

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis(2,6-dihydroxybenzoato- $\kappa^2 O^1, O^{1'}$)-(nitrato- $\kappa^2 O, O'$)bis(1,10-phenanthroline- $\kappa^2 N, N'$)neodymium(III)

Junjia Zheng, Hongxiao Jin* and Hongliang Ge

College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018, People's Republic of China Correspondence e-mail: jin_hongxiao@yahoo.com.cn

Received 12 October 2010; accepted 20 October 2010

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.005 Å; R factor = 0.023; wR factor = 0.049; data-to-parameter ratio = 12.4.

In the mononuclear title complex, $[Nd(C_7H_5O_4)_2(NO_3)-(C_{12}H_8N_2)_2]$, the Nd^{III} atom is in a distorted bicapped square-antiprismatic geometry formed by four N atoms from two chelating 1,10-phenanthroline (phen) ligands, four O atoms from two 2,6-dihydroxybenzoate (DHB) ligands and two O atoms from a nitrate anion. π - π stacking interactions between the phen and DHB ligands of adjacent complexes [centroid–centroid distances = 3.520 (6) and 3.798 (6) Å] stabilize the crystal structure. Intramolecular O–H···O hydrogen bonds are observed in the DHB ligands.

Related literature

For applications of rare earth complexes, see: de Sa *et al.* (2000). For related structures, see: Ma *et al.* (2010); Yang *et al.* (2008).

HO OH HO OH HO HO HO HO HO HO HO HO HO

V = 3418.24 (16) Å³

 $0.28 \times 0.21 \times 0.15 \text{ mm}$

18058 measured reflections

6139 independent reflections

4859 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation $\mu = 1.59 \text{ mm}^{-1}$

Z = 4

T = 298 K

 $R_{\rm int} = 0.023$

Experimental

Crystal data

 $\begin{bmatrix} Nd(C_7H_5O_4)_2(NO_3)(C_{12}H_8N_2)_2 \end{bmatrix} \\ M_r = 872.89 \\ Monoclinic, P2_1/c \\ a = 11.2359 (2) Å \\ b = 26.7878 (5) Å \\ c = 14.3710 (4) Å \\ \beta = 127.790 (2)^{\circ} \\ \end{bmatrix}$

Data collection

Oxford Diffraction Gemini S Ultra CCD diffractometer Absorption correction: multi-scan (*CrysAlis PRO*; Oxford Diffraction, 2006) $T_{min} = 0.664, T_{max} = 0.796$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.023$	496 parameters
$wR(F^2) = 0.049$	H-atom parameters constrained
S = 0.95	$\Delta \rho_{\rm max} = 0.38 \text{ e} \text{ Å}^{-3}$
6139 reflections	$\Delta \rho_{\rm min} = -0.37 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Selected bond lengths (Å).

Nd1-O1	2.5256 (17)	Nd1-O10	2.5573 (17)
Nd1-O2	2.5991 (16)	Nd1-N1	2.673 (2)
Nd1-O5	2.5297 (18)	Nd1-N2	2.651 (2)
Nd1-O6	2.5325 (17)	Nd1-N3	2.628 (2)
Nd1-O9	2.6060 (17)	Nd1-N4	2.603 (2)

Table 2Hydrogen-bond geometry (Å, °).

		/		
$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O3-H31···O1	0.82	1.86	2.581 (2)	147
O4−H27···O2	0.82	1.87	2.582 (3)	145
O7−H34···O6	0.82	1.87	2.592 (2)	146
O8−H38···O5	0.82	1.83	2.562 (3)	148

Data collection: *CrysAlis PRO* (Oxford Diffraction, 2006); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *DIAMOND* (Brandenburg & Berndt, 1999); software used to prepare material for publication: *SHELXL97*.

The authors are grateful for financial support from the Natural Science Foundation of Zhejiang Province (project No. 2010 Y4100495).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2364).

References

Brandenburg, K. & Berndt, M. (1999). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Ma, P., Huang, M.-L. & Chen, K.-H. (2010). Acta Cryst. E66, m833. Oxford Diffraction (2006). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England. Sa, G. F. de, Malta, O. L., Donega, C. D., Simas, A. M., Longo, R. L., Santa-Cruz, P. A. & da Silva, E. F. (2000). *Coord. Chem. Rev.* 196, 165–195.
Sheldrick, G. M. (2008). *Acta Cryst.* A64, 112–122.
Yang, Q., Nie, J.-J. & Xu, D.-J. (2008). *Acta Cryst.* E64, m757.

