Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-Chloro-*N*-(4-methoxyphenyl)benzamide

Aamer Saeed^a* and Jim Simpson^b

^aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and ^bDepartment of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand

Correspondence e-mail: aamersaeed@yahoo.com

Received 21 October 2010; accepted 22 October 2010

Key indicators: single-crystal X-ray study; T = 90 K; mean σ (C–C) = 0.002 Å; R factor = 0.041; wR factor = 0.104; data-to-parameter ratio = 25.3.

In the title compound, $C_{14}H_{12}CINO_2$, the chloro- and methoxy-substituted benzene rings are close to orthogonal [dihedral angle = 79.20 (3)°]. These rings also make angles of 45.9 (3) and 33.5 (3)° with the amide –CONH– unit. The methoxy substituent lies close to the methoxybenzene ring plane, with a maximum deviation of 0.142 (3) Å for the methyl C atom. The N–H bond is *anti* to the 2-chloro substituent of the aniline ring. In the crystal structure, intermolecular N– $H \cdots O$ hydrogen bonds form C(4) chains augmented by a weak C– $H \cdots O$ interaction involving an *ortho* H atom of the methoxy benzene ring that generates an $R_2^1(6)$ motif. The chains stack the molecules into columns down the *b* axis. Adjacent columns are linked by additional C– $H \cdots O$ and C– $H \cdots \pi$ contacts, generating a three-dimensional network.

Related literature

For background to the biological activity of *N*-substituted benzamides and their use in synthesis, see: Saeed *et al.* (2010). For related structures, see: Saeed *et al.* (2008*a*,*b*, 2009*a*,*b*,*c*). For hydrogen-bond motifs, see: Bernstein *et al.* (1995). For reference bond length data, see: Allen *et al.* (1987).

Experimental

Crystal data

C ₁₄ H ₁₂ ClNO ₂
$M_r = 261.70$
Monoclinic, $P2_1/n$
a = 13.1819 (10) Å
b = 5.0823 (4) Å

c = 18.4477 (14) Å β = 99.563 (3)° V = 1218.72 (16) Å³ Z = 4 Mo K\alpha radiation organic compounds

 $0.50 \times 0.23 \times 0.08 \text{ mm}$

21245 measured reflections

 $R_{\rm int} = 0.060$

4228 independent reflections

3106 reflections with $I > 2\sigma(I)$

 $\mu = 0.31 \text{ mm}^{-1}$ T = 90 K

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2006) $T_{min} = 0.885, T_{max} = 1.000$

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.041 & \text{H atoms treated by a mixture of} \\ wR(F^2) &= 0.104 & \text{independent and constrained} \\ S &= 1.06 & \text{refinement} \\ 4228 \text{ reflections} & \Delta\rho_{\text{max}} &= 0.46 \text{ e } \text{\AA}^{-3} \\ 167 \text{ parameters} & \Delta\rho_{\text{min}} &= -0.28 \text{ e } \text{\AA}^{-3} \end{split}$$

Table 1

Hydrogen-bond geometry (Å, °).

Cg2 is the centroid of the C8–C13 benzene ring.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1-H1\cdotsO1^{i}$ $C13-H13\cdotsO1^{i}$ $C6-H6\cdotsO2^{ii}$ $C12-H12\cdotsCg2^{iii}$	0.854 (17) 0.95 0.95 0.95	2.067 (17) 2.69 2.71 2.88	2.8706 (15) 3.2347 (16) 3.5657 (17) 3.6203 (15)	156.4 (15) 117 150 136

Symmetry codes: (i) x, y + 1, z; (ii) -x + 1, -y + 1, -z + 1; (iii) $-x + \frac{1}{2}$, $y - \frac{1}{2}$, $-z + \frac{1}{2}$.

Data collection: *APEX2* (Bruker 2006); cell refinement: *APEX2* and *SAINT* (Bruker 2006); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008) and *TITAN2000* (Hunter & Simpson, 1999); molecular graphics: *SHELXTL* and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXL97*, *enCIFer* (Allen *et al.*, 2004), *PLATON* (Spek, 2009) and *publCIF* (Westrip, 2010).

We thank the University of Otago for purchase of the diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2733).

