Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Ethyl 2-[5-(4-chlorophenyl)-1-(4-fluorophenyl)-1H-pyrazol-3-yl]-4-methylthiazole-5-carboxylate

Wan-Sin Loh,^a‡ Hoong-Kun Fun,^a*§ R. Venkat Ragavan,^b V. Vijayakumar^b and S. Sarveswari^b

^aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^bOrganic Chemistry Division, School of Advanced Sciences, VIT University, Vellore 632 014, India Correspondence e-mail: hkfun@usm.my

Received 13 October 2010; accepted 17 October 2010

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.005 Å; R factor = 0.056; wR factor = 0.163; data-to-parameter ratio = 17.2.

In the title compound, C₂₂H₁₇ClFN₃O₂S, the pyrazole ring is approximately planar with a maximum deviation of 0.001 (4) Å and makes dihedral angles of 4.95 (19), 35.78 (18) and 54.73 (18) $^{\circ}$ with the thiazole, fluorobenzene and chlorobenzene rings, respectively. In the crystal, intermolecular $C-H \cdots O$ hydrogen bonds link the molecules into chains along the *a* axis.

Related literature

For background to pyrazole derivatives and their antimicrobial activity, see: Ragavan et al. (2009, 2010). For bondlength data, see: Allen et al. (1987). For a related structure, see: Loh et al. (2010). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

0.08 mm

30630 measured reflections

 $R_{\rm int} = 0.043$

4697 independent reflections 3944 reflections with $I > 2\sigma(I)$

Experimental

Crystal data

C ₂₂ H ₁₇ ClFN ₃ O ₂ S	$V = 2064.74 (12) \text{ Å}^3$
$M_r = 441.90$	Z = 4
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 12.0296 (5) Å	$\mu = 0.32 \text{ mm}^{-1}$
b = 19.4428 (6) Å	T = 100 K
c = 9.5847 (3) Å	$0.42 \times 0.17 \times 0.08$ r
$\beta = 112.922 \ (1)^{\circ}$	

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS, Bruker, 2009) $T_{\min} = 0.878, \ T_{\max} = 0.976$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.056$	273 parameters
$wR(F^2) = 0.163$	H-atom parameters constrained
S = 1.24	$\Delta \rho_{\rm max} = 0.63 \ {\rm e} \ {\rm \AA}^{-3}$
4697 reflections	$\Delta \rho_{\rm min} = -0.53 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

 $D - H \cdot \cdot \cdot A$ D-H $H \cdot \cdot \cdot A$ $D \cdots A$ $D - H \cdot \cdot \cdot A$ C15-H15A...O2i 0.93 2.48 3.251 (5) 141

Symmetry code: (i) $x - 1, -y + \frac{1}{2}, z + \frac{1}{2}$.

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

HKF and WSL thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). WSL thanks Malaysian Government and USM for the award of Research Fellowship. VV is grateful to the DST-India for funding through the Young Scientist Scheme (Fast Track Proposal).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2354).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Bruker (2009). APEX2 SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
- Loh, W.-S., Fun, H.-K., Ragavan, R. V., Vijayakumar, V. & Venkatesh, M. (2010). Acta Cryst. E66, o2563-o2564.
- Ragavan, R. V., Vijavakumar, V. & Sucheta Kumari, N. (2009). Eur. J. Med. Chem. 44, 3852-3857.
- Ragavan, R. V., Vijayakumar, V. & Sucheta Kumari, N. (2010). Eur. J. Med. Chem. 45, 1173-1180.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

[‡] Thomson Reuters ResearcherID: C-7581-2009.

