Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

3-(5-Nitro-2-furyl)-1-phenylprop-2-yn-1one

Hoong-Kun Fun, ${ }^{\text {a* }} \ddagger$ Ching Kheng Quah, ${ }^{\text {a }}{ }^{\mathbf{}} \boldsymbol{\S}$ Nithinchandra ${ }^{\text {b }}$ and Balakrishna Kalluraya ${ }^{\text {b }}$

${ }^{\text {a }}$ X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ${ }^{\mathbf{b}}$ Department of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India
Correspondence e-mail: hkfun@usm.my
Received 19 October 2010; accepted 27 October 2010
Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.001 \AA$; R factor $=0.040 ; w R$ factor $=0.119$; data-to-parameter ratio $=35.6$.

In the title compound, $\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{NO}_{4}$, the 2-furyl ring is essentially planar, with a maximum deviation of 0.004 (1) \AA. It is inclined at an angle of $11.69(4)^{\circ}$ to the benzene ring. The nitro group is slightly twisted out of the plane of the 2-furyl ring, with a dihedral angle of $5.72(8)^{\circ}$. There is a short $\mathrm{O} \cdots \mathrm{C}$ contact of 2.8562 (8) \AA (symmetry code: $-x,-y, 2-z$). In the crystal packing, molecules are linked via a pair of intermolecular C$\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, giving rise to an $R_{2}^{2}(10)$ ring motif. Molecules are further linked into two-dimensional networks parallel to [100] via other intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. The crystal structure is consolidated by $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions.

Related literature

For general background to the biological activity of nitrofurans, see: Holla et al. $(1986,1987,1992)$. For the preparation of the title compound, see: Rai et al. (2008). For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used for the data collection, see: Cosier \& Glazer (1986).

\ddagger Thomson Reuters ResearcherID: A-3561-2009.
§ Thomson Reuters ResearcherID: A-5525-2009.

Experimental

Crystal data
$\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{NO}_{4}$
$M_{r}=241.20$
Monoclinic, $P 2_{1} / c$
$a=10.4685$ (2) \AA
$b=7.3006$ (1) A
$c=15.2642(2) \AA$
$\beta=110.867$ (1) ${ }^{\circ}$
$V=1090.07(3) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
$0.47 \times 0.38 \times 0.28 \mathrm{~mm}$

Data collection

Bruker SMART APEXII CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2009)
$T_{\text {min }}=0.950, T_{\text {max }}=0.970$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.119$
$S=1.04$
5796 reflections

40673 measured reflections 5796 independent reflections 4934 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.030$

163 parameters
H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.59 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.33 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry (\AA, ${ }^{\circ}$).
Cg 1 is the centroid of the phenyl (C8-C12) ring.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{O} 2^{\mathrm{i}}$	0.93	2.44	$3.3548(9)$	170
$\mathrm{C} 11-\mathrm{H} 11 \cdots \mathrm{O} 4^{\mathrm{ii}}$	0.93	2.40	$3.2487(9)$	152
$\mathrm{C} 3-\mathrm{H} 3 \cdots C g 1^{\text {iii }}$	0.93	2.86	$3.6284(7)$	141
Symmetry codes:	(i) $\quad-x-1,-y+1,-z+2 ;$	(ii) $\quad x,-y+\frac{1}{2}, z-\frac{1}{2} ;$	(iii)	
$-x, y+\frac{1}{2},-z+\frac{3}{2}$.				

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

The authors express their thanks to Universiti Sains Malysia (USM) for providing research facilities. HKF and CKQ thank USM for a Research University Grant (No. 1001/PFIZIK/ 811160). CKQ also thanks USM for the award of a USM fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2357).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Cosier, J. \& Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
Holla, B. S., Kalluraya, B. \& Shridhar, K. R. (1986). Curr. Sci. 55, 73-76.
Holla, B. S., Kalluraya, B. \& Shridhar, K. R. (1987). Curr. Sci. 56, 236-238.

organic compounds

Holla, B. S., Kalluraya, B. \& Shridhar, K. R. (1992). Rev. Roum. Chim. 37, 1159-1164.
Rai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. \& Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715-1720.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122. Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2010). E66, o3031-o3032 [https://doi.org/10.1107/S1600536810043850]
3-(5-Nitro-2-furyl)-1-phenylprop-2-yn-1-one