References

- Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Hunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Saeed, A., Khera, R. A., Abbas, N., Simpson, J. & Stanley, R. G. (2008a). Acta Cryst. E64, 01976.
- Saeed, A., Khera, R. A., Abbas, N., Simpson, J. & Stanley, R. G. (2008b). Acta Cryst. E64, 02187.
- Saeed, A., Khera, R. A., Ameen, S., Simpson, J. & Stanley, R. G. (2009a). Acta Cryst. E65, o201.
- Saeed, A., Khera, R. A., Arfan, M., Simpson, J. & Stanley, R. G. (2009b). Acta Cryst. E65, 0802–0803.

Saeed, A., Khera, R. A., Rafique, H., Simpson, J. & Stanley, R. G. (2009c). Acta Cryst. E65, 02527.

Saeed, A., Khera, R. A. & Simpson, J. (2010). Acta Cryst. E66, 0911-0912.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
Spek, A. L. (2009). Acta Cryst. D65, 148–155.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

supporting information

Acta Cryst. (2010). E66, o2963-o2964 [https://doi.org/10.1107/S1600536810043035]

2-Chloro-N-(4-methoxyphenyl)benzamide

Aamer Saeed and Jim Simpson

S1. Comment

N-substituted benzamides have numerous pharmaceutical and synthetic applications (Saeed *et al.*, 2010). In the title compound, $C_{14}H_{12}CINO_2$ (I), the C2···C7, chloro and C8···C13, methoxy substituted benzene rings are close to orthogonal, dihedral angle 79.20 (3)°. These rings also make angles of 45.9 (3) and 33.5 (3)° to the amide –C1(=O1)-N1H1- unit. The methoxy substituent lies close to the C8···C13 ring plane with a maximum deviation of 0.142 (3) Å for C14. Bond distances in the molecule are normal (Allen *et al.*, 1987) and very similar to those other chlorophenylbenzamide derivatives (Saeed *et al.*, 2008*a*, 2009*c*). The N1–H1 bond is *anti* to the C11 substituent of the aniline ring in sharp contrast to the *syn* arrangement found in a number of comparable 2-fluoro-benzamide derivatives (Saeed *et al.*, 2008*b*, 2009*a*) including the directly analogous 2-fluoro-*N*-(4-methoxyphenyl)benzamide (Saeed *et al.*, 2009*b*).

In the crystal structure intermolecular N1—H1···O1 hydrogen bonds form C(4) chains (Bernstein *et al.*, 1995) strengthened by a C13—H13···O1 interaction that generates an $R^{1}_{2}(6)$ ring motif. These chains stack the molecules into columns down the *b* axis. The columns are linked by additional C6–H6···O2 and C12—H12···Cg2 contacts (*Cg2* is the centroid of the C8···C13 benzene ring) to generate a three dimensional network.

S2. Experimental

2-Chlorobenzoyl chloride (1 mmol) in CHCl₃ was treated with 4-methoxyaniline (3.5 mmol) under a nitrogen atmosphere at reflux for 3 h. Upon cooling, the reaction mixture was diluted with CHCl₃ and washed consecutively with 1 *M* aq HCl and saturated aq NaHCO₃. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. Crystallization of the residue in ethanol afforded the title compound (80%) as colourless crystals: Anal. calcd. for $C_{14}H_{12}Cl_NO_2$: C, 64.25; H, 4.62; N, 5.35; found: C, 64.02; H, 4.61; N, 6.23%.

S3. Refinement

The H1 atom bound to N1 was located in a difference map and refined isotropically. All other H-atoms were positioned geometrically and refined using a riding model with d(C-H) = 0.95 Å, $U_{iso} = 1.2U_{eq}$ (C) for aromatic and 0.98 Å, $U_{iso} = 1.5U_{eq}$ (C) for the CH₃ atoms.

Figure 1

The structure of (I) with displacement ellipsoids for the non-hydrogen atoms drawn at the 50% probability level.

Figure 2

Chains of molecules formed along the b axis with hydrogen bonds drawn as dashed lines.

Crystal packing for (I) viewed down the b axis with hydrogen bonds drawn as dashed lines.