Acta Cryst. (2010). E66, m1469-m1470 [https://doi.org/10.1107/S1600536810042583]

Bis(2,6-dihydroxybenzoato- $\kappa^2 O^1, O^1$)(nitrato- $\kappa^2 O, O'$)bis(1,10-phenanthroline- $\kappa^2 N, N'$)neodymium(III)

Junjia Zheng, Hongxiao Jin and Hongliang Ge

S1. Comment

Luminescent materials based on lanthanide complexes have been extensively studied owing to their unique structures and potential applications as luminescent polymer films, active optical fibers for data transmission and light-emitting devices (Ma *et al.*, 2010; Sa *et al.*, 2000; Yang *et al.*, 2008). Herein, the title compound is synthesized and its crystal structure is reported.

The mononuclear structure of the title compound is shown in Fig. 1. The ten-coordinated geometry of the Nd^{III} ion is completed by four 2,6-dihydroxybenzoate (DHB) O atoms, four phenanthroline N atoms and two nitrate O atoms. The complex forms a ten-coordinated distorted bicapped square antiprismatic structure (Fig. 2), in which the set of O6, O10, N4 and N1 and the set of O1, O5, N2 and N3 form two approximate square planes, respectively. The ninth coordinate atom O2 and tenth coordinate atom O9 are located above and under the two planes at the bicapped positions. The O2—Nd1–O9 bond angle is 175.69 (6)° close to 180°, which indicates the O2, Nd1 and O9 lying almost on a line and being regarded as an axis. Because the coordinate O2 and O9 atoms are excluded by O6, O10, N4 and N1 (formed the above plane) and O1, O5, N2 and N3 (formed the under plane), respectively, the bond distances of Nd1—O2 [2.5991 (16) Å] and Nd1—O9 [2.6060 (17) Å] are consumedly longer than the ones of Nd1—O1 [2.5256 (17) Å] and Nd1—O10 [2.5573 (17) Å].

In the crystal structure, π - π stacking interactions between the pyridine ring of phen and the benzene ring of DHB link the discrete mononuclear complexes into a two-dimensional layer (Fig. 3). The centroid–centroid distances between the rings are 3.520 (6) and 3.798 (6) Å, which obviously helps to stabilize the structure.

S2. Experimental

All reagents are commercially available and of analytical grade. $NdNO_3.6H_2O$ (0.219 g, 0.5 mmol), 2,6-dihydroxybenzoic acid (0.074 g, 0.5 mmol),1,10-phenanthroline (0.090 g, 0.5 mmol) and NaHCO₃ (0.042 g, 0.5 mmol) were dissolved in water–ethanol solution (10 ml, 1:1). The solution was refluxed for 4 h, and filtered after cooling to room temperature. Orange single crystals were obtained from the filtrate after 2 d.

S3. Refinement

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 and O—H = 0.82 Å and with $U_{iso}(H) = 1.2(1.5 \text{ for hydroxy})U_{eq}(C,O).$

Figure 1

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.

sup-3

Crystal packing of the title compound. Dashed lines denote π - π stacking interactions.

Bis(2,6-dihydroxybenzoato- $\kappa^2 O^1, O^1$)(nitrato- $\kappa^2 O, O'$)bis(1,10-phenanthroline- $\kappa^2 N, N'$)neodymium(III)

Crystal data

$[Nd(C_7H_5O_4)_2(NO_3)(C_{12}H_8N_2)_2]$
$M_r = 872.89$
Monoclinic, $P2_1/c$
Hall symbol: -P 2ybc
a = 11.2359 (2) Å
b = 26.7878 (5) Å
c = 14.3710 (4) Å
$\beta = 127.790 \ (2)^{\circ}$
$V = 3418.24 (16) Å^3$
Z = 4

Data collection

Oxford Diffraction Gemini S Ultra CCD diffractometer Radiation source: Enhance (Mo) X-ray Source Graphite monochromator Detector resolution: 15.9149 pixels mm⁻¹ ω scans Absorption correction: multi-scan (*CrysAlis PRO*; Oxford Diffraction, 2006) $T_{\min} = 0.664, T_{\max} = 0.796$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.023$ $wR(F^2) = 0.049$ S = 0.95 F(000) = 1748 $D_x = 1.696 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 11150 reflections $\theta = 2.9-29.1^{\circ}$ $\mu = 1.59 \text{ mm}^{-1}$ T = 298 KBlock, orange $0.28 \times 0.21 \times 0.15 \text{ mm}$

18058 measured reflections 6139 independent reflections 4859 reflections with $I > 2\sigma(I)$ $R_{int} = 0.023$ $\theta_{max} = 25.2^{\circ}, \ \theta_{min} = 2.9^{\circ}$ $h = -13 \rightarrow 13$ $k = -32 \rightarrow 31$ $l = -17 \rightarrow 15$

