metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

$Bis(\mu_2$ -4-amino-3-nitrobenzoato)bis(4amino-3-nitrobenzoato)octabutvldi-u3oxido-tetratin(IV)

Yip-Foo Win,^a Chen-Shang Choong,^a Siang-Guan Teoh,^b Jia Hao Goh^c⁺ and Hoong-Kun Fun^{c*}§

^aDepartment of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, 31900 Kampar, Perak, Malaysia, ^bSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia Correspondence e-mail: hkfun@usm.my

Received 7 October 2010; accepted 7 October 2010

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.006 Å; R factor = 0.037; wR factor = 0.116; data-to-parameter ratio = 27.7.

The tetranuclear molecules of the title compound, $[Sn_4(C_4H_9)_8(C_7H_5N_2O_4)_4O_2]$, reside on a crystallographic inversion center. Both the two independent Sn atoms are five-coordinate, with distorted trigonal-bipyramidal geometries. One Sn atom is coordinated by two O atoms of the carboxylate anions, one bridging O atom and two butyl groups and the other Sn atom is coordinated by an O atom of the carboxylate anion, two bridging O atoms and two butyl groups. All the butyl groups are equatorial with respect to the SnO₃ trigonal plane. The molecular structure is stabilized by intramolecular N-H···O hydrogen bonds. In the crystal, pairs of intermolecular bifurcated acceptor N-H···O and $C-H\cdots O$ hydrogen bonds link the molecules into chains along [101]. Weak intermolecular C-H··· π and π - π interactions [centroid–centroid distance = 3.713(2)Å] are also observed.

Related literature

For general background to and applications of the title complex, see: Khoo & Hazell (1999); Parvez et al. (2004); Li et al. (2006); Win et al. (2008a,b). For closely related structures, see: Khoo & Hazell (1999); Parvez et al. (2004); Li et al. (2006); Win et al. (2008b). For graph-set motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental

Crystal data

 $[Sn_4(C_4H_9)_8(C_7H_5N_2O_4)_4O_2]$ $\gamma = 66.108 \ (2)^{\circ}$ $M_r = 1688.18$ V = 1732.1 (2) Å³ Triclinic, $P\overline{1}$ Z = 1a = 11.9585 (9) Å Mo $K\alpha$ radiation b = 13.0679 (10) Å $\mu = 1.50 \text{ mm}^{-1}$ c = 13.1897 (10) ÅT = 100 K $\alpha = 76.256 \ (2)^{\circ}$ $0.20 \times 0.15 \times 0.06 \; \rm mm$ $\beta = 67.445 \ (2)^{\circ}$

Data collection

Bruker APEXII DUO CCD areadetector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2009) $T_{\min} = 0.758, T_{\max} = 0.912$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.037$	410 parameters
$wR(F^2) = 0.116$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 1.26 \text{ e } \text{\AA}^{-3}$
11359 reflections	$\Delta \rho_{\rm min} = -1.18 \text{ e } \text{\AA}^{-3}$

32184 measured reflections

 $R_{\rm int} = 0.055$

11359 independent reflections

8603 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C16–C21 phenyl ring.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1N1 \cdots O6$	0.91	2.59	3.422 (4)	153
$N1 - H2N1 \cdots O1$	1.03	1.83	2.644 (5)	133
$N3-H1N3\cdots O4^{i}$	0.88	2.04	2.910 (4)	167
N3−H2N3···O5	0.88	2.06	2.669 (4)	125
$C17 - H17A \cdots O4^{i}$	0.93	2.51	3.246 (5)	137
$C30-H30A\cdots Cg1^{ii}$	0.96	2.80	3.584 (5)	139

Symmetry codes: (i) x + 1, y, z - 1; (ii) -x + 1, -y + 1, -z.

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

‡ Thomson Reuters ResearcherID: C-7576-2009.

The authors would like to thank Universiti Tunku Abdul Rahman (UTAR) for the UTAR Research Fund (Vote No.

[§] Thomson Reuters ResearcherID: A-3561-2009.

6200/Y02) and Universiti Sains Malaysia (USM) for financial support as well as technical assistance and facilities. HKF and JHG also thank USM for the Research University Grant (No. 1001/PFIZIK/811160).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2350).

References

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.

- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
- Khoo, L. E. & Hazell, A. (1999). Acta Cryst. C55, 2070–2073.
- Li, F.-H., Yin, H.-D., Gao, Z.-J. & Wang, D.-Q. (2006). Acta Cryst. E62, m788– m790.
- Parvez, M., Sadiq-ur-Rehman,, Shahid, K., Ali, S. & Mazhar, M. (2004). Acta Cryst. E60, m1465–m1467.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Win, Y. F., Teoh, S. G., Ha, S. T., Kia, R. & Fun, H.-K. (2008b). Acta Cryst. E64, m1572–m1573.
- Win, Y. F., Teoh, S. G., Lim, E. K., Ng, S. L. & Fun, H. K. (2008a). J. Chem. Crystallogr. 38, 345–350.

supporting information

Acta Cryst. (2010). E66, m1406-m1407 [https://doi.org/10.1107/S1600536810040146]

Bis(μ_2 -4-amino-3-nitrobenzoato)bis(4-amino-3-nitrobenzoato)octabutyldi- μ_3 -oxido-tetratin(IV)