Hoong-Kun Fun, Ching Kheng Quah, Nithinchandra and Balakrishna Kalluraya

S1. Comment

Nitrofurans are class of synthetic compounds characterized by the presence of 5-nitro-2-furyl group. The presence of nitro group in the position-5 of the molecule conferred antibacterial activity (Holla et al., 1986). A number of nitrofurans have attained commercial utility as antibacterial agents in humans and in veterinary medicine because of their broad spectrum of activity (Holla et al., 1992; Holla et al., 1987). 1-Aryl-3-(5-nitro-2-furyl)-2-propyn-1-ones were prepared by the hydrobromination of 2,3-dibromo-1-aryl-3-(5-nitro-2-furyl)-2-propan-1-ones in the presence of triethylamine in benzene medium. The dibromopropanones were in turn obtained by the bromination of 1-aryl-3-(5-nitro-2-furyl)-2-propen-1-ones. Acid catalysed condensation of acetophenones with 5-nitrofuraldiacetate in acetic acid yielded the required 1-aryl-3-(5-nitro-2-furyl)-2-propen-1-ones called chalcones (Rai et al., 2008).
In the title molecule (Fig. 1), the 2-furyl ($\mathrm{O} 1 / \mathrm{C} 1-\mathrm{C} 4$) ring is essentially planar (maximum deviation $=0.004$ (1) \AA for atoms O 1) and is inclined at an angle of $11.69(4)^{\circ}$ with the phenyl ring ($\mathrm{C} 11-\mathrm{C} 16$), which indicates they are nearly parallel to each other. The nitro group ($\mathrm{N} 1 / \mathrm{O} 1 / \mathrm{O} 2$) is slightly twisted away from the attached 2-furyl ring [dihedral angle $=5.72(8)]$. There is a short $\mathrm{O} 4 \cdots \mathrm{C} 1$ contact (symmetry code $:-\mathrm{x},-\mathrm{y}, 2-\mathrm{z}$) with distance $=2.8562(8) \AA$ which is shorter than the sum of van der Waals radii of the O and C atoms. Bond lengths (Allen et al., 1987) and angles are within normal ranges.

In the crystal packing (Fig. 2), the molecules are linked via a pair of intermolecular $\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{O} 2$ hydrogen bonds, displaying $\mathrm{R}_{2}{ }^{2}(10)$ ring motifs (Bernstein et al., 1995). The molecules are further linked into two-dimensional networks parallel to (100) via intermolecular $\mathrm{C} 11-\mathrm{H} 11 \cdots \mathrm{O} 4$ hydrogen bonds. The crystal structure is further consilidated by $\mathrm{C} 3-$ $\mathrm{H} 3 \cdots \mathrm{Cg} 1$ (Table 1), where Cg 1 is the centroid of $\mathrm{C} 8-\mathrm{C} 13$ phenyl ring.

S2. Experimental

To a stirred solution of 2,3-dibromo-3-(5-nitro-2-furyl)-1-phenylpropan-1-one (0.01 mol) in dry benzene (100 ml), a solution of triethylamine $(0.04 \mathrm{~mol})$ in dry benzene $(30 \mathrm{ml})$ was added. The reaction mixture was stirred at room temperature for 24 h . The resulting mass of triethylamine hydrobromide was removed by filtration and the filtrate was concentrated by distilling the benzene under reduced pressure. The concentrated solution was cooled to room temperature. The product formed was collected by filtration and washed with ethanol. It was then recrystallized from ethanol. Crystals suitable for X-ray analysis were obtained from 1:2 mixtures of DMF and ethanol by slow evaporation.

S3. Refinement

All H atoms were positioned geometrically and refined using a riding model with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C})$. The highest residual electron density peak is located at $0.70 \AA$ from C 13 and the deepest hole is located at 1.10 Å from C 1 .

Figure 1
The molecular structure of the title compound showing 50% probability displacement ellipsoids for non-H atoms and the atom-numbering scheme.

Figure 2
The crystal structure of the title compound, viewed along the a axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.