6139 reflections496 parameters0 restraintsPrimary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier	$w = 1/[\sigma^2(F_o^2) + (0.026P)^2]$
map	where $P = (F_o^2 + 2F_c^2)/3$
Hydrogen site location: inferred from	$(\Delta/\sigma)_{\rm max} = 0.001$
neighbouring sites	$\Delta \rho_{\rm max} = 0.38 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	$\Delta \rho_{\rm min} = -0.37$ e Å ⁻³

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Nd1	0.068277 (15)	0.638621 (5)	0.280312 (12)	0.03184 (5)
01	0.1545 (2)	0.66194 (7)	0.48337 (15)	0.0445 (5)
O2	0.1118 (2)	0.58179 (7)	0.44526 (15)	0.0458 (5)
O3	0.2418 (2)	0.69710 (7)	0.68349 (17)	0.0597 (5)
H31	0.2182	0.6979	0.6170	0.090*
O4	0.1664 (3)	0.52057 (7)	0.60604 (19)	0.0828 (8)
H27	0.1539	0.5288	0.5456	0.124*
O5	0.3377 (2)	0.60803 (7)	0.40378 (17)	0.0521 (5)
O6	0.3064 (2)	0.68871 (7)	0.36811 (16)	0.0441 (4)
O7	0.5201 (2)	0.74239 (7)	0.39922 (17)	0.0535 (5)
H34	0.4352	0.7365	0.3781	0.080*
O8	0.5823 (3)	0.56507 (8)	0.4709 (2)	0.0737 (6)
H38	0.4963	0.5674	0.4499	0.111*
O9	0.0412 (2)	0.69978 (7)	0.12734 (16)	0.0471 (5)
O10	0.1513 (2)	0.62994 (7)	0.15044 (18)	0.0525 (5)
O11	0.1319 (3)	0.68609 (10)	0.03319 (19)	0.0831 (8)
N1	-0.1692 (2)	0.61789 (8)	0.05894 (18)	0.0349 (5)
N2	0.0231 (2)	0.54467 (7)	0.20773 (19)	0.0375 (5)
N3	-0.1856 (2)	0.63390 (8)	0.25221 (18)	0.0381 (5)
N4	-0.0620(2)	0.72232 (8)	0.26242 (18)	0.0360 (5)
N5	0.1082 (3)	0.67266 (10)	0.1013 (2)	0.0478 (6)
C1	0.1163 (3)	0.50855 (10)	0.2787 (3)	0.0454 (7)
H1	0.1914	0.5162	0.3575	0.055*
C2	0.1072 (4)	0.45960 (10)	0.2408 (3)	0.0546 (8)
H2	0.1749	0.4355	0.2938	0.066*
C3	0.0000 (4)	0.44770 (11)	0.1275 (3)	0.0511 (8)
Н3	-0.0064	0.4153	0.1014	0.061*
C4	-0.1016 (3)	0.48396 (10)	0.0488 (3)	0.0414 (7)
C5	-0.0854 (3)	0.53267 (9)	0.0931 (2)	0.0351 (6)
C6	-0.1877 (3)	0.57118 (9)	0.0147 (2)	0.0337 (6)
C7	-0.3023 (3)	0.55995 (10)	-0.1047 (2)	0.0404 (7)
C8	-0.3149 (4)	0.51012 (12)	-0.1458 (3)	0.0520 (8)
H8	-0.3905	0.5025	-0.2245	0.062*
C9	-0.2196 (4)	0.47427 (11)	-0.0729 (3)	0.0501 (8)
H9	-0.2304	0.4422	-0.1021	0.060*
C10	-0.3989 (3)	0.59882 (12)	-0.1773 (2)	0.0499 (8)
H10	-0.4748	0.5930	-0.2569	0.060*
C11	-0.3823 (3)	0.64493 (11)	-0.1319 (2)	0.0467 (7)
H11	-0.4476	0.6707	-0.1790	0.056*