Yip-Foo Win, Chen-Shang Choong, Siang-Guan Teoh, Jia Hao Goh and Hoong-Kun Fun

S1. Comment

In general, there are many well-documented structures on complexes isolated from 1:1 molar ratio reaction between diorganotin(IV) with the respective organic acids (Khoo & Hazell, 1999; Parvez *et al.*, 2004; Li *et al.*, 2006; Win *et al.*, 2008*a*,*b*). This dimeric structure is known as organodistannoxane dimer with the core geometry consisting of a centrosymmetric planar Sn_2O_2 group (Win *et al.*, 2008*a*,*b*). The centrosymmetric planar Sn_2O_2 group is bonded to the exo- and endocyclic tin(IV) atom moiety *via* the bridging oxygen atoms so that the oxygen atoms are tri-coordinated (Khoo & Hazell, 1999; Parvez *et al.*, 2004; Li *et al.*, 2006). In this study, the crystal structure of the title complex is similar to bis(2,3-dibromopropionato)tetrabutyldistannoxane(IV) dimer and consists of a centrosymmetric planar Sn_2O_2 group (Win *et al.*, 2008*b*). The only exception is 4-amino-3-nitrobenzoic acid is utilized in the reaction to obtain the title complex.

The asymmetric unit of the title complex (Fig. 1) lies on a crystallographic inversion center and comprises of one-half molecule, with the other half of the molecule is generated by symmetry code -x, -y+1, -z. The Sn1 atom is fivecoordinated by two butyl groups in equatorial position, an O atom of the monodentate carboxylate anion, an O atom of the bridging carboxylate atom and one bridging O atom in a distorted trigonal bipiramidal geometry. The Sn2 atom also has a distorted trigonal bipiramidal geometry, being coordinated by two butyl groups in equatorial position, one bridging carboxylate O atom and two bridging O atoms. Intramolecular N1—H2N1…O1 and N3—H2N3…O5 hydrogen bonds (Table 1) form two different six-membered rings, generating *S*(6) ring motifs (Bernstein *et al.*, 1995) which help to stabilize the molecular structure. All geometric parameters are consistent to those observed in closely related structures (Khoo & Hazell, 1999; Parvez *et al.*, 2004; Li *et al.*, 2006; Win *et al.*, 2008*b*).

In the crystal structure, pairs of intermolecular bifurcated acceptor N3—H1N3···O4 and C17—H17A···O4 hydrogen bonds (Table 1) link adjacent molecules into one-dimensional chains incorporating $R^2_1(6)$ hydrogen bond ring motifs along the [101] direction (Bernstein *et al.*, 1995, Fig. 2). Further stabilization of the crystal structure is provided by weak intermolecular C30—H30A···*Cg*1 interactions (Table 1) as well as *Cg*1···*Cg*2 aromatic stacking interactions where *Cg*1 and *Cg* 2 are the centroids of the C16-C21 and C1-C6 benzene rings.

S2. Experimental

The title complex was obtained by heating under reflux in a 1:1 molar mixture of dibutyltin(IV) oxide (0.50 g, 2 mmol) and 4-amino-3-nitrobenzoic acid (0.36 g, 2 mmol) in methanol (50 ml) for 4 h. Clear yellowish solution was isolated by filtration and kept in a bottle. After 12 days, yellow single crystals (0.71 g, 75.8 % yeild) were collected. *M.p.* 525.8–527.4 K. Analysis found for $C_{60}H_{92}N_8O_{18}Sn_4$: C, 42.84; H, 5.43; N, 6.49; Sn, 28.28 %. Calculated found for $C_{60}H_{92}N_8O_{18}Sn_4$: C, 42.68; H, 5.49; N, 6.64; Sn, 28.13 %.

S3. Refinement

The amino group H atoms were located from the difference Fourier map and constrained to ride with the parent atom with $U_{iso} = 1.2 U_{eq}(N)$. All other H atoms were placed in their calculated positions, with C—H = 0.93 – 0.97 Å, and refined using a riding model with $U_{iso} = 1.2$ or 1.5 $U_{eq}(C)$. The rotating group model was used for the methyl groups. The highest residual electron density peak and the deepest hole were located at 0.72 Å from atom Sn1.

Figure 1

The molecular structure of the title complex, showing 30% probability displacement ellipsoids and the atom-numbering scheme. The suffix A corresponds to symmetry code [-x, -y+1, -z]. Intramolecular hydrogen bonds are shown as dashed lines and all C-bound H atoms were omitted for clarity.

Figure 2

The crystal structure of the title complex, viewed along the *b* axis, showing a one-dimensional chain along the $[10\overline{1}]$ direction. H atoms not involved in intermolecular hydrogen bonds (dashed lines) have been omitted for clarity.

 $Bis(\mu_2$ -4-amino-3-nitrobenzoato)bis(4-amino-3-nitrobenzoato)octabutyldi- μ_3 -oxido-tetratin(IV)

Crystal data

$[Sn_4(C_4H_9)_8(C_7H_5N_2O_4)_4O_2]$	Z = 1
$M_r = 1688.18$	F(000) = 852
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.618 {\rm Mg} {\rm m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 11.9585 (9) Å	Cell parameters from 5645 reflections
b = 13.0679 (10) Å	$\theta = 3.4 - 33.2^{\circ}$
c = 13.1897 (10) Å	$\mu = 1.50 \text{ mm}^{-1}$
$\alpha = 76.256 \ (2)^{\circ}$	T = 100 K
$\beta = 67.445 \ (2)^{\circ}$	Block, yellow
$\gamma = 66.108 \ (2)^{\circ}$	$0.20 \times 0.15 \times 0.06 \text{ mm}$
V = 1732.1 (2) Å ³	