[§] Thomson Reuters ResearcherID: A-3561-2009.

supporting information

Acta Cryst. (2010). E66, o2925 [https://doi.org/10.1107/S1600536810042066] Ethyl 2-[5-(4-chlorophenyl)-1-(4-fluorophenyl)-1*H*-pyrazol-3-yl]-4-methylthiazole-5-carboxylate

Wan-Sin Loh, Hoong-Kun Fun, R. Venkat Ragavan, V. Vijayakumar and S. Sarveswari

S1. Comment

Antibacterial and antifungal activities of azoles are most widely studied and some of them are in clinical practice as antimicrobial agents. However, the azole-resistant strains had led to the development of new antimicrobial compounds. In particular pyrazole derivatives are extensively studied and used as antimicrobial agents. Pyrazole is an important class of heterocyclic compounds and many pyrazole derivatives are reported to have a broad spectrum of biological properties, such as anti-inflammatory, antifungal, herbicidal, anti-tumour, cytotoxic, molecular modelling and antiviral activities. Pyrazole derivatives also act as anti-angiogenic agents, A3 adenosine receptor antagonists, neuropeptide YY5 receptor antagonists, kinase inhibitor for treatment of type 2 diabetes, hyperlipidemia, obesity and thrombopiotinmimetics. Recently urea derivatives of pyrazoles have been reported as potent inhibitors of p38 kinase. Since the high electronegativity of halogens (particularly chlorine and fluorine) in the aromatic part of the drug molecules play an important role in enhancing their biological activity, we are interested to have 4-fluoro or 4-chloro substitution in the aryls of 1,5-diaryl pyrazoles. As part of our on-going research aiming the synthesis of new antimicrobial compounds, we have reported the synthesis of novel pyrazole derivatives and their microbial activities (Ragavan *et al.*, 2009;2010).

The title compound consists of four rings, namely pyrazole (C1–C3/N1/N2), thiazole (C4/N3/C5/C6/S1), fluorophenyl (C11–C16/F1) and chlorophenyl (C17–C22/C11) rings (Fig. 1). The pyrazole ring is approximately planar with a maximum deviation of 0.001 (4) Å at atom C1 and makes dihedral angles of 4.95 (19), 35.78 (18) and 54.73 (18)° with the thiazole, fluorophenyl and chlorophenyl rings, respectively. Bond lengths (Allen *et al.*, 1987) and angles are within the normal ranges and are comparable to the related structure (Loh *et al.*, 2010).

In the crystal packing (Fig. 2), intermolecular C15—H15A···O2 hydrogen bonds link the molecules into onedimensional chains along the a axis.

S2. Experimental

The compound has been synthesized using the method available in the literature (Ragavan *et al.*, 2010) and recrystallized using the ethanol-chloroform 1:1 mixture. Yield: 81%. *M.p.*: 411.3–413 K.

S3. Refinement

All H atoms were positioned geometrically with the bond length of C–H being 0.93 to 0.97 Å and were refined using a riding model, with $U_{iso}(H) = 1.2$ or 1.5 $U_{eq}(C)$. A rotating group model was applied to the methyl groups.

Figure 1

The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Figure 2

The crystal packing of the title compound, showing one-dimensional chains along the *a* axis. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.

Ethyl 2-[5-(4-chlorophenyl)-1-(4-fluorophenyl)-1H-pyrazol-3-yl]-4- methylthiazole-5-carboxylate

Crystal data	
$C_{22}H_{17}ClFN_3O_2S$	F(000) = 912
$M_r = 441.90$	$D_{\rm x} = 1.422 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 9879 reflections
a = 12.0296 (5) Å	$\theta = 2.8 - 32.9^{\circ}$
b = 19.4428 (6) Å	$\mu = 0.32 \text{ mm}^{-1}$
c = 9.5847 (3) Å	T = 100 K
$\beta = 112.922 \ (1)^{\circ}$	Plate, colourless
$V = 2064.74 (12) \text{ Å}^3$	$0.42 \times 0.17 \times 0.08 \text{ mm}$
Z = 4	

