organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-(2,5-Dichlorobenzenesulfonamido)-3-methylbutanoic acid

Islam Ullah Khan,^a‡ Peter John,^a Haffsah Igbal,^a Shahzad Sharif^a and Edward R. T. Tiekink^b*

^aMaterials Chemistry Laboratory, Department of Chemistry, Government College, University, Lahore 54000, Pakistan, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: Edward.Tiekink@gmail.com

Received 14 October 2010; accepted 15 October 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; R factor = 0.041; wR factor = 0.127; data-to-parameter ratio = 18.9.

The structure of the title compound, $C_{11}H_{13}Cl_2NO_4S$, shows one sulfonamide-O atom to lie almost in the plane of the benzene ring $[C-C-S-O = -178.7 (2)^{\circ}]$ and the other to one side $[C-C-S-O = -49.4 (3)^{\circ}]$. Lying to the other side is the amine residue, which occupies a position almost perpendicular to the plane $[C-S-N-C = 70.2 (2)^{\circ}]$; the carboxylic acid group is orientated to lie over the benzene ring. In the crystal, the appearance of an 11-membered $\{\cdots OH \cdots OCOH \cdots OC_2 NH\}$ synthon, which features the hydroxy group forming both donor (to a carbonyl-O) and acceptor (from the amine-H) interactions, leads to the formation of a supramolecular chain along the *a* axis. Chains are connected in the crystal structure by C-H...O contacts.

Related literature

For background to the pharmacological uses of sulfonamides, see: Korolkovas (1988); Mandell & Sande (1992). For related structures, see: Sharif et al. (2010); Khan et al. (2010).

Experimental

Crystal data	
$C_{11}H_{13}Cl_2NO_4S$	$V = 1493.28 (10) \text{ Å}^3$
$M_r = 326.18$	Z = 4
Orthorhombic, $P2_12_12_1$	Mo $K\alpha$ radiation
a = 5.4584 (2) Å	$\mu = 0.58 \text{ mm}^{-1}$
b = 14.0623 (6) Å	T = 293 K
c = 19.4545 (8) Å	$0.19 \times 0.13 \times 0.07~\text{mm}$

‡ Additional correspondence author, e-mail: iuklodhi@yahoo.com.