Data collection

Bruker APEXII DUO CCD area-detector	32184 measured reflections
diffractometer	11359 independent reflections
Radiation source: fine-focus sealed tube	8603 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{int} = 0.055$
φ and ω scans	$\theta_{max} = 31.5^{\circ}, \theta_{min} = 1.7^{\circ}$
Absorption correction: multi-scan	$h = -17 \rightarrow 17$
(<i>SADABS</i> ; Bruker, 2009)	$k = -19 \rightarrow 18$
$T_{\min} = 0.758, T_{\max} = 0.912$	$l = -19 \rightarrow 19$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.037$	Hydrogen site location: inferred from
$wR(F^2) = 0.116$	neighbouring sites
S = 1.04	H-atom parameters constrained
11359 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0611P)^2]$
410 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{max} = 0.001$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 1.26$ e Å ⁻³
direct methods	$\Delta\rho_{min} = -1.18$ e Å ⁻³

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Sn1	-0.15407 (2)	0.426491 (18)	0.258267 (17)	0.01235 (6)	
Sn2	0.126384 (19)	0.388757 (17)	0.012249 (17)	0.01183 (6)	
01	0.5285 (3)	-0.1013 (3)	0.4294 (3)	0.0452 (9)	
O2	0.3268 (4)	-0.0394 (3)	0.5298 (3)	0.0469 (9)	
03	0.0372 (2)	0.29294 (19)	0.21639 (19)	0.0150 (5)	
04	-0.0160 (2)	0.2104 (2)	0.3863 (2)	0.0230 (5)	
05	0.9029 (2)	-0.0002(2)	-0.1901 (2)	0.0233 (5)	
06	0.7210 (3)	0.0470 (2)	-0.0558 (2)	0.0254 (6)	
07	0.3299 (2)	0.3217 (2)	-0.10236 (19)	0.0183 (5)	
08	-0.3316 (2)	0.5805 (2)	0.2675 (2)	0.0187 (5)	
09	-0.0734 (2)	0.47928 (19)	0.09963 (18)	0.0133 (4)	
N1	0.5993 (3)	-0.0496 (3)	0.2134 (3)	0.0313 (8)	
H1N1	0.6573	-0.0435	0.1450	0.038*	
H2N1	0.6222	-0.0939	0.2830	0.038*	

N2	0.4123 (4)	-0.0430(3)	0.4400 (3)	0.0315 (8)
N3	0.9151 (3)	0.0899 (3)	-0.3964 (2)	0.0192 (6)
H1N3	0.9467	0.1258	-0.4600	0.023*
H2N3	0.9574	0.0317	-0.3594	0.023*
N4	0.7854 (3)	0.0571 (2)	-0.1543 (2)	0.0173 (6)
C1	0.2968 (3)	0.1390 (3)	0.1681 (3)	0.0186 (7)
H1A	0.2693	0.1787	0.1084	0.022*
C2	0.4240 (3)	0.0748 (3)	0.1495 (3)	0.0212 (7)
H2A	0.4809	0.0718	0.0776	0.025*
C3	0.4715 (3)	0.0126 (3)	0.2369 (3)	0.0213 (7)
C4	0.3797 (4)	0.0193 (3)	0.3434 (3)	0.0211 (7)
C5	0.2486 (3)	0.0864 (3)	0.3609 (3)	0.0182 (6)
H5A	0.1902	0.0895	0.4322	0.022*
C6	0.2058 (3)	0.1470 (3)	0.2745 (3)	0.0163 (6)
C7	0.0658 (3)	0.2188 (3)	0.2964 (3)	0.0161 (6)
C8	-0.2737 (3)	0.3386 (3)	0.2691 (3)	0.0190 (7)
H8A	-0.3379	0.3446	0.3420	0.023*
H8B	-0.3195	0.3771	0.2164	0.023*
C9	-0.2096 (4)	0.2138 (3)	0.2494 (3)	0.0238 (7)
H9A	-0.1820	0.1707	0.3118	0.029*
H9B	-0.1334	0.2038	0.1843	0.029*
C10	-0.3018 (4)	0.1683 (3)	0.2336 (4)	0.0283 (8)
H10A	-0.2612	0.0875	0.2313	0.034*
H10B	-0.3802	0.1828	0.2968	0.034*
C11	-0.3378 (6)	0.2205 (5)	0.1287 (4)	0.0438 (12)
H11A	-0.3958	0.1894	0.1240	0.066*
H11B	-0.2611	0.2043	0.0655	0.066*
H11C	-0.3793	0.3004	0.1307	0.066*
C12	-0.1180 (3)	0.4888 (3)	0.3732 (3)	0.0191 (7)
H12A	-0.0676	0.4252	0.4117	0.023*
H12B	-0.0650	0.5344	0.3321	0.023*
C13	-0.2355 (4)	0.5582 (4)	0.4589(3)	0.0248 (8)
H13A	-0.2862	0.6223	0.4211	0.030*
H13B	-0.2886	0.5128	0.5010	0.030*
C14	-0.2041 (4)	0.6002 (4)	0.5377 (3)	0.0280 (8)
H14A	-0.1521	0.6466	0.4963	0.034*
H14B	-0.1533	0.5365	0.5758	0.034*
C15	-0.3241 (5)	0.6682 (4)	0.6222 (4)	0.0352 (10)
H15A	-0.2992	0.6927	0.6707	0.053*
H15B	-0.3754	0.6224	0.6644	0.053*
H15C	-0.3737	0.7325	0.5851	0.053*
C16	0.5905 (3)	0.2917 (3)	-0.3655 (3)	0.0166 (6)
H16A	0.5465	0.3451	-0.4107	0.020*
C17	0.7173 (3)	0.2297 (3)	-0.4104 (3)	0.0178 (6)
H17A	0.7574	0.2407	-0.4859	0.021*
C18	0.7904 (3)	0.1483 (3)	-0.3449 (3)	0.0152 (6)
C19	0.7236 (3)	0.1349 (3)	-0.2307 (3)	0.0135 (6)
C20	0.5918 (3)	0.1990 (3)	-0.1861 (3)	0.0133 (6)
	~ /			