Data collection

RefinementRefinement on F^2 Secondary atom site location: difference FourierLeast-squares matrix: fullmap $R[F^2 > 2\sigma(F^2)] = 0.056$ Hydrogen site location: inferred from $wR(F^2) = 0.163$ Hydrogen site location: inferred from $S = 1.24$ H-atom parameters constrained4697 reflections $w = 1/[\sigma^2(F_o^2) + (0.P)^2 + 9.3055P]$ 273 parameterswhere $P = (F_o^2 + 2F_c^2)/3$ 0 restraints $(\Delta/\sigma)_{max} < 0.001$ Primary atom site location: structure-invariant $\Delta\rho_{max} = 0.63$ e Å ⁻³	Bruker SMART APEXII CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> , Bruker, 2009) $T_{\min} = 0.878, T_{\max} = 0.976$	30630 measured reflections 4697 independent reflections 3944 reflections with $I > 2\sigma(I)$ $R_{int} = 0.043$ $\theta_{max} = 27.5^{\circ}, \theta_{min} = 1.8^{\circ}$ $h = -15 \rightarrow 15$ $k = -25 \rightarrow 25$ $l = -12 \rightarrow 12$
Refinement on F^2 Secondary atom site location: difference Fourier mapLeast-squares matrix: fullmap $R[F^2 > 2\sigma(F^2)] = 0.056$ Hydrogen site location: inferred from neighbouring sites $wR(F^2) = 0.163$ H-atom parameters constrained $\delta = 1.24$ H-atom parameters constrained 4697 reflections $w = 1/[\sigma^2(F_o^2) + (0.P)^2 + 9.3055P]$ 273 parameterswhere $P = (F_o^2 + 2F_c^2)/3$ 0 restraints $(\Delta/\sigma)_{max} < 0.001$ Primary atom site location: structure-invariant $\Delta\rho_{max} = 0.63$ e Å ⁻³	Refinement	
direct methods $\Delta \rho_{\rm min} = -0.53 \text{ e} ^{-3}$	Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.056$ $wR(F^2) = 0.163$ S = 1.24 4697 reflections 273 parameters 0 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.P)^2 + 9.3055P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.63 \text{ e} \text{ Å}^{-3}$ $\Lambda a_{mix} = -0.53 \text{ e} \text{ Å}^{-3}$

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S 1	0.28859 (8)	0.28472 (4)	-0.01128 (10)	0.0162 (2)	
Cl1	-0.24355 (9)	-0.04920 (5)	0.40468 (12)	0.0288 (2)	
F1	-0.2939 (2)	0.38188 (13)	0.2896 (3)	0.0373 (6)	
01	0.4449 (2)	0.36177 (13)	-0.1138 (3)	0.0239 (6)	
O2	0.5434 (2)	0.27417 (14)	-0.1712 (3)	0.0247 (6)	
N1	0.0936 (3)	0.24138 (15)	0.0961 (3)	0.0161 (6)	
N2	0.0143 (3)	0.21207 (15)	0.1472 (3)	0.0154 (6)	
N3	0.3202 (3)	0.15335 (15)	0.0001 (4)	0.0176 (6)	
C1	0.0322 (3)	0.14214 (17)	0.1675 (4)	0.0160 (7)	
C2	0.1269 (3)	0.12630 (18)	0.1269 (4)	0.0165 (7)	
H2A	0.1608	0.0832	0.1279	0.020*	
C3	0.1616 (3)	0.18936 (18)	0.0837 (4)	0.0164 (7)	
C4	0.2558 (3)	0.20259 (17)	0.0272 (4)	0.0155 (7)	
C5	0.4011 (3)	0.18060 (18)	-0.0546 (4)	0.0178 (7)	