Acta Cryst. (2010). E66, o2888

Data collection

```
Bruker APEXII CCD
  diffractometer
Absorption correction: multi-scan
  (SADABS; Sheldrick, 1996)
  T_{\min} = 0.805, T_{\max} = 0.921
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.041$
$wR(F^2) = 0.127$
S = 1.00
3405 reflections
180 parameters
2 restraints

14542 measured reflections 3405 independent reflections 2876 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.040$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	<i>D</i> -H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O3−H3o···O4 ⁱ	0.82 (3)	1.86 (2)	2.674 (3)	171 (3)
N1−H1n···O3 ⁱⁱ	0.85 (2)	2.32 (2)	3.161 (3)	167 (3)
$C7 - H7 \cdot \cdot \cdot O1^{iii}$	0.98	2.42	3.341 (3)	157
$C4 - H4 \cdots O2^{iv}$	0.93	2.41	3.223 (5)	146
Symmetry codes: (i) $-x + 2, y + \frac{1}{2}, -z + \frac{1}{2}.$) $x + \frac{1}{2}, -y +$	$\frac{1}{2}, -z;$ (ii) x	-1, y, z; (iii)	x + 1, y, z; (iv)

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

The authors are grateful to the Higher Education Commission of Pakistan for financial support to purchase the diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2730).

References

- Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Khan, I. U., Sharif, S., Batool, S., Mumtaz, A. M. & Tiekink, E. R. T. (2010). Acta Crvst. E66, o2641.
- Korolkovas, A. (1988). Essentials of Medicinal Chemistry, 2nd ed, pp. 699-716. New York: Wiley.
- Mandell, G. L. & Sande, M. A. (1992). In Goodman and Gilman, The Pharmacological Basis of Therapeutics 2, edited by A. Gilman, T. W. Rall, A. S. Nies & P. Taylor, 8th ed, pp. 1047-1057. Singapore: McGraw-Hill.
- Sharif, S., Iqbal, H., Khan, I. U., John, P. & Tiekink, E. R. T. (2010). Acta Cryst. E66. 01288.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Acta Cryst. (2010). E66, o2888 [https://doi.org/10.1107/S1600536810041620]

2-(2,5-Dichlorobenzenesulfonamido)-3-methylbutanoic acid

Islam Ullah Khan, Peter John, Haffsah Iqbal, Shahzad Sharif and Edward R. T. Tiekink

S1. Comment

The crystal structure of the title compound, (I), was determined in connection with on-going structural studies of sulfonamides (Sharif *et al.*, 2010; Khan *et al.*, 2010), of interest owing to their biological properties (Korolkovas, 1988; Mandell & Sande, 1992).

With reference to the benzene ring in (I), Fig. 1, the O2 atom lies in the plane [the O2—S1—C1—C2 torsion angle = $-178.7 (2)^{\circ}$] but the O1 atom lies out of the plane [O1—S1—C1—C2 = $-49.4 (3)^{\circ}$]. The amine group lies to the opposite side of the plane to the O1 atom and occupies a position almost perpendicular to it [C1—S1—N1—C7 = $70.2 (2)^{\circ}$]. Within the amine residue, the carboxylic acid group is co-planar with the amine-N1 [N1—C7—C11—O4 = $-1.6 (4)^{\circ}$], and is folded to be orientated over the benzene ring with the carbonyl-O4 atom closest to it.