H20A	0.5499	0.1885	-0.1109	0.016*
C21	0.5243 (3)	0.2764 (3)	-0.2514 (3)	0.0136 (6)
C22	0.3840 (3)	0.3441 (3)	-0.2034 (3)	0.0138 (6)
C23	0.0916 (4)	0.2564 (3)	-0.0232 (3)	0.0194 (7)
H23A	0.1537	0.1853	-0.0055	0.023*
H23B	0.0061	0.2570	0.0241	0.023*
C24	0.1005 (3)	0.2635 (3)	-0.1432 (3)	0.0183 (6)
H24A	0.0363	0.3332	-0.1604	0.022*
H24B	0.1850	0.2651	-0.1908	0.022*
C25	0.0794 (4)	0.1652 (3)	-0.1674 (3)	0.0215 (7)
H25A	0.1367	0.0952	-0.1421	0.026*
H25B	-0.0088	0.1689	-0.1266	0.026*
C26	0.1044 (4)	0.1659 (4)	-0.2894 (4)	0.0301 (9)
H26A	0.1004	0.0983	-0.3020	0.045*
H26B	0.1885	0.1701	-0.3309	0.045*
H26C	0.0400	0.2299	-0.3125	0.045*
C27	0.2107 (3)	0.4357 (3)	0.1018 (3)	0.0174 (6)
H27A	0.1436	0.4668	0.1682	0.021*
H27B	0.2737	0.3685	0.1245	0.021*
C28	0.2768 (4)	0.5210 (3)	0.0386 (3)	0.0202 (7)
H28A	0.3422	0.4917	-0.0292	0.024*
H28B	0.2134	0.5900	0.0189	0.024*
C29	0.3397 (3)	0.5474 (3)	0.1050 (3)	0.0221 (7)
H29A	0.3960	0.4773	0.1313	0.027*
H29B	0.3931	0.5906	0.0567	0.027*
C30	0.2445 (4)	0.6125 (4)	0.2031 (3)	0.0269 (8)
H30A	0.2908	0.6194	0.2452	0.040*
H30B	0.1869	0.5733	0.2487	0.040*
H30C	0.1957	0.6860	0.1774	0.040*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sn1	0.01042 (10)	0.01296 (11)	0.01006 (10)	-0.00221 (7)	-0.00232 (7)	0.00013 (8)
Sn2	0.01123 (10)	0.01097 (10)	0.01065 (10)	-0.00180 (7)	-0.00337 (7)	-0.00046 (7)
O1	0.0303 (17)	0.047 (2)	0.053 (2)	0.0028 (14)	-0.0281 (16)	-0.0003 (17)
O2	0.042 (2)	0.059 (2)	0.0247 (16)	-0.0027 (16)	-0.0162 (15)	0.0049 (15)
O3	0.0112 (10)	0.0149 (11)	0.0138 (10)	-0.0025 (8)	-0.0021 (8)	0.0003 (9)
O4	0.0167 (12)	0.0256 (14)	0.0165 (12)	-0.0040 (9)	-0.0023 (10)	0.0045 (10)
O5	0.0134 (11)	0.0237 (13)	0.0247 (13)	0.0002 (9)	-0.0071 (10)	0.0013 (10)
O6	0.0214 (13)	0.0294 (15)	0.0150 (12)	-0.0009 (10)	-0.0053 (10)	0.0010 (10)
O7	0.0117 (11)	0.0233 (13)	0.0119 (10)	-0.0004 (9)	-0.0021 (9)	-0.0007 (9)
08	0.0135 (11)	0.0199 (12)	0.0174 (11)	0.0010 (9)	-0.0068 (9)	-0.0017 (9)
O9	0.0116 (10)	0.0127 (10)	0.0117 (10)	-0.0025 (8)	-0.0029 (8)	0.0009 (8)
N1	0.0133 (14)	0.0299 (18)	0.043 (2)	-0.0003 (12)	-0.0082 (14)	-0.0053 (16)
N2	0.0276 (18)	0.0309 (19)	0.0340 (19)	-0.0016 (13)	-0.0198 (15)	0.0013 (15)
N3	0.0104 (12)	0.0188 (14)	0.0184 (14)	-0.0006 (10)	-0.0018 (10)	0.0026 (11)
N4	0.0149 (13)	0.0170 (14)	0.0190 (14)	-0.0021 (10)	-0.0088 (11)	-0.0010 (11)