C12	-0.2661 (3)	0.65268 (10)	-0.0140 (2)	0.0420 (7)
H12	-0.2551	0.6845	0.0163	0.050*
C13	-0.2459 (3)	0.59062 (11)	0.2495 (2)	0.0474 (7)
H13	-0.1872	0.5619	0.2738	0.057*
C14	-0.3934 (4)	0.58626 (13)	0.2119 (3)	0.0570 (8)
H14	-0.4315	0.5553	0.2111	0.068*
C15	-0.4805 (4)	0.62816 (13)	0.1762 (3)	0.0583 (9)
H15	-0.5794	0.6257	0.1496	0.070*
C16	-0.4216 (3)	0.67480 (11)	0.1796 (2)	0.0428 (7)
C17	-0.2723 (3)	0.67573 (10)	0.2186 (2)	0.0358 (6)
C18	-0.2042 (3)	0.72281 (9)	0.2286 (2)	0.0341 (6)
C19	-0.2843 (3)	0.76743 (10)	0.2050 (2)	0.0424 (7)
C20	-0.4380 (3)	0.76430 (12)	0.1606 (2)	0.0531 (8)
H20	-0.4938	0.7935	0.1398	0.064*
C21	-0.5034 (3)	0.72081 (13)	0.1482 (2)	0.0568 (8)
H21	-0.6037	0.7202	0.1188	0.068*
C22	-0.2088 (4)	0.81226 (11)	0.2244 (2)	0.0485 (7)
H22	-0.2571	0.8425	0.2122	0.058*
C23	-0.0669 (4)	0.81185 (10)	0.2605 (2)	0.0495 (7)
H23	-0.0157	0.8416	0.2749	0.059*
C24	0.0033 (3)	0.76606 (10)	0.2764 (2)	0.0436 (7)
H24	0.0999	0.7662	0.2977	0.052*
C25	0.1535 (3)	0.61801 (11)	0.5154 (2)	0.0372 (6)
C26	0.2018 (3)	0.60945 (10)	0.6361 (2)	0.0355 (6)
C27	0.2063 (4)	0.56095 (11)	0.6757 (3)	0.0512 (8)
C28	0.2554 (4)	0.55331 (13)	0.7898 (3)	0.0643 (9)
H28	0.2603	0.5212	0.8164	0.077*
C29	0.2962 (4)	0.59309 (13)	0.8626 (3)	0.0605 (9)
H29	0.3278	0.5876	0.9386	0.073*
C30	0.2920 (3)	0.64062 (12)	0.8275 (3)	0.0543 (8)
H30	0.3213	0.6671	0.8794	0.065*
C31	0.2439 (3)	0.64953 (10)	0.7139 (2)	0.0406 (7)
C32	0.3881 (3)	0.65023 (11)	0.4013 (2)	0.0411 (7)
C33	0.5412 (3)	0.65354 (10)	0.4341 (2)	0.0386 (6)
C34	0.5980 (3)	0.69969 (11)	0.4303 (2)	0.0418 (7)
C35	0.7421 (3)	0.70261 (13)	0.4607 (2)	0.0510 (8)
H35	0.7805	0.7330	0.4588	0.061*
C36	0.8260 (3)	0.65970 (14)	0.4937 (2)	0.0580 (9)
H36	0.9222	0.6618	0.5145	0.070*
C37	0.7746 (3)	0.61407 (14)	0.4972 (3)	0.0584 (8)
H37	0.8344	0.5858	0.5195	0.070*
C38	0.6316 (3)	0.61079 (12)	0.4670 (2)	0.0515 (7)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
Nd1	0.03283 (8)	0.02688 (8)	0.03861 (8)	0.00037 (7)	0.02331 (7)	-0.00004 (7)
01	0.0526 (12)	0.0346 (11)	0.0431 (11)	-0.0009 (10)	0.0278 (10)	0.0030 (10)