In the crystal packing, the hydroxyl-O3 group forms both donor and acceptor interactions, the former to a symmetry related carbonyl-O4 and the latter with a symmetry related amine-N1—H atom, Table 1. These lead to a linear supramolecular chain, Fig. 2, aligned along the *a* axis and mediated by an 11-membered { \cdots OH \cdots OCOH \cdots OC₂NH} synthon; the chain is further stabilized by a C7—H7 \cdots O1 contact, Table 1. Chains are held in the crystal structure by C—H \cdots O contacts, Fig. 3 and Table 1.

S2. Experimental

To 2-amino-3-methylbutanoic acid (234 mg, 2 mmol) in distilled water (15 ml), was added 2,5-dichlorobenzenesulfonyl chloride (491 mg, 2 mmol) while maintaining the pH of reaction mixture at 8 by using 3% sodium carbonate solution. The consumption of the reactants was confirmed by TLC. The pH of reaction mixture was adjusted to 3 using 3 N HCl. The precipitates were washed with water and crystallized from methanol

S3. Refinement

The C-bound H atoms were geometrically placed (C–H = 0.93–0.98 Å) and refined as riding with $U_{iso}(H) = 1.2-1.5U_{eq}(C)$. The O– and N-bound H atoms were refined with the distance restraints O—H = 0.82±0.01 Å and N–H = 0.86±0.01 Å, and with $U_{iso}(H) = yU_{eq}$ (parent atom) for y = 1.5 (parent atom = O) and y = 1.2 (N). In the final refinement four low angle reflections evidently effected by the beam stop were omitted, *i.e.* (002), (012), (011) and (021).

Figure 1

The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 35% probability level.

Figure 2

A view of the linear supramolecular chain along the *a* axis in (I). The O–H…O and N–H…O hydrogen bonds are shown as orange and blue dashed lines, respectively.

Figure 3

View in projection down the a axis of the unit-cell contents for (I). The O-H…O, N-H…O and C—H…O contacts are shown as orange, blue and pink dashed lines, respectively.

2-(2,5-Dichlorobenzenesulfonamido)-3-methylbutanoic acid

Crystal data

$C_{11}H_{13}Cl_2NO_4S$
$M_r = 326.18$
Orthorhombic, $P2_12_12_1$
Hall symbol: P 2ac 2ab
a = 5.4584 (2) Å
<i>b</i> = 14.0623 (6) Å
<i>c</i> = 19.4545 (8) Å
$V = 1493.28 (10) \text{ Å}^3$
Z=4

Data collection

Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube $R_{\rm int} = 0.040$ Graphite monochromator $\theta_{\text{max}}^{\text{int}} = 27.5^{\circ}, \ \theta_{\text{min}} = 3.5^{\circ}$ $h = -5 \rightarrow 7$ φ and ω scans Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $k = -18 \rightarrow 18$ $T_{\rm min} = 0.805, T_{\rm max} = 0.921$ $l = -25 \rightarrow 25$

F(000) = 672 $D_{\rm x} = 1.451 {\rm Mg} {\rm m}^{-3}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 4852 reflections $\theta = 2.6 - 25.1^{\circ}$ $\mu = 0.58 \text{ mm}^{-1}$ T = 293 KPrism, colourless $0.19 \times 0.13 \times 0.07 \text{ mm}$

14542 measured reflections 3405 independent reflections 2876 reflections with $I > 2\sigma(I)$ Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.041$	H atoms treated by a mixture of independent
$wR(F^2) = 0.127$	and constrained refinement
S = 1.00	$w = 1/[\sigma^2(F_o^2) + (0.0887P)^2]$
3405 reflections	where $P = (F_o^2 + 2F_c^2)/3$
180 parameters	$(\Delta/\sigma)_{\rm max} = 0.001$