supporting information

C1	0.0141 (15)	0.0159 (15)	0.0233 (17)	-0.0039 (11)	-0.0057 (13)	-0.0005 (13)
C2	0.0146 (15)	0.0217 (17)	0.0237 (17)	-0.0053 (12)	-0.0027 (13)	-0.0040 (14)
C3	0.0149 (15)	0.0163 (16)	0.0331 (19)	-0.0041 (12)	-0.0078 (14)	-0.0057 (14)
C4	0.0245 (18)	0.0179 (16)	0.0251 (17)	-0.0081 (13)	-0.0140 (14)	0.0015 (14)
C5	0.0148 (15)	0.0182 (16)	0.0206 (16)	-0.0051 (11)	-0.0073 (13)	0.0014 (13)
C6	0.0118 (14)	0.0142 (15)	0.0217 (16)	-0.0041 (11)	-0.0051 (12)	-0.0011 (12)
C7	0.0144 (14)	0.0132 (15)	0.0188 (15)	-0.0019 (11)	-0.0089 (12)	0.0025 (12)
C8	0.0149 (15)	0.0174 (16)	0.0218 (16)	-0.0056 (11)	-0.0040 (13)	-0.0006 (13)
C9	0.0226 (17)	0.0192 (17)	0.0300 (19)	-0.0075 (13)	-0.0078 (15)	-0.0041 (15)
C10	0.033 (2)	0.0203 (18)	0.034 (2)	-0.0134 (15)	-0.0121 (17)	0.0024 (16)
C11	0.066 (4)	0.041 (3)	0.047 (3)	-0.034 (3)	-0.031 (3)	0.004 (2)
C12	0.0168 (15)	0.0209 (17)	0.0175 (15)	-0.0020 (12)	-0.0073 (12)	-0.0038 (13)
C13	0.0201 (17)	0.033 (2)	0.0234 (18)	-0.0076 (14)	-0.0060 (14)	-0.0104 (16)
C14	0.035 (2)	0.033 (2)	0.0184 (17)	-0.0131 (16)	-0.0098 (16)	-0.0030 (15)
C15	0.043 (3)	0.035 (2)	0.026 (2)	-0.0060 (18)	-0.0123 (19)	-0.0121 (18)
C16	0.0147 (14)	0.0166 (15)	0.0148 (14)	-0.0032 (11)	-0.0048 (12)	0.0011 (12)
C17	0.0132 (14)	0.0192 (16)	0.0143 (14)	-0.0013 (11)	-0.0035 (12)	0.0003 (12)
C18	0.0118 (13)	0.0148 (15)	0.0173 (15)	-0.0048 (11)	-0.0034 (12)	-0.0007 (12)
C19	0.0121 (13)	0.0130 (14)	0.0159 (14)	-0.0039 (10)	-0.0060 (11)	-0.0007 (11)
C20	0.0124 (13)	0.0141 (14)	0.0122 (13)	-0.0048 (10)	-0.0026 (11)	-0.0014 (11)
C21	0.0102 (13)	0.0144 (14)	0.0117 (13)	-0.0014 (10)	-0.0012 (11)	-0.0026 (11)
C22	0.0132 (14)	0.0122 (14)	0.0168 (14)	-0.0028 (10)	-0.0061 (11)	-0.0038 (12)
C23	0.0211 (16)	0.0192 (16)	0.0171 (15)	-0.0079 (12)	-0.0042 (13)	-0.0024 (13)
C24	0.0202 (16)	0.0174 (16)	0.0195 (16)	-0.0063 (12)	-0.0090 (13)	-0.0020 (13)
C25	0.0188 (16)	0.0197 (17)	0.0275 (18)	-0.0053 (12)	-0.0076 (14)	-0.0073 (14)
C26	0.026 (2)	0.035 (2)	0.034 (2)	-0.0072 (15)	-0.0130 (17)	-0.0120 (18)
C27	0.0165 (15)	0.0186 (16)	0.0169 (15)	-0.0079 (12)	-0.0040 (12)	-0.0006 (12)
C28	0.0233 (17)	0.0228 (17)	0.0164 (15)	-0.0126 (13)	-0.0053 (13)	0.0007 (13)
C29	0.0185 (16)	0.0252 (18)	0.0259 (18)	-0.0125 (13)	-0.0081 (14)	0.0020 (14)
C30	0.0252 (19)	0.029 (2)	0.033 (2)	-0.0119 (15)	-0.0110 (16)	-0.0075 (17)

Geometric parameters (Å, °)

Sn1—O9	2.022 (2)	C11—H11C	0.9600
Sn1—C8	2.117 (4)	C12—C13	1.520 (5)
Sn1—C12	2.125 (3)	C12—H12A	0.9700
Sn1—O3	2.200 (2)	C12—H12B	0.9700
Sn1—O8	2.243 (2)	C13—C14	1.504 (5)
Sn2—O9 ⁱ	2.044 (2)	C13—H13A	0.9700
Sn2—C23	2.121 (3)	C13—H13B	0.9700
Sn2—C27	2.133 (3)	C14—C15	1.517 (6)
Sn2—O9	2.163 (2)	C14—H14A	0.9700
Sn2—O7	2.249 (2)	C14—H14B	0.9700
Sn2—Sn2 ⁱ	3.2982 (4)	C15—H15A	0.9600
O1—N2	1.255 (5)	C15—H15B	0.9600
O2—N2	1.228 (5)	C15—H15C	0.9600
O3—C7	1.301 (4)	C16—C17	1.360 (4)
O4—C7	1.229 (4)	C16—C21	1.415 (4)