Acta Cryst. (2010). E66, m1469–m1470

O2	0.0568 (13)	0.0393 (11)	0.0430 (11)	-0.0027 (10)	0.0314 (10)	-0.0018 (10)
O3	0.0674 (15)	0.0414 (13)	0.0479 (12)	-0.0016 (11)	0.0238 (11)	-0.0069 (11)
O4	0.146 (2)	0.0402 (13)	0.0605 (14)	-0.0189 (15)	0.0625 (16)	-0.0032 (12)
05	0.0407 (12)	0.0417 (12)	0.0685 (13)	0.0049 (10)	0.0307 (10)	0.0136 (11)
O6	0.0354 (11)	0.0367 (11)	0.0588 (12)	0.0021 (9)	0.0282 (10)	-0.0007 (10)
07	0.0435 (12)	0.0499 (13)	0.0683 (14)	0.0004 (10)	0.0349 (11)	0.0067 (11)
08	0.0554 (14)	0.0518 (14)	0.1003 (18)	0.0167 (12)	0.0408 (14)	0.0153 (13)
09	0.0530 (12)	0.0367 (11)	0.0562 (12)	0.0017 (10)	0.0359 (11)	0.0040 (10)
O10	0.0614 (14)	0.0442 (13)	0.0665 (13)	0.0032 (10)	0.0467 (12)	-0.0047 (11)
011	0.0840 (18)	0.128 (2)	0.0584 (14)	-0.0030 (16)	0.0541 (14)	0.0151 (15)
N1	0.0368 (12)	0.0315 (12)	0.0400 (12)	0.0019 (11)	0.0253 (11)	0.0013 (11)
N2	0.0473 (14)	0.0268 (12)	0.0439 (14)	0.0031 (11)	0.0307 (12)	0.0037 (11)
N3	0.0405 (13)	0.0399 (14)	0.0403 (12)	-0.0058 (11)	0.0282 (11)	-0.0035 (11)
N4	0.0402 (13)	0.0298 (12)	0.0427 (12)	-0.0020 (10)	0.0278 (11)	-0.0025 (10)
N5	0.0425 (14)	0.0634 (18)	0.0385 (14)	-0.0123 (13)	0.0253 (12)	-0.0061 (13)
C1	0.0560 (19)	0.0344 (17)	0.0525 (18)	0.0059 (15)	0.0367 (16)	0.0062 (14)
C2	0.075 (2)	0.0324 (18)	0.077 (2)	0.0114 (16)	0.057 (2)	0.0138 (17)
C3	0.076 (2)	0.0260 (16)	0.078 (2)	-0.0052 (16)	0.061 (2)	-0.0055 (16)
C4	0.0520 (18)	0.0300 (16)	0.0636 (19)	-0.0086 (14)	0.0464 (17)	-0.0055 (15)
C5	0.0423 (16)	0.0284 (15)	0.0494 (17)	-0.0044 (13)	0.0356 (15)	-0.0007 (13)
C6	0.0356 (15)	0.0348 (16)	0.0417 (15)	-0.0079 (12)	0.0293 (13)	-0.0049 (13)
C7	0.0352 (15)	0.0464 (18)	0.0456 (17)	-0.0092 (14)	0.0278 (14)	-0.0082 (15)
C8	0.0499 (19)	0.055 (2)	0.0563 (19)	-0.0194 (17)	0.0352 (17)	-0.0196 (17)
C9	0.062 (2)	0.0365 (17)	0.072 (2)	-0.0207 (16)	0.0507 (19)	-0.0218 (17)
C10	0.0322 (16)	0.073 (2)	0.0395 (16)	-0.0069 (15)	0.0194 (14)	-0.0076 (16)
C11	0.0387 (16)	0.055 (2)	0.0450 (17)	0.0062 (15)	0.0249 (15)	0.0064 (15)
C12	0.0457 (17)	0.0394 (17)	0.0452 (17)	0.0054 (13)	0.0301 (15)	0.0009 (13)
C13	0.0514 (18)	0.0438 (18)	0.0537 (17)	-0.0093 (15)	0.0356 (16)	-0.0020 (15)
C14	0.054 (2)	0.061 (2)	0.063 (2)	-0.0262 (18)	0.0391 (18)	-0.0114 (18)
C15	0.0391 (17)	0.091 (3)	0.0480 (18)	-0.0172 (18)	0.0284 (15)	-0.0110 (18)
C16	0.0323 (15)	0.065 (2)	0.0313 (14)	-0.0046 (15)	0.0192 (13)	-0.0063 (14)
C17	0.0333 (15)	0.0470 (17)	0.0308 (14)	-0.0013 (13)	0.0216 (13)	-0.0031 (13)
C18	0.0371 (15)	0.0378 (16)	0.0298 (14)	0.0040 (13)	0.0216 (12)	0.0002 (12)
C19	0.0492 (18)	0.0476 (18)	0.0329 (15)	0.0141 (15)	0.0265 (14)	0.0038 (14)
C20	0.0500 (19)	0.063 (2)	0.0458 (18)	0.0210 (17)	0.0289 (16)	0.0048 (17)
C21	0.0353 (17)	0.091 (3)	0.0410 (17)	0.0132 (18)	0.0215 (15)	0.0016 (18)
C22	0.065 (2)	0.0362 (17)	0.0453 (17)	0.0148 (16)	0.0344 (16)	0.0031 (14)
C23	0.069 (2)	0.0297 (16)	0.0495 (17)	0.0005 (15)	0.0361 (17)	-0.0021 (14)
C24	0.0484 (17)	0.0334 (17)	0.0494 (17)	-0.0017 (14)	0.0301 (15)	-0.0045 (14)
C25	0.0294 (14)	0.0419 (17)	0.0405 (16)	-0.0018 (13)	0.0215 (13)	-0.0021 (14)
C26	0.0284 (14)	0.0373 (16)	0.0368 (15)	-0.0001 (12)	0.0179 (12)	0.0003 (13)
C27	0.062 (2)	0.0481 (19)	0.0456 (18)	-0.0102 (16)	0.0344 (16)	-0.0044 (16)
C28	0.086 (3)	0.060 (2)	0.050 (2)	-0.013 (2)	0.043 (2)	0.0065 (18)
C29	0.066 (2)	0.076 (2)	0.0423 (18)	-0.0125 (19)	0.0348 (17)	-0.0001 (19)
C30	0.0472 (18)	0.068 (2)	0.0433 (17)	-0.0009 (17)	0.0252 (15)	-0.0125 (17)
C31	0.0290 (14)	0.0433 (19)	0.0424 (17)	0.0017 (12)	0.0183 (13)	-0.0021 (14)
C32	0.0361 (16)	0.048 (2)	0.0367 (15)	-0.0019 (14)	0.0213 (13)	-0.0011 (13)
C33	0.0306 (14)	0.0460 (17)	0.0337 (15)	0.0067 (13)	0.0170 (13)	0.0034 (13)