2-Chloro-N-(4-methoxyphenyl)benzamide

Crystal data $C_{14}H_{12}CINO_2$ $M_r = 261.70$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 13.1819 (10) Å b = 5.0823 (4) Å c = 18.4477 (14) Å $\beta = 99.563 (3)^\circ$ $V = 1218.72 (16) \text{ Å}^3$ Z = 4

F(000) = 544 $D_x = 1.426 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3287 reflections $\theta = 2.2-31.3^{\circ}$ $\mu = 0.31 \text{ mm}^{-1}$ T = 90 KRectangular block, colourless $0.50 \times 0.23 \times 0.08 \text{ mm}$ Data collection

Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2006) $T_{min} = 0.885, T_{max} = 1.000$ <i>Refinement</i>	21245 measured reflections 4228 independent reflections 3106 reflections with $I > 2\sigma(I)$ $R_{int} = 0.060$ $\theta_{max} = 32.2^{\circ}, \ \theta_{min} = 3.5^{\circ}$ $h = -19 \rightarrow 17$ $k = -7 \rightarrow 7$ $l = -27 \rightarrow 27$
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.104$ S = 1.06 4228 reflections 167 parameters 0 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0437P)^2 + 0.2831P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.46 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.28 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
0.48415 (8)	0.3074 (2)	0.61366 (6)	0.0145 (2)	
0.4587 (12)	0.461 (3)	0.6155 (9)	0.017*	
0.42206 (10)	0.0944 (2)	0.60396 (7)	0.0137 (2)	
0.75384 (10)	0.5034 (3)	0.68248 (7)	0.0155 (3)	
0.7893	0.6365	0.7128	0.019*	
0.30910 (9)	0.1564 (2)	0.58872 (7)	0.0127 (2)	
0.23760 (10)	0.0166 (2)	0.62149 (7)	0.0150 (2)	
0.27487 (3)	-0.22099 (7)	0.688318 (18)	0.02032 (9)	
0.13309 (11)	0.0697 (3)	0.60386 (8)	0.0212 (3)	
0.0853	-0.0258	0.6270	0.025*	
0.09866 (11)	0.2618 (3)	0.55254 (8)	0.0219 (3)	
0.0271	0.2958	0.5397	0.026*	
0.16843 (10)	0.4055 (3)	0.51967 (7)	0.0180 (3)	
0.1448	0.5388	0.4848	0.022*	
0.27285 (10)	0.3531 (3)	0.53803 (7)	0.0148 (2)	
	x 0.48415 (8) 0.4587 (12) 0.42206 (10) 0.75384 (10) 0.7893 0.30910 (9) 0.23760 (10) 0.27487 (3) 0.13309 (11) 0.0853 0.09866 (11) 0.0271 0.16843 (10) 0.1448 0.27285 (10)	xy $0.48415 (8)$ $0.3074 (2)$ $0.4587 (12)$ $0.461 (3)$ $0.42206 (10)$ $0.0944 (2)$ $0.75384 (10)$ $0.5034 (3)$ 0.7893 0.6365 $0.30910 (9)$ $0.1564 (2)$ $0.23760 (10)$ $0.0166 (2)$ $0.27487 (3)$ $-0.22099 (7)$ $0.13309 (11)$ $0.0697 (3)$ 0.0853 -0.0258 $0.09866 (11)$ $0.2618 (3)$ 0.0271 0.2958 $0.16843 (10)$ $0.4055 (3)$ 0.1448 0.5388 $0.27285 (10)$ $0.3531 (3)$	xyz $0.48415 (8)$ $0.3074 (2)$ $0.61366 (6)$ $0.4587 (12)$ $0.461 (3)$ $0.6155 (9)$ $0.42206 (10)$ $0.0944 (2)$ $0.60396 (7)$ $0.75384 (10)$ $0.5034 (3)$ $0.68248 (7)$ 0.7893 0.6365 0.7128 $0.30910 (9)$ $0.1564 (2)$ $0.58872 (7)$ $0.23760 (10)$ $0.0166 (2)$ $0.62149 (7)$ $0.27487 (3)$ $-0.22099 (7)$ $0.688318 (18)$ $0.13309 (11)$ $0.0697 (3)$ $0.60386 (8)$ 0.0853 -0.0258 0.6270 $0.09866 (11)$ $0.2618 (3)$ $0.55254 (8)$ 0.0271 0.2958 0.5397 $0.16843 (10)$ $0.4055 (3)$ $0.51967 (7)$ 0.1448 0.5388 0.4848 $0.27285 (10)$ $0.3531 (3)$ $0.53803 (7)$	xyz U_{iso}^*/U_{eq} 0.48415 (8)0.3074 (2)0.61366 (6)0.0145 (2)0.4587 (12)0.461 (3)0.6155 (9)0.017*0.42206 (10)0.0944 (2)0.60396 (7)0.0137 (2)0.75384 (10)0.5034 (3)0.68248 (7)0.0155 (3)0.78930.63650.71280.019*0.30910 (9)0.1564 (2)0.58872 (7)0.0127 (2)0.23760 (10)0.0166 (2)0.62149 (7)0.0150 (2)0.27487 (3)-0.22099 (7)0.688318 (18)0.02032 (9)0.13309 (11)0.0697 (3)0.60386 (8)0.0212 (3)0.0853-0.02580.62700.025*0.09866 (11)0.2618 (3)0.55254 (8)0.0219 (3)0.02710.29580.53970.026*0.16843 (10)0.4055 (3)0.51967 (7)0.0180 (3)0.14480.53880.48480.022*0.27285 (10)0.3531 (3)0.53803 (7)0.0148 (2)