O5—N4	1.251 (4)	C16—H16A	0.9300
O6—N4	1.238 (4)	C17—C18	1.425 (5)
O7—C22	1.260 (4)	C17—H17A	0.9300
O8—C22 ⁱ	1.260 (4)	C18—C19	1.415 (5)
O9—Sn2 ⁱ	2.044 (2)	C19—C20	1.409 (4)
N1—C3	1.357 (5)	C20—C21	1.369 (5)
N1—H1N1	0.9127	C20—H20A	0.9300
N1—H2N1	1.0326	C21—C22	1,499 (4)
N2—C4	1.439 (5)	C22—O8 ⁱ	1.260 (4)
N3—C18	1 348 (4)	C_{23} C_{24}	1.200(1) 1.527(5)
N3—H1N3	0.8828	C23—H23A	0.9700
N3—H2N3	0.8795	C23—H23B	0.9700
N4-C19	1 439 (4)	C_{24} C_{25} C_{24} C_{25}	1.527(5)
C1-C2	1 363 (5)	C24 C25	0.9700
C1 - C6	1.303(5) 1.404(5)	C24 H24R	0.9700
C1H1A	0.9300	$C_{24} = 1124D$ $C_{25} = C_{26}$	1 518 (6)
$C_2 C_3$	1 413 (6)	C25 H25A	0.9700
$C_2 = C_3$	0.0300	C25 H25R	0.9700
$C_2 = M_2 A$	1.408 (5)	C26 H26A	0.9700
C_{3}	1.408(5)	C26 H26R	0.9600
C_{4}	1.408(3) 1.371(5)	C26_H26C	0.9000
C5C0	1.371(3)	C_{20}	1.526(5)
C5—n5A	1,500 (5)	$C_{27} = C_{28}$	1.320(3)
C°_{\circ}	1.500(5) 1.522(5)	$C_2 / - H_2 / A$	0.9700
C_{0}	1.555 (5)	$C_2/-H_2/B$	0.9700
	0.9700	C_{28} U_{28}	1.321(3)
	0.9700	C28_H28P	0.9700
C_{9}	1.545 (0)	C28—H28B	0.9700
C9—H9A	0.9700	C_{29} C_{30} C	1.517 (5)
CIA CII	0.9700	C29—H29A	0.9700
	1.528 (7)	C29—H29B	0.9700
CIO—HIOA	0.9700	C30—H30A	0.9600
CI0—HI0B	0.9700	C30—H30B	0.9600
CII—HIIA	0.9600	С30—Н30С	0.9600
CII—HIIB	0.9600		
O0 Sm1 C8	110.80 (12)	C12 C12 U12D	100.1
09 - 511 - 08	110.69(12) 112.25(12)	С13—С12—П12В	108.1
$C_{2}^{0} = S_{11}^{0} = C_{12}^{0}$	115.23(12) 125.22(14)	SIII - C12 - H12B	108.1
$C_0 = S_{m1} = C_{12}$	155.55 (14) 78.04 (0)	H12A - C12 - H12B	107.5
09 - 511 - 03	70.94(9)	C14 - C13 - C12	114.3 (5)
$C_8 = S_{11} = O_3$	100.88(11)	C12 C12 H12A	108.0
C_{12} $-S_{11}$ $-C_{3}$	93.91 (11) 90.41 (0)	C12— $C13$ — $H13AC14$ $C12$ $H12D$	108.0
09-5n1-08	84.07 (12)	C12 - C12 - H13B	108.0
$C_8 = Sn_1 = O_8$	84.9/(12)	U12—U13—H13B	108.6
C12—Sn1—O8	88.89 (11)	H13A—U13—H13B	107.6
03—Sn1—08	168.19 (9)	C13 - C14 - C15	112.6 (4)
09 ⁴ —Sn2—C23	104.84 (12)	C13—C14—H14A	109.1
09 ⁴ —Sn2—C27	108.28 (12)	C15—C14—H14A	109.1
C23—Sn2—C27	146.36 (14)	C13—C14—H14B	109.1

O9 ⁱ —Sn2—O9	76.78 (9)	C15—C14—H14B	109.1
C23—Sn2—O9	95.98 (11)	H14A—C14—H14B	107.8
C27—Sn2—O9	97.07 (11)	C14—C15—H15A	109.5
O9 ⁱ —Sn2—O7	92.75 (9)	C14—C15—H15B	109.5
C23—Sn2—O7	87.89 (12)	H15A—C15—H15B	109.5
C27—Sn2—O7	84.87 (11)	C14—C15—H15C	109.5
O9—Sn2—O7	169.46 (9)	H15A—C15—H15C	109.5
$O9^{i}$ —Sn2—Sn2 ⁱ	39.68 (6)	H15B—C15—H15C	109.5
$C23$ — $Sn2$ — $Sn2^i$	103.12 (10)	C17—C16—C21	121.3 (3)
$C27$ — $Sn2$ — $Sn2^i$	105.97 (10)	C17—C16—H16A	119.4
$O9$ — $Sn2$ — $Sn2^i$	37.10 (6)	C21—C16—H16A	119.4
O7—Sn2—Sn2 ⁱ	132.42 (6)	C16—C17—C18	121.9 (3)
C7—O3—Sn1	116.89 (19)	C16—C17—H17A	119.1
C22—O7—Sn2	133.4 (2)	C18—C17—H17A	119.1
C22 ⁱ —O8—Sn1	139.1 (2)	N3—C18—C19	125.8 (3)
$Sn1-O9-Sn2^{i}$	137.06 (11)	N3—C18—C17	117.9 (3)
Sn1—O9—Sn2	119.61 (11)	C19—C18—C17	116.3 (3)
Sn2 ⁱ —O9—Sn2	103.22 (9)	C20—C19—C18	120.9 (3)
C3—N1—H1N1	121.9	C20—C19—N4	116.6 (3)
C3—N1—H2N1	112.1	C18—C19—N4	122.5 (3)
H1N1—N1—H2N1	125.5	C21—C20—C19	121.3 (3)
O2—N2—O1	121.7 (4)	C21—C20—H20A	119.4
O2—N2—C4	119.9 (3)	C19—C20—H20A	119.4
O1—N2—C4	118.4 (4)	C20—C21—C16	118.3 (3)
C18—N3—H1N3	111.7	C20—C21—C22	121.0 (3)
C18—N3—H2N3	118.7	C16—C21—C22	120.7 (3)
H1N3—N3—H2N3	128.4	O7—C22—O8 ⁱ	126.0 (3)
O6—N4—O5	121.8 (3)	O7—C22—C21	117.0 (3)
O6—N4—C19	119.5 (3)	O8 ⁱ —C22—C21	117.0 (3)
O5—N4—C19	118.7 (3)	C24—C23—Sn2	114.1 (2)
C2—C1—C6	122.2 (4)	C24—C23—H23A	108.7
C2—C1—H1A	118.9	Sn2—C23—H23A	108.7
C6—C1—H1A	118.9	C24—C23—H23B	108.7
C1—C2—C3	121.5 (3)	Sn2—C23—H23B	108.7
C1—C2—H2A	119.3	H23A—C23—H23B	107.6
C3—C2—H2A	119.3	C25—C24—C23	113.0 (3)
N1—C3—C4	124.9 (4)	C25—C24—H24A	109.0
N1—C3—C2	118.9 (4)	C23—C24—H24A	109.0
C4—C3—C2	116.2 (3)	C25—C24—H24B	109.0
C3—C4—C5	121.4 (4)	C23—C24—H24B	109.0
C3—C4—N2	122.7 (3)	H24A—C24—H24B	107.8
C5—C4—N2	115.9 (3)	C26—C25—C24	112.3 (3)
C6—C5—C4	121.0 (3)	C26—C25—H25A	109.1
С6—С5—Н5А	119.5	C24—C25—H25A	109.1
C4—C5—H5A	119.5	С26—С25—Н25В	109.1
C5—C6—C1	117.7 (3)	С24—С25—Н25В	109.1
C5—C6—C7	119.6 (3)	H25A—C25—H25B	107.9
C1—C6—C7	122.7 (3)	C25—C26—H26A	109.5