		/				
C34	0.0353 (15)	0.0536 (19)	0.0322 (14)	-0.0008 (14)	0.0185 (13)	-0.0014 (14)
C35	0.0351 (17)	0.078 (2)	0.0401 (16)	-0.0053 (16)	0.0234 (14)	-0.0009 (16)
C36	0.0356 (17)	0.095 (3)	0.0448 (18)	0.0039 (19)	0.0253 (15)	-0.0009 (18)
C37	0.0397 (18)	0.078 (3)	0.0521 (18)	0.0230 (18)	0.0255 (16)	0.0069 (18)
C38	0.0462 (19)	0.055 (2)	0.0471 (17)	0.0083 (16)	0.0253 (15)	0.0053 (16)

Geometric parameters (Å, °)

Nd1—01	2.5256 (17)	С9—Н9	0.9300
Nd1—O2	2.5991 (16)	C10—C11	1.355 (4)
Nd1—O5	2.5297 (18)	C10—H10	0.9300
Nd1—O6	2.5325 (17)	C11—C12	1.382 (4)
Nd1—O9	2.6060 (17)	C11—H11	0.9300
Nd1—O10	2.5573 (17)	C12—H12	0.9300
Nd1—N1	2.673 (2)	C13—C14	1.397 (4)
Nd1—N2	2.651 (2)	С13—Н13	0.9300
Nd1—N3	2.628 (2)	C14—C15	1.366 (4)
Nd1—N4	2.603 (2)	C14—H14	0.9300
O1—C25	1.266 (3)	C15—C16	1.401 (4)
O2—C25	1.264 (3)	C15—H15	0.9300
O3—C31	1.343 (3)	C16—C17	1.406 (3)
O3—H31	0.8200	C16—C21	1.435 (4)
O4—C27	1.350 (3)	C17—C18	1.436 (3)
O4—H27	0.8200	C18—C19	1.406 (3)
O5—C32	1.275 (3)	C19—C22	1.396 (4)
O6—C32	1.264 (3)	C19—C20	1.431 (4)
O7—C34	1.340 (3)	C20—C21	1.330 (4)
O7—H34	0.8200	C20—H20	0.9300
O8—C38	1.359 (3)	C21—H21	0.9300
O8—H38	0.8200	C22—C23	1.341 (4)
O9—N5	1.257 (3)	C22—H22	0.9300
O10—N5	1.274 (3)	C23—C24	1.399 (4)
O11—N5	1.215 (3)	C23—H23	0.9300
N1-C12	1.324 (3)	C24—H24	0.9300
N1—C6	1.360 (3)	C25—C26	1.484 (3)
N2—C1	1.328 (3)	C26—C27	1.407 (4)
N2—C5	1.357 (3)	C26—C31	1.407 (3)
N3—C13	1.332 (3)	C27—C28	1.388 (4)
N3—C17	1.364 (3)	C28—C29	1.361 (4)
N4—C24	1.331 (3)	C28—H28	0.9300
N4—C18	1.356 (3)	C29—C30	1.359 (4)
C1—C2	1.399 (4)	C29—H29	0.9300
C1—H1	0.9300	C30—C31	1.390 (4)
C2—C3	1.342 (4)	C30—H30	0.9300
C2—H2	0.9300	C32—C33	1.481 (4)
C3—C4	1.394 (4)	C33—C38	1.406 (4)
С3—Н3	0.9300	C33—C34	1.408 (4)
C4—C5	1.414 (3)	C34—C35	1.396 (4)