supporting information

H7	0.3205	0.4525	0.5158	0.018*	
C8	0.59378 (9)	0.3016 (2)	0.62596 (7)	0.0131 (2)	
С9	0.64888 (10)	0.1142 (3)	0.59279 (7)	0.0154 (2)	
H9	0.6135	-0.0180	0.5620	0.019*	
C10	0.75521 (10)	0.1228 (3)	0.60506 (7)	0.0167 (3)	
H10	0.7927	-0.0051	0.5828	0.020*	
C11	0.80807 (10)	0.3166 (3)	0.64961 (7)	0.0145 (2)	
O2	0.91341 (7)	0.3080 (2)	0.65680 (5)	0.0186 (2)	
C14	0.96893 (10)	0.5186 (3)	0.69682 (8)	0.0222 (3)	
H14A	0.9452	0.6869	0.6742	0.033*	
H14B	1.0426	0.4979	0.6958	0.033*	
H14C	0.9571	0.5153	0.7479	0.033*	
01	0.45382 (7)	-0.13338 (18)	0.60577 (6)	0.0192 (2)	
C13	0.64644 (10)	0.4933 (3)	0.67043 (7)	0.0159 (3)	
H13	0.6090	0.6201	0.6931	0.019*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0114 (5)	0.0092 (5)	0.0221 (6)	0.0006 (4)	0.0001 (4)	-0.0005 (4)
C1	0.0123 (6)	0.0127 (5)	0.0155 (6)	0.0003 (5)	0.0003 (5)	0.0006 (4)
C12	0.0146 (6)	0.0135 (6)	0.0176 (6)	-0.0015 (5)	0.0002 (5)	-0.0013 (5)
C2	0.0117 (6)	0.0117 (5)	0.0144 (6)	-0.0002 (4)	0.0012 (4)	-0.0018 (4)
C3	0.0166 (6)	0.0118 (5)	0.0164 (6)	0.0003 (5)	0.0022 (5)	0.0008 (4)
Cl1	0.02428 (18)	0.01703 (15)	0.01980 (16)	0.00019 (13)	0.00408 (13)	0.00509 (12)
C4	0.0152 (6)	0.0225 (7)	0.0271 (7)	-0.0008(5)	0.0073 (5)	0.0032 (6)
C5	0.0107 (6)	0.0273 (7)	0.0278 (7)	0.0032 (5)	0.0035 (5)	0.0034 (6)
C6	0.0148 (6)	0.0211 (7)	0.0179 (6)	0.0040 (5)	0.0023 (5)	0.0027 (5)
C7	0.0139 (6)	0.0144 (6)	0.0164 (6)	0.0017 (5)	0.0030 (5)	0.0009 (4)
C8	0.0108 (5)	0.0115 (5)	0.0166 (6)	0.0001 (5)	0.0014 (4)	0.0016 (4)
C9	0.0151 (6)	0.0139 (6)	0.0172 (6)	-0.0008(5)	0.0023 (5)	-0.0021 (5)
C10	0.0157 (6)	0.0160 (6)	0.0194 (6)	0.0011 (5)	0.0058 (5)	-0.0014 (5)
C11	0.0117 (6)	0.0167 (6)	0.0150 (6)	-0.0007(5)	0.0019 (4)	0.0027 (5)
02	0.0105 (4)	0.0234 (5)	0.0219 (5)	-0.0011 (4)	0.0027 (4)	-0.0029 (4)
C14	0.0129 (6)	0.0278 (7)	0.0249 (7)	-0.0058 (5)	0.0001 (5)	-0.0021 (6)
01	0.0135 (5)	0.0103 (4)	0.0329 (6)	0.0012 (4)	0.0012 (4)	0.0007 (4)
C13	0.0135 (6)	0.0124 (6)	0.0214 (6)	0.0010 (5)	0.0020 (5)	-0.0007(5)