C6	0.3963 (3)	0.25092 (18)	-0.0694 (4)	0.0165 (7)
C7	0.4701 (3)	0.29491 (19)	-0.1238 (4)	0.0185 (7)
C8	0.5145 (4)	0.4118 (2)	-0.1592 (5)	0.0281 (9)
H8A	0.5329	0.3938	-0.2422	0.034*
H8B	0.5898	0.4220	-0.0750	0.034*
C9	0.4385 (4)	0.4758 (2)	-0.2080 (5)	0.0326 (10)
H9A	0.4861	0.5124	-0.2229	0.049*
H9B	0.4099	0.4887	-0.1310	0.049*
H9C	0.3708	0.4669	-0.3010	0.049*
C10	0.4855 (4)	0.1330 (2)	-0.0880(5)	0.0257 (9)
H10A	0.4783	0.1399	-0.1903	0.039*
H10B	0.4654	0.0863	-0.0754	0.039*
H10C	0.5669	0.1424	-0.0196	0.039*
C11	-0.0686 (3)	0.25574 (18)	0.1786 (4)	0.0150 (7)
C12	-0.0298 (3)	0.32104 (18)	0.2356 (4)	0.0179 (7)
H12A	0.0474	0.3358	0.2498	0.021*
C13	-0.1070 (3)	0.36415 (19)	0.2714 (4)	0.0207 (8)
H13A	-0.0829	0.4083	0.3082	0.025*
C14	-0.2197 (4)	0.3401 (2)	0.2510 (5)	0.0247 (8)
C15	-0.2614 (3)	0.2759 (2)	0.1924 (5)	0.0242 (8)
H15A	-0.3383	0.2613	0.1796	0.029*
C16	-0.1848 (3)	0.2336 (2)	0.1528 (4)	0.0215 (8)
H16A	-0.2113	0.1908	0.1093	0.026*
C17	-0.0370 (3)	0.09629 (17)	0.2271 (4)	0.0162 (7)
C18	-0.0471 (3)	0.10914 (19)	0.3647 (4)	0.0207 (8)
H18A	-0.0105	0.1478	0.4208	0.025*
C19	-0.1115 (3)	0.06460 (19)	0.4186 (5)	0.0229 (8)
H19A	-0.1185	0.0732	0.5103	0.027*
C20	-0.1653 (3)	0.00709 (18)	0.3334 (5)	0.0205 (8)
C21	-0.1571 (3)	-0.00729 (18)	0.1970 (5)	0.0217 (8)
H21A	-0.1939	-0.0461	0.1416	0.026*
C22	-0.0923 (3)	0.03780 (18)	0.1440 (4)	0.0204 (8)
H22A	-0.0858	0.0289	0.0521	0.025*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0197 (4)	0.0132 (4)	0.0191 (5)	0.0005 (3)	0.0115 (3)	-0.0001 (3)
Cl1	0.0279 (5)	0.0246 (5)	0.0372 (6)	-0.0057 (4)	0.0161 (4)	0.0090 (4)
F1	0.0383 (14)	0.0349 (14)	0.0523 (18)	0.0144 (11)	0.0324 (13)	0.0036 (12)
O1	0.0305 (14)	0.0161 (12)	0.0328 (16)	-0.0035 (11)	0.0209 (13)	0.0009 (11)
O2	0.0246 (14)	0.0259 (14)	0.0306 (16)	-0.0008 (11)	0.0184 (12)	0.0002 (12)
N1	0.0176 (14)	0.0160 (14)	0.0180 (16)	-0.0010 (11)	0.0104 (12)	0.0007 (12)
N2	0.0165 (14)	0.0137 (14)	0.0184 (16)	-0.0008 (11)	0.0093 (12)	-0.0001 (11)
N3	0.0198 (14)	0.0151 (14)	0.0198 (17)	-0.0012 (11)	0.0096 (12)	-0.0017 (12)
C1	0.0181 (16)	0.0141 (16)	0.0151 (18)	-0.0028 (13)	0.0058 (13)	-0.0019 (13)
C2	0.0207 (17)	0.0148 (16)	0.0153 (18)	-0.0004 (13)	0.0085 (14)	-0.0014 (13)
C3	0.0163 (16)	0.0154 (16)	0.0194 (19)	-0.0008 (12)	0.0088 (14)	-0.0010 (13)