2 restraints	$\Delta \rho_{\rm max} = 0.61 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm min} = -0.51 \text{ e } \text{\AA}^{-3}$
direct methods	Absolute structure: Flack (1983), 1415 Friedel
Secondary atom site location: difference Fourier	pairs
map	Absolute structure parameter: 0.09 (8)

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl1	0.36922 (17)	0.23427 (6)	0.14486 (5)	0.0617 (3)	
Cl2	1.2300 (2)	0.15728 (10)	0.34471 (6)	0.0952 (4)	
S 1	0.59333 (11)	0.01761 (4)	0.15989 (3)	0.03515 (17)	
01	0.3334 (3)	0.01414 (15)	0.16803 (12)	0.0491 (5)	
O2	0.7383 (4)	-0.06093 (14)	0.18173 (11)	0.0485 (5)	
O3	1.1937 (3)	0.12919 (13)	0.00395 (12)	0.0465 (5)	
H3O	1.231 (8)	0.1812 (14)	-0.0118 (19)	0.070*	
O4	0.8427 (4)	0.19737 (14)	0.03380 (13)	0.0554 (6)	
N1	0.6435 (4)	0.03271 (15)	0.07885 (11)	0.0359 (5)	
H1N	0.528 (4)	0.0668 (18)	0.0625 (15)	0.043*	
C1	0.7060 (5)	0.11804 (19)	0.20583 (13)	0.0375 (6)	
C2	0.6085 (6)	0.2087 (2)	0.19980 (15)	0.0475 (7)	
C3	0.6997 (8)	0.2826 (2)	0.23875 (19)	0.0671 (10)	
H3	0.6316	0.3430	0.2348	0.080*	
C4	0.8904 (8)	0.2675 (3)	0.28335 (19)	0.0740 (12)	
H4	0.9526	0.3172	0.3096	0.089*	
C5	0.9879 (7)	0.1778 (3)	0.28870 (16)	0.0615 (10)	
C6	0.8996 (5)	0.1019 (2)	0.25120 (14)	0.0453 (6)	
H6	0.9673	0.0416	0.2560	0.054*	
C7	0.8902 (5)	0.02917 (16)	0.05012 (13)	0.0336 (5)	
H7	1.0025	0.0063	0.0858	0.040*	
C8	0.9042 (6)	-0.0395 (2)	-0.01197 (18)	0.0525 (8)	
H8	1.0741	-0.0392	-0.0283	0.063*	

С9	0.7472 (9)	-0.0072 (3)	-0.0703 (2)	0.0855 (13)	
H9A	0.7767	-0.0468	-0.1097	0.128*	
H9B	0.7860	0.0576	-0.0815	0.128*	
H9C	0.5778	-0.0117	-0.0574	0.128*	
C10	0.8466 (11)	-0.1396 (2)	0.0105 (3)	0.103 (2)	
H10A	0.6806	-0.1426	0.0266	0.155*	
H10B	0.9559	-0.1578	0.0468	0.155*	
H10C	0.8666	-0.1821	-0.0278	0.155*	
C11	0.9694 (5)	0.12818 (16)	0.02879 (14)	0.0352 (6)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
C11	0.0687 (5)	0.0524 (4)	0.0638 (5)	0.0192 (4)	0.0005 (4)	0.0038 (4)
Cl2	0.0659 (6)	0.1600 (11)	0.0597 (6)	-0.0443 (7)	-0.0190 (5)	0.0070 (7)
S1	0.0295 (3)	0.0337 (3)	0.0422 (3)	-0.0026 (2)	0.0021 (3)	0.0031 (3)
01	0.0314 (9)	0.0567 (11)	0.0593 (13)	-0.0080 (9)	0.0077 (9)	-0.0015 (10)
O2	0.0518 (11)	0.0383 (10)	0.0553 (12)	0.0021 (9)	-0.0007 (10)	0.0110 (8)
03	0.0367 (10)	0.0367 (10)	0.0661 (13)	-0.0051 (8)	0.0044 (10)	0.0114 (9)
O4	0.0589 (13)	0.0357 (9)	0.0717 (15)	0.0117 (9)	0.0111 (11)	0.0116 (10)
N1	0.0282 (11)	0.0421 (11)	0.0375 (12)	0.0024 (9)	-0.0012 (9)	0.0013 (9)
C1	0.0346 (13)	0.0432 (14)	0.0347 (13)	-0.0069 (11)	0.0054 (11)	-0.0010 (11)
C2	0.0564 (19)	0.0437 (14)	0.0423 (16)	-0.0038 (15)	0.0099 (14)	-0.0035 (11)
C3	0.097 (3)	0.0490 (17)	0.055 (2)	-0.0171 (19)	0.011 (2)	-0.0090 (15)
C4	0.093 (3)	0.074 (2)	0.055 (2)	-0.042 (2)	0.002 (2)	-0.0117 (18)
C5	0.0509 (19)	0.094 (3)	0.0393 (16)	-0.0319 (18)	0.0020 (15)	-0.0026 (17)
C6	0.0367 (14)	0.0618 (16)	0.0375 (14)	-0.0073 (14)	0.0050 (12)	0.0050 (12)
C7	0.0283 (12)	0.0323 (11)	0.0402 (13)	0.0020 (10)	-0.0001 (10)	0.0013 (10)
C8	0.0497 (17)	0.0456 (15)	0.0623 (19)	-0.0054 (14)	0.0187 (16)	-0.0146 (13)
C9	0.086 (3)	0.115 (3)	0.056 (2)	-0.018 (3)	-0.005 (2)	-0.036 (2)