O4—C7—O3	122.2 (3)	C25—C26—H26B	109.5
O4—C7—C6	121.6 (3)	H26A—C26—H26B	109.5
O3—C7—C6	116.2 (3)	С25—С26—Н26С	109.5
C9—C8—Sn1	118.1 (2)	H26A—C26—H26C	109.5
С9—С8—Н8А	107.8	H26B—C26—H26C	109.5
Sn1—C8—H8A	107.8	$C_{28} - C_{27} - S_{n2}$	115.0(2)
C9—C8—H8B	107.8	$C_{28} = C_{27} = H_{27A}$	108 5
Sn1-C8-H8B	107.8	S_{n2} C27 H27A	108.5
H8A - C8 - H8B	107.1	C_{28} C_{27} H_{27R}	108.5
$C_8 = C_9 = C_{10}$	107.1 112 1 (3)	$S_{n2} = C_{27} = H_{27B}$	108.5
C_{8} C_{9} H_{0A}	100.2	$\frac{112}{112}$	107.5
$C_{0} = C_{0} = H_{0}$	109.2	$\frac{112}{A} - \frac{12}{C^2} - \frac{112}{B}$	107.5 112.5(3)
C_{10}° C_{20}° H_{0}°	109.2	$C_{29} = C_{20} = C_{27}$	112.3 (3)
	109.2	$C_{29} = C_{20} = H_{20} A$	109.1
C10—C9—H9B	109.2	$C_2/-C_{28}$ -H28A	109.1
H9A—C9—H9B	107.9	C29—C28—H28B	109.1
C11—C10—C9	113.5 (4)	C27—C28—H28B	109.1
C11—C10—H10A	108.9	H28A—C28—H28B	107.8
С9—С10—Н10А	108.9	C30—C29—C28	114.2 (3)
C11—C10—H10B	108.9	С30—С29—Н29А	108.7
C9—C10—H10B	108.9	С28—С29—Н29А	108.7
H10A—C10—H10B	107.7	С30—С29—Н29В	108.7
C10—C11—H11A	109.5	C28—C29—H29B	108.7
C10—C11—H11B	109.5	H29A—C29—H29B	107.6
H11A—C11—H11B	109.5	С29—С30—Н30А	109.5
C10-C11-H11C	109.5	С29—С30—Н30В	109.5
H11A—C11—H11C	109.5	H30A-C30-H30B	109.5
H11B—C11—H11C	109.5	С29—С30—Н30С	109.5
C13—C12—Sn1	116.8 (2)	H30A—C30—H30C	109.5
C13—C12—H12A	108.1	H30B-C30-H30C	109.5
Sn1—C12—H12A	108.1		
O9—Sn1—O3—C7	173.3 (3)	C5—C6—C7—O3	164.7 (3)
C8—Sn1—O3—C7	-77.3 (3)	C1—C6—C7—O3	-15.1 (5)
C12—Sn1—O3—C7	60.4 (3)	O9—Sn1—C8—C9	83.0 (3)
08-Sn1-03-C7	163.8 (4)	C12 - Sn1 - C8 - C9	-106.3(3)
$O9^{i}$ Sn2 O7 C22	-11.5(3)	03-5n1-68-69	0.8 (3)
C_{23} S_{n2} O_{7} C_{22}	93 3 (3)	08 - 5n1 - C8 - C9	1704(3)
$C_{27} = S_{n2} = O_{7} = C_{22}$	-1196(3)	Sn1 - C8 - C9 - C10	-166.9(3)
$09 = Sn^2 = 07 = C^{22}$	-185(7)	C8-C9-C10-C11	66 1 (5)
Sn^{2i} Sn^{2} $O7$ $O7$ $O7$	-126(4)	09 - 5n1 - C12 - C13	121 2 (3)
O_{12}^{0} Sn2 O_{1}^{0} C22	17.1(4)	C_{8}^{0} Sn1 C12 C13	-494(4)
C_{8} Sn1 C_{8} C22 ⁱ	-940(4)	03 - Sn1 - C12 - C13	(ד) ד.עד –150 2 (3)
$C_{12} = S_{n1} = O_{0} = -C_{22}$	130.3 (4)	03 - 511 - C12 - C13	373(3)
C_{12} Sn1 C_{0} C_{22}	150.5(4)	$S_{n1} = C_{12} = C_{13}$	-170.9(3)
$C_{2} = 00 = 00 = 0.22^{-1}$	20.4 (7)	$C_{12} = C_{12} = C_{13} = C_{14} = C_{15}$	1/9.0(3) -170((4)
$C_0 = S_{11} = O_2 = S_{12}$	02.2(2)	C_{12} C_{13} C_{14} C_{15} C_{14} C_{15} C_{16} C_{17} C_{19}	-1/9.0(4)
$C_{12} = S_{11} = O_{2} = S_{12}$	$\frac{90.0}{2}$	$C_{1} = C_{10} = C_{17} = C_{10} = C_{10}$	-1.4(3)
$03 - 511 - 09 - 512^{\circ}$	1/9./1(19)	C10 - C17 - C10 - C10	1/9.4 (3)
$08 - 8n1 - 09 - 8n2^{1}$	-2.23 (18)	U16-U1/-U18-U19	0.4 (5)

