10)	N1—N2—C18—C17	0.4 (6)
C2-C3-C4-C10	-179.2 (6)	C16—C17—C18—N2	-0.4 (6)
C3—C4—C5—C6	-1.6 (11)	Co1-01-C19-02	11.3 (5)
C10-C4-C5-C6	-179.6 (6)	Co1-01-C19-C1	-168.4 (3)
C4—C5—C6—C1	0.2 (9)	C2-C1-C19-O2	-93.1 (6)
C4—C5—C6—C13	-178.2 (6)	C6-C1-C19-O2	84.3 (6)
C2—C1—C6—C5	0.1 (8)	C2-C1-C19-O1	86.6 (6)
C19—C1—C6—C5	-177.3 (5)	C6-C1-C19-O1	-95.9 (5)

Symmetry code: (i) -x, y, -z+1/2.