C10	0.150 (5)	0.0403 (17)	0.119 (4)	-0.019 (2)	0.050 (4)	-0.026 (2)
C11	0.0336 (13)	0.0321 (12)	0.0399 (13)	0.0004 (10)	-0.0042 (11)	0.0024 (10)

Geometric parameters (Å, °)

Cl1—C2	1.725 (3)	C4—C5	1.372 (6)
Cl2—C5	1.737 (4)	C4—H4	0.9300
S1—O2	1.424 (2)	C5—C6	1.380 (5)
S1—O1	1.4286 (19)	С6—Н6	0.9300
S1—N1	1.614 (2)	C7—C11	1.516 (3)
S1—C1	1.781 (3)	C7—C8	1.549 (4)
O3—C11	1.317 (3)	С7—Н7	0.9800
O3—H3o	0.82 (3)	C8—C9	1.494 (6)
O4—C11	1.197 (3)	C8—C10	1.506 (5)
N1—C7	1.459 (3)	C8—H8	0.9800
N1—H1n	0.853 (10)	С9—Н9А	0.9600
C1—C2	1.387 (4)	C9—H9B	0.9600
C1—C6	1.395 (4)	С9—Н9С	0.9600

C2—C3	1.379 (5)	C10—H10A	0.9600
C3—C4	1.372 (6)	C10—H10B	0.9600
С3—Н3	0.9300	C10—H10C	0.9600
O2—S1—O1	119.51 (12)	N1—C7—C11	109.66 (19)
O2—S1—N1	107.41 (12)	N1—C7—C8	111.5 (2)
O1—S1—N1	106.34 (13)	C11—C7—C8	110.2 (2)
02—S1—C1	105.87 (13)	N1—C7—H7	108.5
01 - S1 - C1	108.33 (13)	C11—C7—H7	108.5
N1 - S1 - C1	109.10 (12)	C8—C7—H7	108.5
C11-O3-H3O	112 (3)	C9-C8-C10	112.6 (4)
C7—N1—S1	121 76 (17)	C9 - C8 - C7	112.0(3)
C7—N1—H1N	124 (2)	$C_{10} - C_{8} - C_{7}$	110.3(3)
S1—N1—H1N	108(2)	C9-C8-H8	107.2
$C^2 - C^1 - C^6$	100(2)	C10-C8-H8	107.2
$C_2 = C_1 = S_1$	119.0(5) 123.7(2)	C7 - C8 - H8	107.2
C_{1}	125.7(2) 116.8(2)	C_{8} C_{9} H_{9}	107.2
C_{3}^{2} C_{2}^{2} C_{1}^{1}	110.0(2)	C_{0} C_{0} H_{0} H_{0}	109.5
$C_{3} = C_{2} = C_{1}$	120.3(3)		109.5
C_{1} C_{2} C_{11}	117.2(3) 122.2(2)	$H_{A} = C_{A} = H_{A} = H_{A}$	109.5
CI = C2 = CII	122.3(2)	C_{0} C_{0} $H_{0}C$	109.5
C4 - C3 - C2	120.3 (4)	H9A—C9—H9C	109.5
C4 - C3 - H3	119.8	H9B - C9 - H9C	109.5
C2—C3—H3	119.8	$C_8 = C_{10} = H_{10}$	109.5
$C_3 - C_4 - C_5$	119.0 (3)	C8—C10—H10B	109.5
C3—C4—H4	120.5	HI0A—CI0—HI0B	109.5
С5—С4—Н4	120.5	C8—C10—H10C	109.5
C6—C5—C4	122.3 (3)	H10A—C10—H10C	109.5
C6—C5—Cl2	118.0 (3)	H10B—C10—H10C	109.5
C4—C5—Cl2	119.7 (3)	O4—C11—O3	123.9 (2)
C5—C6—C1	118.3 (3)	O4—C11—C7	124.0 (2)
С5—С6—Н6	120.9	O3—C11—C7	112.0 (2)
C1—C6—H6	120.9		
O2—S1—N1—C7	-44.1 (2)	C3—C4—C5—C6	-0.6 (6)
O1—S1—N1—C7	-173.12 (18)	C3—C4—C5—Cl2	179.8 (3)
C1—S1—N1—C7	70.2 (2)	C4—C5—C6—C1	0.8 (5)
O2—S1—C1—C2	-178.7 (2)	Cl2—C5—C6—C1	-179.6 (2)
O1—S1—C1—C2	-49.4 (3)	C2—C1—C6—C5	-0.1 (4)
N1—S1—C1—C2	66.0 (3)	S1—C1—C6—C5	-178.7 (2)
O2—S1—C1—C6	-0.2 (2)	S1—N1—C7—C11	-108.9 (2)
O1—S1—C1—C6	129.1 (2)	S1—N1—C7—C8	128.8 (2)
N1—S1—C1—C6	-115.5 (2)	N1—C7—C8—C9	63.4 (3)
C6—C1—C2—C3	-0.7 (4)	C11—C7—C8—C9	-58.6 (3)
S1—C1—C2—C3	177.8 (3)	N1-C7-C8-C10	-62.8 (4)
C6-C1-C2-Cl1	-180.0 (2)	C11—C7—C8—C10	175.2 (3)
S1-C1-C2-Cl1	-1.6 (4)	N1—C7—C11—O4	-1.6 (4)
C1—C2—C3—C4	0.8 (5)	C8—C7—C11—O4	121.4 (3)
Cl1—C2—C3—C4	-179.8 (3)	N1—C7—C11—O3	178.5 (2)

C2—C3—C4—C5	-0.2 (6)		C8—C7—C11—O3		-58.4 (3)
Hydrogen-bond geometry (Å, °)					
D—H···A		D—H	H···A	D···A	D—H···A
03—H3o…O4 ⁱ		0.82 (3)	1.86 (2)	2.674 (3)	171 (3)
N1—H1n····O3 ⁱⁱ		0.85 (2)	2.32 (2)	3.161 (3)	167 (3)
C7—H7···O1 ⁱⁱⁱ		0.98	2.42	3.341 (3)	157
C4—H4····O2 ^{iv}		0.93	2.41	3.223 (5)	146

Symmetry codes: (i) *x*+1/2, -*y*+1/2, -*z*; (ii) *x*-1, *y*, *z*; (iii) *x*+1, *y*, *z*; (iv) -*x*+2, *y*+1/2, -*z*+1/2.