C8—Sn1—O9—Sn2	-102.47 (15)	N3-C18-C19-C20	-178.5 (3)
C12—Sn1—O9—Sn2	84.59 (15)	C17—C18—C19—C20	0.4 (5)
O3—Sn1—O9—Sn2	-4.93 (11)	N3-C18-C19-N4	2.1 (5)
O8—Sn1—O9—Sn2	173.13 (13)	C17—C18—C19—N4	-179.1 (3)
O9 ⁱ —Sn2—O9—Sn1	-176.76 (19)	O6—N4—C19—C20	2.5 (5)
C23—Sn2—O9—Sn1	79.36 (15)	O5—N4—C19—C20	-178.9 (3)
C27—Sn2—O9—Sn1	-69.56 (15)	O6—N4—C19—C18	-178.0 (3)
O7—Sn2—O9—Sn1	-169.5 (4)	O5—N4—C19—C18	0.6 (5)
Sn2 ⁱ —Sn2—O9—Sn1	-176.76 (19)	C18—C19—C20—C21	-0.3 (5)
$O9^{i}$ —Sn2—O9—Sn2 ⁱ	0.001 (2)	N4-C19-C20-C21	179.2 (3)
C23—Sn2—O9—Sn 2^{i}	-103.88 (13)	C19—C20—C21—C16	-0.6(5)
C27—Sn2—O9—Sn 2^{i}	107.20 (13)	C19—C20—C21—C22	179.9 (3)
$O7$ — $Sn2$ — $O9$ — $Sn2^i$	7.2 (5)	C17—C16—C21—C20	1.4 (5)
C6—C1—C2—C3	-0.1 (6)	C17—C16—C21—C22	-179.0 (3)
C1—C2—C3—N1	-179.8 (4)	Sn2—O7—C22—O8 ⁱ	3.3 (5)
C1—C2—C3—C4	1.1 (5)	Sn2—O7—C22—C21	-178.0 (2)
N1—C3—C4—C5	179.8 (4)	C20—C21—C22—O7	-4.1 (5)
C2—C3—C4—C5	-1.3 (5)	C16—C21—C22—O7	176.3 (3)
N1—C3—C4—N2	-1.7 (6)	C20-C21-C22-O8 ⁱ	174.7 (3)
C2—C3—C4—N2	177.3 (3)	C16—C21—C22—O8 ⁱ	-4.9 (5)
O2—N2—C4—C3	-175.4 (4)	O9 ⁱ —Sn2—C23—C24	27.4 (3)
O1—N2—C4—C3	3.5 (6)	C27—Sn2—C23—C24	-142.4 (2)
O2—N2—C4—C5	3.2 (6)	O9—Sn2—C23—C24	105.2 (2)
O1—N2—C4—C5	-177.9 (4)	O7—Sn2—C23—C24	-64.9 (3)
C3—C4—C5—C6	0.4 (5)	$Sn2^{i}$ — $Sn2$ — $C23$ — $C24$	68.3 (3)
N2-C4-C5-C6	-178.2 (3)	Sn2—C23—C24—C25	178.1 (2)
C4—C5—C6—C1	0.7 (5)	C23—C24—C25—C26	-173.1 (3)
C4—C5—C6—C7	-179.1 (3)	O9 ⁱ —Sn2—C27—C28	-28.8 (3)
C2-C1-C6-C5	-0.8 (5)	C23—Sn2—C27—C28	140.8 (3)
C2-C1-C6-C7	179.0 (3)	O9—Sn2—C27—C28	-107.1 (2)
Sn1—O3—C7—O4	12.7 (4)	O7—Sn2—C27—C28	62.5 (2)
Sn1—O3—C7—C6	-164.9 (2)	$Sn2^{i}$ — $Sn2$ — $C27$ — $C28$	-70.3 (2)
C5—C6—C7—O4	-12.8 (5)	Sn2—C27—C28—C29	-177.6 (2)
C1—C6—C7—O4	167.4 (3)	C27—C28—C29—C30	-68.9 (4)

Symmetry code: (i) -x, -y+1, -z.

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C16–C21 phenyl ring.

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A	
N1—H1 <i>N</i> 1…O6	0.91	2.59	3.422 (4)	153	
N1—H2 <i>N</i> 1…O1	1.03	1.83	2.644 (5)	133	
N3—H1 <i>N</i> 3····O4 ⁱⁱ	0.88	2.04	2.910 (4)	167	
N3—H2 <i>N</i> 3····O5	0.88	2.06	2.669 (4)	125	
C17—H17 <i>A</i> ···O4 ⁱⁱ	0.93	2.51	3.246 (5)	137	
C30—H30 <i>A</i> ··· <i>Cg</i> 1 ⁱⁱⁱ	0.96	2.80	3.584 (5)	139	

Symmetry codes: (ii) *x*+1, *y*, *z*-1; (iii) -*x*+1, -*y*+1, -*z*.