supporting information

C4	0.0168 (16)	0.0143 (16)	0.0160 (18)	-0.0014 (12)	0.0069 (13)	-0.0002 (13)
C5	0.0189 (17)	0.0177 (16)	0.0185 (19)	-0.0005 (13)	0.0090 (14)	-0.0028 (14)
C6	0.0178 (16)	0.0192 (17)	0.0145 (18)	-0.0005 (13)	0.0086 (14)	-0.0034 (13)
C7	0.0190 (17)	0.0208 (17)	0.0160 (19)	-0.0027 (13)	0.0072 (14)	-0.0004 (14)
C8	0.031 (2)	0.0214 (19)	0.038 (3)	-0.0080 (16)	0.0197 (19)	0.0015 (17)
C9	0.034 (2)	0.022 (2)	0.040 (3)	-0.0068 (17)	0.013 (2)	0.0059 (18)
C10	0.0263 (19)	0.0199 (18)	0.038 (2)	0.0011 (15)	0.0207 (18)	-0.0050 (17)
C11	0.0191 (16)	0.0188 (16)	0.0097 (17)	0.0032 (13)	0.0084 (13)	0.0027 (13)
C12	0.0187 (17)	0.0179 (17)	0.0174 (19)	0.0013 (13)	0.0074 (14)	0.0022 (14)
C13	0.0302 (19)	0.0203 (17)	0.0136 (18)	0.0050 (15)	0.0105 (15)	0.0018 (14)
C14	0.0262 (19)	0.028 (2)	0.026 (2)	0.0118 (16)	0.0168 (17)	0.0062 (17)
C15	0.0183 (17)	0.030 (2)	0.027 (2)	0.0033 (15)	0.0113 (16)	0.0083 (17)
C16	0.0192 (17)	0.0217 (18)	0.024 (2)	-0.0005 (14)	0.0090 (15)	0.0037 (15)
C17	0.0179 (16)	0.0142 (16)	0.0179 (19)	0.0006 (13)	0.0084 (14)	0.0016 (13)
C18	0.0223 (18)	0.0159 (16)	0.024 (2)	-0.0039 (14)	0.0097 (15)	-0.0008 (14)
C19	0.0252 (19)	0.0219 (18)	0.026 (2)	-0.0018 (15)	0.0141 (16)	0.0015 (15)
C20	0.0195 (17)	0.0170 (17)	0.027 (2)	-0.0014 (13)	0.0115 (15)	0.0067 (15)
C21	0.0246 (18)	0.0139 (16)	0.026 (2)	-0.0033 (14)	0.0094 (16)	-0.0010 (15)
C22	0.0265 (19)	0.0164 (17)	0.021 (2)	-0.0020 (14)	0.0121 (16)	-0.0028 (14)

Geometric parameters (Å, °)

S1—C4	1.719 (3)	С9—Н9В	0.9600
S1—C6	1.727 (3)	С9—Н9С	0.9600
Cl1—C20	1.747 (4)	C10—H10A	0.9600
F1-C14	1.360 (4)	C10—H10B	0.9600
O1—C7	1.347 (4)	C10—H10C	0.9600
O1—C8	1.456 (4)	C11—C12	1.389 (5)
O2—C7	1.207 (4)	C11—C16	1.389 (5)
N1—C3	1.334 (4)	C12—C13	1.389 (5)
N1—N2	1.356 (4)	C12—H12A	0.9300
N2-C1	1.378 (4)	C13—C14	1.375 (5)
N2-C11	1.429 (4)	C13—H13A	0.9300
N3—C4	1.319 (4)	C14—C15	1.380 (6)
N3—C5	1.378 (4)	C15—C16	1.393 (5)
C1—C2	1.374 (5)	C15—H15A	0.9300
C1—C17	1.478 (5)	C16—H16A	0.9300
C2—C3	1.408 (5)	C17—C18	1.394 (5)
C2—H2A	0.9300	C17—C22	1.399 (5)
C3—C4	1.457 (5)	C18—C19	1.389 (5)
C5—C6	1.373 (5)	C18—H18A	0.9300
C5—C10	1.498 (5)	C19—C20	1.387 (5)
С6—С7	1.467 (5)	C19—H19A	0.9300
С8—С9	1.507 (6)	C20—C21	1.378 (6)
C8—H8A	0.9700	C21—C22	1.394 (5)
C8—H8B	0.9700	C21—H21A	0.9300
С9—Н9А	0.9600	C22—H22A	0.9300