C1 C0	1 420 (4)	G25 G26	1 274 (4)
C4—C9	1.429 (4)	C35—C36	1.374 (4)
05-06	1.438 (3)	C35—H35	0.9300
C6—C7	1.409 (4)	C36—C37	1.366 (4)
C7—C10	1.401 (4)	С36—Н36	0.9300
C7—C8	1.431 (4)	C37—C38	1.387 (4)
C8—C9	1.339 (4)	С37—Н37	0.9300
С8—Н8	0.9300		
O1—Nd1—O5	79.78 (6)	N1—C6—C7	121.9 (2)
O1—Nd1—O6	75.70 (6)	N1—C6—C5	118.3 (2)
05—Nd1—06	51.50 (6)	C7—C6—C5	119.8 (2)
01 - Nd1 - 010	144 32 (6)	$C_{10} - C_{7} - C_{6}$	117.5(2)
05-Nd1-010	70.60.(6)	C10-C7-C8	117.3(2) 123 4 (3)
06Nd1010	70.45 (6)	C6-C7-C8	129.4(3) 1191(3)
01 Nd1 02	70. 4 5 (0) 50.70 (6)	$C_0 = C_1 = C_0$	117.1(3)
$O_1 = Nd_1 = O_2$	50.70(0)	$C_{2} = C_{3} = C_{1}$	121.1(3)
03—Nd1— 02	107.7((0)	С9—С6—П8	119.4
06-Nd1-02	107.76(6)	C/-C8-H8	119.4
010—Nd1—02	131.55 (6)	C8—C9—C4	121.6 (3)
O1—Nd1—N4	72.27 (6)	С8—С9—Н9	119.2
O5—Nd1—N4	135.00 (7)	С4—С9—Н9	119.2
O6—Nd1—N4	87.22 (6)	C11—C10—C7	120.2 (3)
O10—Nd1—N4	116.16 (6)	C11—C10—H10	119.9
O2—Nd1—N4	112.01 (6)	C7—C10—H10	119.9
O1—Nd1—O9	125.66 (6)	C10-C11-C12	118.4 (3)
O5—Nd1—O9	105.44 (6)	C10-C11-H11	120.8
O6—Nd1—O9	68.20 (6)	C12—C11—H11	120.8
O10—Nd1—O9	49.28 (6)	N1—C12—C11	124.4 (3)
O2—Nd1—O9	175.69 (6)	N1—C12—H12	117.8
N4—Nd1—O9	66.89 (6)	C11—C12—H12	117.8
O1—Nd1—N3	78.54 (6)	N3—C13—C14	123.1 (3)
05—Nd1—N3	144.28 (6)	N3—C13—H13	118.5
06-Nd1-N3	144 89 (6)	C14—C13—H13	118.5
010 Nd1 N3	13693(7)	C15-C14-C13	119.0(3)
Ω^2 _Nd1_N3	72.06.(6)	C_{15} C_{14} H_{14}	120.5
N4_Nd1_N3	62 24 (6)	C13 - C14 - H14	120.5
O_{0} Nd1 N3	110.26(6)	C_{13} C_{14} C_{15} C_{16}	120.3 120.3(3)
O_{1} Nd1 N2	110.20(0) 122.22(6)	C14 - C15 - C10	120.3 (3)
Of NH1 N2	122.32(0)	С14—С15—Н15	119.0
05—Nd1—N2	80.05 (7)	C16—C15—H15	119.8
06-Nd1-N2	126.03 (6)		116.9 (3)
010—Nd1—N2	72.20 (6)	C15—C16—C21	123.8 (3)
O2—Nd1—N2	71.72 (6)	C17—C16—C21	119.2 (3)
N4—Nd1—N2	144.90 (7)	N3—C17—C16	123.0 (2)
O9—Nd1—N2	111.70 (6)	N3—C17—C18	117.7 (2)
N3—Nd1—N2	88.03 (6)	C16—C17—C18	119.2 (2)
O1—Nd1—N1	145.39 (6)	N4—C18—C19	122.2 (2)
O5—Nd1—N1	131.30 (6)	N4—C18—C17	117.7 (2)
O6—Nd1—N1	133.02 (6)	C19—C18—C17	120.0 (2)
O10—Nd1—N1	69.93 (6)	C22—C19—C18	117.5 (3)