3-(5-Nitro-2-furyl)-1-phenylprop-2-yn-1-one

Crystal data

$\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{NO}_{4}$
$M_{r}=241.20$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=10.4685$ (2) \AA
$b=7.3006$ (1) \AA
$c=15.2642(2) \AA$
$\beta=110.867(1)^{\circ}$

$$
\begin{aligned}
& V=1090.07(3) \AA^{3} \\
& Z=4 \\
& F(000)=496 \\
& D_{\mathrm{x}}=1.470 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo K } \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 9876 \text { reflections } \\
& \theta=2.8-37.6^{\circ} \\
& \mu=0.11 \mathrm{~mm}^{-1}
\end{aligned}
$$

$T=100 \mathrm{~K}$
Block, brown

Data collection

Bruker SMART APEXII CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
$T_{\min }=0.950, T_{\text {max }}=0.970$

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.119$
$S=1.04$
5796 reflections
163 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
$0.47 \times 0.38 \times 0.28 \mathrm{~mm}$

40673 measured reflections
5796 independent reflections
4934 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.030$
$\theta_{\text {max }}=37.7^{\circ}, \theta_{\text {min }}=2.1^{\circ}$
$h=-17 \rightarrow 17$
$k=-12 \rightarrow 12$
$l=-25 \rightarrow 26$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0678 P)^{2}+0.1893 P\right]
$$

where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.002$
$\Delta \rho_{\text {max }}=0.59 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.33$ e \AA^{-3}

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier \& Glazer, 1986) operating at 100.0 (1) K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R -factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iss }} * / U_{\text {eq }}$
O1	$-0.11630(5)$	$0.27415(7)$	$1.04906(3)$	$0.01471(9)$
O2	$-0.39290(6)$	$0.35131(8)$	$1.11730(4)$	$0.02350(11)$
O3	$-0.19217(6)$	$0.23310(8)$	$1.19322(4)$	$0.02173(10)$
O4	$0.31281(5)$	$0.03921(7)$	$0.98678(3)$	$0.01702(9)$
N1	$-0.27662(6)$	$0.30540(8)$	$1.12394(4)$	$0.01630(10)$
C1	$-0.23941(6)$	$0.33853(8)$	$1.04384(4)$	$0.01429(10)$
C2	$-0.31207(6)$	$0.41459(9)$	$0.95952(5)$	$0.01643(11)$
H2	-0.3984	0.4675	0.9412	0.020^{*}
C3	$-0.22679(6)$	$0.39527(9)$	$0.90560(5)$	$0.01704(11)$
H3	-0.2463	0.4335	0.8441	0.020^{*}
C4	$-0.11011(6)$	$0.30936(9)$	$0.96198(4)$	$0.01464(10)$
C5	$0.00843(6)$	$0.25151(9)$	$0.94661(5)$	$0.01623(11)$