Geometric parameters (Å, °)

N1—C1	1.3506 (17)	С5—Н5	0.9500
N1-C8	1.4255 (16)	C6—C7	1.3876 (18)
N1—H1	0.854 (17)	С6—Н6	0.9500
C101	1.2298 (15)	С7—Н7	0.9500
C1—C2	1.5021 (17)	C8—C13	1.3841 (18)
C12—C11	1.3870 (18)	C8—C9	1.3985 (17)
C12—C13	1.3970 (18)	C9—C10	1.3829 (18)
С12—Н12	0.9500	С9—Н9	0.9500

C2—C3	1.3957 (18)	C10—C11	1.3931 (18)
C2—C7	1.3977 (17)	C10—H10	0.9500
C3—C4	1.3883 (19)	C11—O2	1.3734 (15)
C3—Cl1	1.7373 (13)	O2—C14	1.4305 (17)
Cl1—O1	3.0456 (11)	C14—H14A	0.9800
C4—C5	1.383 (2)	C14—H14B	0.9800
C4—H4	0.9500	C14—H14C	0.9800
C5—C6	1.3901 (19)	С13—Н13	0.9500
C1 N1 C9	125 49 (11)	С6 С7 Ц7	110 5
C1 = N1 = U1	123.40(11) 120.4(11)	$C_0 - C_7 - H_7$	119.5
CI-NI-HI	120.4(11)	$C_2 = C_1 = H_1$	119.5
C8—NI—HI	114.0 (11)	C13 - C8 - C9	119.53 (12)
OI-CI-NI	123.69 (12)	C13—C8—N1	118.37 (11)
01	121.67 (11)	C9—C8—N1	122.07 (12)
N1—C1—C2	114.63 (11)	C10—C9—C8	119.53 (12)
C11—C12—C13	119.19 (12)	С10—С9—Н9	120.2
C11—C12—H12	120.4	С8—С9—Н9	120.2
C13—C12—H12	120.4	C9—C10—C11	120.85 (12)
C3—C2—C7	118.26 (11)	С9—С10—Н10	119.6
C3—C2—C1	122.13 (11)	C11—C10—H10	119.6
C7—C2—C1	119.56 (11)	O2—C11—C12	124.46 (12)
C4—C3—C2	120.99 (12)	O2—C11—C10	115.67 (11)
C4—C3—Cl1	116.99 (10)	C12—C11—C10	119.87 (12)
C2—C3—C11	121.97 (10)	C11—O2—C14	116.64 (10)
C3—C11—O1	72.23 (5)	O2—C14—H14A	109.5
C5—C4—C3	119.83 (13)	O2—C14—H14B	109.5
C5—C4—H4	120.1	H14A—C14—H14B	109.5
C3—C4—H4	120.1	O2—C14—H14C	109.5
C4—C5—C6	120.26 (13)	H14A—C14—H14C	109.5
С4—С5—Н5	119.9	H14B—C14—H14C	109.5
С6—С5—Н5	119.9	C1—O1—Cl1	82.11 (8)
C7—C6—C5	119.61 (13)	C8—C13—C12	121.01 (12)
С7—С6—Н6	120.2	C8—C13—H13	119.5
С5—С6—Н6	120.2	C12—C13—H13	119.5
C6—C7—C2	121.04 (12)		
55 5, 5 2			

Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C8–C13 benzene ring.

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
N1—H1···O1 ⁱ	0.854 (17)	2.067 (17)	2.8706 (15)	156.4 (15)
C13—H13…O1 ⁱ	0.95	2.69	3.2347 (16)	117
C6—H6····O2 ⁱⁱ	0.95	2.71	3.5657 (17)	150
С12—Н12…Сд2 ^{ііі}	0.95	2.88	3.6203 (15)	136

Symmetry codes: (i) *x*, *y*+1, *z*; (ii) -*x*+1, -*y*+1, -*z*+1; (iii) -*x*+1/2, *y*-1/2, -*z*+1/2.