C4—S1—C6	88.81 (17)	C5-C10-H10B	109.5
C7—O1—C8	116.8 (3)	H10A-C10-H10B	109.5
C3—N1—N2	104.8 (3)	C5-C10-H10C	109.5
N1—N2—C1	111.8 (3)	H10A-C10-H10C	109.5
N1—N2—C11	118.3 (3)	H10B—C10—H10C	109.5
C1—N2—C11	129.8 (3)	C12—C11—C16	120.9 (3)
C4—N3—C5	110.6 (3)	C12—C11—N2	118.1 (3)
C2-C1-N2	106.4 (3)	C16—C11—N2	121.0(3)
$C_2 - C_1 - C_{17}$	128.9 (3)	C13 - C12 - C11	119.6 (3)
N_{2} C1 C17	1247(3)	C13-C12-H12A	120.2
C1 - C2 - C3	1051(3)	C11— $C12$ — $H12A$	120.2
C1 - C2 - H2A	103.1 (5)	C14 - C13 - C12	120.2 118 5 (4)
$C_3 - C_2 - H_2 A$	127.1	C14 - C13 - H13A	120.8
N1 - C3 - C2	111 8 (3)	C12 $C13$ $H13A$	120.8
N1 = C3 = C2	111.0(3) 110A(3)	E12 - C13 - III3A E1 - C14 - C13	120.0 118 2 (4)
$C_2 C_3 C_4$	119.4(3) 128.7(3)	F1 - C14 - C15	118.2(4)
$C_2 = C_3 = C_4$	120.7(3) 122.1(2)	$C_{12} = C_{14} = C_{15}$	110.0(4)
$N_{2} = C_{4} = C_{3}$	125.1(5) 115.5(2)	C13 - C14 - C15	123.2(3)
N3 - C4 - S1	115.5(5)	C14 - C15 - C16	118.1 (3)
$C_3 = C_4 = S_1$	121.4(3)	C14—C15—H15A	120.9
C_{0} C_{5} C_{10}	114.5 (3)	C16—C15—H15A	120.9
C_{0}	126.7 (3)		119.6 (4)
N3—C5—C10	118.8 (3)	CII—CI6—HI6A	120.2
C5-C6-C7	127.6 (3)	C15—C16—H16A	120.2
C5—C6—S1	110.6 (3)	C18—C17—C22	119.1 (3)
C7—C6—S1	121.8 (3)	C18—C17—C1	121.8 (3)
O2—C7—O1	124.5 (3)	C22—C17—C1	119.0 (3)
O2—C7—C6	124.8 (3)	C19—C18—C17	120.5 (3)
O1—C7—C6	110.7 (3)	C19—C18—H18A	119.8
O1—C8—C9	107.1 (3)	C17—C18—H18A	119.8
O1—C8—H8A	110.3	C20-C19-C18	118.9 (4)
С9—С8—Н8А	110.3	C20—C19—H19A	120.6
O1—C8—H8B	110.3	C18—C19—H19A	120.6
С9—С8—Н8В	110.3	C21—C20—C19	122.2 (3)
H8A—C8—H8B	108.6	C21—C20—C11	119.5 (3)
С8—С9—Н9А	109.5	C19—C20—Cl1	118.3 (3)
С8—С9—Н9В	109.5	C20—C21—C22	118.4 (3)
H9A—C9—H9B	109.5	C20—C21—H21A	120.8
С8—С9—Н9С	109.5	C22—C21—H21A	120.8
Н9А—С9—Н9С	109.5	C21—C22—C17	120.9 (4)
Н9В—С9—Н9С	109.5	C21—C22—H22A	119.6
C5—C10—H10A	109.5	C17—C22—H22A	119.6
C3—N1—N2—C1	0.2 (4)	C5—C6—C7—O1	-176.2(4)
C3—N1—N2—C11	177.3 (3)	S1—C6—C7—O1	2.9 (4)
N1—N2—C1—C2	-0.2 (4)	C7—O1—C8—C9	154.3 (4)
C11—N2—C1—C2	-176.9(3)	N1—N2—C11—C12	-34.4(5)
N1—N2—C1—C17	177.8 (3)	C1 - N2 - C11 - C12	142.0 (4)
C11—N2—C1—C17	1.1 (6)	N1—N2—C11—C16	145.5 (3)
			(-)