C6	$0.10953(6)$	$0.20010(9)$	$0.93282(4)$	$0.01633(11)$
C7	$0.23677(6)$	$0.13782(8)$	$0.92494(4)$	$0.01320(10)$
C8	$0.27014(6)$	$0.19941(8)$	$0.84344(4)$	$0.01292(10)$
C9	$0.17614(7)$	$0.29769(9)$	$0.76987(4)$	$0.01676(11)$
H9	0.0897	0.3240	0.7707	0.020^{*}
C10	$0.21317(8)$	$0.35576(10)$	$0.69539(5)$	$0.02011(12)$
H10	0.1514	0.4214	0.6463	0.024^{*}
C11	$0.34271(8)$	$0.31575(10)$	$0.69438(5)$	$0.02020(12)$
H11	0.3673	0.3559	0.6448	0.024^{*}
C12	$0.43585(7)$	$0.21588(10)$	$0.76724(5)$	$0.01871(11)$
H12	0.5219	0.1886	0.7658	0.022^{*}
C13	$0.39983(6)$	$0.15728(9)$	$0.84181(4)$	$0.01523(10)$
H13	0.4615	0.0904	0.8904	0.018^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.01147(17)$	$0.01760(19)$	$0.01634(19)$	$0.00183(14)$	$0.00653(14)$	$0.00090(15)$
O2	$0.0173(2)$	$0.0286(3)$	$0.0299(3)$	$0.00376(18)$	$0.0150(2)$	$-0.0001(2)$
O3	$0.0219(2)$	$0.0261(2)$	$0.0180(2)$	$0.00245(18)$	$0.00804(18)$	$0.00227(18)$
O4	$0.0181(2)$	$0.0185(2)$	$0.01441(18)$	$0.00230(15)$	$0.00568(15)$	$0.00193(15)$
N1	$0.0158(2)$	$0.0164(2)$	$0.0192(2)$	$0.00019(17)$	$0.00932(18)$	$-0.00110(17)$
C1	$0.0117(2)$	$0.0154(2)$	$0.0176(2)$	$0.00109(17)$	$0.00733(18)$	$-0.00024(18)$
C2	$0.0131(2)$	$0.0173(2)$	$0.0191(2)$	$0.00249(18)$	$0.00597(19)$	$0.00072(19)$
C3	$0.0155(2)$	$0.0189(3)$	$0.0172(2)$	$0.00230(19)$	$0.00642(19)$	$0.00149(19)$
C4	$0.0132(2)$	$0.0159(2)$	$0.0166(2)$	$0.00058(17)$	$0.00742(18)$	$-0.00012(18)$
C5	$0.0143(2)$	$0.0174(2)$	$0.0190(2)$	$-0.00023(18)$	$0.0085(2)$	$-0.00129(19)$
C6	$0.0148(2)$	$0.0186(3)$	$0.0177(2)$	$0.00069(19)$	$0.00826(19)$	$-0.00003(19)$
C7	$0.0124(2)$	$0.0142(2)$	$0.0139(2)$	$-0.00032(16)$	$0.00575(17)$	$-0.00142(17)$
C8	$0.0122(2)$	$0.0142(2)$	$0.0128(2)$	$0.00024(16)$	$0.00488(17)$	$0.00001(16)$
C9	$0.0150(2)$	$0.0180(2)$	$0.0157(2)$	$0.00193(19)$	$0.00354(19)$	$0.00166(19)$
C10	$0.0241(3)$	$0.0193(3)$	$0.0146(2)$	$-0.0002(2)$	$0.0040(2)$	$0.0030(2)$
C11	$0.0263(3)$	$0.0213(3)$	$0.0146(2)$	$-0.0062(2)$	$0.0092(2)$	$-0.0006(2)$
C12	$0.0179(3)$	$0.0233(3)$	$0.0179(2)$	$-0.0032(2)$	$0.0100(2)$	$-0.0016(2)$
C13	$0.0126(2)$	$0.0190(2)$	$0.0150(2)$	$0.00056(18)$	$0.00601(18)$	$0.00020(18)$

Geometric parameters $\left({ }^{A},{ }^{\circ}\right)$

$\mathrm{O} 1-\mathrm{C} 1$	$1.3472(7)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.4525(8)$
$\mathrm{O} 1-\mathrm{C} 4$	$1.3779(8)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.4770(8)$
$\mathrm{O} 2-\mathrm{N} 1$	$1.2315(7)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.3990(8)$
$\mathrm{O} 3-\mathrm{N} 1$	$1.2298(8)$	$\mathrm{C} 8-\mathrm{C} 13$	$1.4010(8)$
$\mathrm{O} 4-\mathrm{C} 7$	$1.2278(8)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.3915(9)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.4298(8)$	$\mathrm{C} 9-\mathrm{H} 9$	0.9300
$\mathrm{C} 1-\mathrm{C} 2$	$1.3586(9)$	$\mathrm{C} 10-\mathrm{C} 11$	$1.3927(11)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.4205(9)$	$\mathrm{C} 10-\mathrm{H} 10$	0.9300
$\mathrm{C} 2-\mathrm{H} 2$	0.9300	$\mathrm{C} 11-\mathrm{C} 12$	$1.3953(10)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.3701(9)$	$\mathrm{C} 11-\mathrm{H} 11$	0.9300

C3-H3	0.9300
C4-C5	1.4073 (8)
C5-C6	1.2100 (8)
C1-O1-C4	104.51 (5)
$\mathrm{O} 3-\mathrm{N} 1-\mathrm{O} 2$	125.05 (6)
$\mathrm{O} 3-\mathrm{N} 1-\mathrm{C} 1$	118.47 (5)
$\mathrm{O} 2-\mathrm{N} 1-\mathrm{C} 1$	116.48 (6)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	113.56 (5)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{N} 1$	115.88 (5)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1$	130.40 (5)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	104.66 (5)
C1-C2-H2	127.7
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	127.7
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	106.57 (6)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	126.7
C2-C3-H3	126.7
C3-C4-O1	110.71 (5)
C3-C4-C5	132.41 (6)
$\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 5$	116.88 (5)
C6-C5-C4	179.25 (7)
C5-C6-C7	175.08 (7)
O4-C7-C6	118.85 (5)
O4-C7-C8	122.88 (5)
$\mathrm{C} 4-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	-0.69 (7)
$\mathrm{C} 4-\mathrm{O} 1-\mathrm{C} 1-\mathrm{N} 1$	175.17 (5)
$\mathrm{O} 3-\mathrm{N} 1-\mathrm{C} 1-\mathrm{O} 1$	4.75 (9)
$\mathrm{O} 2-\mathrm{N} 1-\mathrm{C} 1-\mathrm{O} 1$	-174.73 (6)
$\mathrm{O} 3-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	179.76 (7)
$\mathrm{O} 2-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	0.28 (11)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	0.46 (8)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-174.65 (7)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	-0.02 (7)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{O} 1$	-0.40 (7)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	178.65 (7)
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 3$	0.65 (7)
C1-O1-C4-C5	-178.56 (6)

$\mathrm{C} 12-\mathrm{C} 13$	$1.3880(9)$
$\mathrm{C} 12-\mathrm{H} 12$	0.9300
$\mathrm{C} 13-\mathrm{H} 13$	0.9300
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$118.26(5)$
$\mathrm{C} 9-\mathrm{C} 8-\mathrm{C} 13$	$120.49(5)$
$\mathrm{C} 9-\mathrm{C} 8-\mathrm{C} 7$	$121.50(5)$
$\mathrm{C} 13-\mathrm{C} 8-\mathrm{C} 7$	$118.01(5)$
$\mathrm{C} 10-\mathrm{C} 9-\mathrm{C} 8$	$119.41(6)$
$\mathrm{C} 10-\mathrm{C} 9-\mathrm{H} 9$	120.3
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{H} 9$	120.3
$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11$	$120.06(6)$
$\mathrm{C} 9-\mathrm{C} 10-\mathrm{H} 10$	120.0
$\mathrm{C} 11-\mathrm{C} 10-\mathrm{H} 10$	120.0
$\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12$	$120.49(6)$
$\mathrm{C} 10-\mathrm{C} 11-\mathrm{H} 11$	119.8
$\mathrm{C} 12-\mathrm{C} 11-\mathrm{H} 11$	119.8
$\mathrm{C} 13-\mathrm{C} 12-\mathrm{C} 11$	$119.86(6)$
$\mathrm{C} 13-\mathrm{C} 12-\mathrm{H} 12$	120.1
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{H} 12$	120.1
$\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 8$	$119.67(6)$
$\mathrm{C} 12-\mathrm{C} 13-\mathrm{H} 13$	120.2
$\mathrm{C} 8-\mathrm{C} 13-\mathrm{H} 13$	120.2

$\mathrm{O} 4-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$174.06(6)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$-7.19(9)$
$\mathrm{O} 4-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 13$	$-6.23(9)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 13$	$172.52(6)$
$\mathrm{C} 13-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$-0.90(10)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$178.80(6)$
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11$	$0.11(10)$
$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12$	$0.64(11)$
$\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$	$-0.61(11)$
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 8$	$-0.18(10)$
$\mathrm{C} 9-\mathrm{C} 8-\mathrm{C} 13-\mathrm{C} 12$	$0.93(10)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 13-\mathrm{C} 12$	$-178.78(6)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 2 — \mathrm{H} 2 \cdots \mathrm{O}^{\mathrm{i}}$	0.93	2.44	$3.3548(9)$	170
$\mathrm{C} 11 — \mathrm{H} 11 \cdots 4^{\mathrm{ii}}$	0.93	2.40	$3.2487(9)$	152
$\mathrm{C} 3 — \mathrm{H} 3 \cdots \mathrm{Cg} 1^{\mathrm{iii}}$	0.93	2.86	$3.6284(7)$	141

Symmetry codes: (i) $-x-1,-y+1,-z+2$; (ii) $x,-y+1 / 2, z-1 / 2$; (iii) $-x, y+1 / 2,-z+3 / 2$.