N2-C1-C2-C3 C17-C1-C2-C3 N2 N1 C2 C2	0.1 (4) -177.8 (4) -0.1 (4)	C1—N2—C11—C16 C16—C11—C12—C13	-38.0 (5) 1.8 (5) -178 2 (2)
N2—N1—C3—C4 C1—C2—C3—N1	0.1 (4) 178.5 (3) 0.0 (4)	C11—C12—C13—C14 C12—C13—C14—F1	1/8.2 (5) 1.0 (5) 178.4 (3)
C1-C2-C3-C4	-1/8.5 (4)	C12C13C14C15	-2.1 (6)
C5-N3-C4-C3	179.1 (3)	F1C14C15C16	179.8 (3)
C5-N3-C4-S1	0.0 (4)	C13C14C15C16	0.3 (6)
N1—C3—C4—N3	-174.4 (3)	C12C11C16C15	-3.6 (6)
C2—C3—C4—N3	4.0 (6)	N2C11C16C15	176.5 (3)
N1—C3—C4—S1	4.7 (5)	C14C15C16C11	2.5 (6)
C2-C3-C4-S1	-176.9 (3)	C2-C1-C17-C18	123.4 (4)
C6-S1-C4-N3	0.4 (3)	N2-C1-C17-C18	-54.1 (5)
C6-S1-C4-C3	-178.8 (3)	C2-C1-C17-C22	-55.6 (5)
C4—N3—C5—C6	-0.4 (5)	N2-C1-C17-C22	126.9 (4)
C4—N3—C5—C10	178.2 (3)	C22-C17-C18-C19	-0.2 (5)
N3—C5—C6—C7	179.9 (3)	C1-C17-C18-C19	-179.2 (3)
C10C5C6C7	1.4 (7)	C17—C18—C19—C20	0.2 (6)
N3C5C6S1	0.7 (4)	C18—C19—C20—C21	-0.1 (6)
C10C5C6S1	-177.8 (3)	C18—C19—C20—C11	178.8 (3)
$\begin{array}{c} C4 \\ -S1 \\ -C6 \\ -C7 \\ C8 \\ -O1 \\ -C7 \\ -O2 \\ C8 \\ -O1 \\ -C7 \\ -O2 \\ C8 \\ -O1 \\ -C7 \\ -O2 \\ -C7 \\ -C7 \\ -O2 \\ -C7 \\ -C7$	-0.6(3) -179.8(3) -2.1(6)	$\begin{array}{c} C19 - C20 - C21 - C22 \\ C11 - C20 - C21 - C22 \\ C20 - C21 - C22 - C17 \\ C18 - C17 - C22 - C17 \\ C18 - C17 - C22 - C21 \\ \end{array}$	0.0 (6) -178.9 (3) 0.0 (6) 0.1 (5)
C5-C6-C7-O2	3.9 (6)	C1-C17-C22-C21	179.1 (3)
S1-C6-C7-O2	-177.0 (3)	C1-C17-C22-C21	

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C15—H15A····O2 ⁱ	0.93	2.48	3.251 (5)	141

Symmetry code: (i) *x*-1, -*y*+1/2, *z*+1/2.