O2—Nd1—N1	117.17 (6)	C22—C19—C20	124.0 (3)
N4—Nd1—N1	88.32 (6)	C18—C19—C20	118.4 (3)
O9—Nd1—N1	67.12 (6)	C21—C20—C19	121.9 (3)
N3—Nd1—N1	67.01 (6)	C21—C20—H20	119.1
N2—Nd1—N1	61.55 (7)	C19—C20—H20	119.1
Q1—Nd1—C32	79.81 (6)	C20—C21—C16	121.0 (3)
05—Nd1—C32	26.09 (6)	C20—C21—H21	119.5
06—Nd1—C32	25.84 (6)	C16—C21—H21	119.5
010—Nd1—C32	64.82(7)	C_{23} C_{22} C_{19}	120.2 (3)
Ω^2 —Nd1—C32	92.54 (7)	C^{23} C^{22} H^{22}	119.9
N4—Nd1—C32	$\frac{112}{52}$ (7)	C19-C22-H22	119.9
09-Nd1-C32	84 22 (7)	$C_{22} = C_{23} = C_{24}$	119.2 (3)
N3_Nd1_C32	158 25 (7)	$C_{22} = C_{23} = C_{24}$	120.4
N2Nd1C32	101.91(7)	C22 - C23 - H23	120.4
N1 Nd1 C32	134.73(6)	N4 C24 C23	120.4 123.0(3)
01 Nd1 $C25$	134.73(0) 25.31(7)	$N_{4} = C_{24} = C_{23}$	123.0 (3)
O_1 Nd1 C_2	25.51(7)	$N4 - C_2 4 - 1124$	110.5
$O_{1} = O_{1} = O_{2}$	74.12(0)	C_{23} C_{24} H_{24}	110.3
00-Nd1-C25	91.50 (6)	02 - 025 - 01	120.3(2)
010—Nd1—C25	144.35 (7)	02 - 025 - 026	120.3 (2)
02—Nd1—C25	25.39 (6)	01 - 025 - 026	119.4 (2)
N4—Nd1—C25	92.44 (7)	$O_2 = C_2 S = Nd1$	61.82 (13)
09—Nd1—C25	150.88 (7)	OI—C25—NdI	58.49 (13)
N3—Nd1—C25	74.13 (6)	C26—C25—Nd1	177.36 (19)
N2—Nd1—C25	97.04 (7)	C27—C26—C31	118.2 (2)
N1—Nd1—C25	135.42 (6)	C27—C26—C25	120.8 (2)
C32—Nd1—C25	85.39 (7)	C31—C26—C25	121.0 (2)
C25—O1—Nd1	96.19 (15)	O4—C27—C28	118.0 (3)
C25—O2—Nd1	92.78 (15)	O4—C27—C26	121.8 (2)
C31—O3—H31	109.5	C28—C27—C26	120.2 (3)
C27—O4—H27	109.5	C29—C28—C27	119.7 (3)
C32—O5—Nd1	93.14 (16)	C29—C28—H28	120.1
C32—O6—Nd1	93.28 (15)	C27—C28—H28	120.1
С34—О7—Н34	109.5	C30—C29—C28	122.0 (3)
C38—O8—H38	109.5	С30—С29—Н29	119.0
N5—O9—Nd1	96.10 (15)	С28—С29—Н29	119.0
N5	97.96 (13)	C29—C30—C31	119.8 (3)
C12—N1—C6	117.5 (2)	С29—С30—Н30	120.1
C12—N1—Nd1	122.17 (17)	C31—C30—H30	120.1
C6—N1—Nd1	120.16 (16)	O3—C31—C30	117.5 (3)
C1—N2—C5	117.3 (2)	O3—C31—C26	122.3 (2)
C1—N2—Nd1	121.25 (17)	C30—C31—C26	120.1 (3)
C5—N2—Nd1	121.03 (16)	O6—C32—O5	120.1 (2)
C13—N3—C17	117.7 (2)	O6—C32—C33	120.3 (2)
C13—N3—Nd1	122.11 (18)	O5—C32—C33	119.6 (2)
C17—N3—Nd1	119.16 (15)	O6—C32—Nd1	60.87 (13)
C24—N4—C18	117.7 (2)	O5—C32—Nd1	60.78 (14)
CO4 N4 N11	··· 、 、 /	· · · ·	
C24—N4—Nd1	121.24 (17)	C33—C32—Nd1	165.83 (17)

O11—N5—O9	122.4 (3)	C38—C33—C32	121.1 (3)
O11—N5—O10	121.1 (3)	C34—C33—C32	120.4 (2)
O9—N5—O10	116.6 (2)	O7—C34—C35	116.9 (3)
N2—C1—C2	123.3 (3)	O7—C34—C33	122.9 (2)
N2—C1—H1	118.3	C35—C34—C33	120.2 (3)
C2—C1—H1	118.3	C36—C35—C34	118.7 (3)
C3—C2—C1	119.5 (3)	С36—С35—Н35	120.7
С3—С2—Н2	120.3	С34—С35—Н35	120.7
C1—C2—H2	120.3	C37—C36—C35	123.0 (3)
C2—C3—C4	119.9 (3)	С37—С36—Н36	118.5
С2—С3—Н3	120.0	С35—С36—Н36	118.5
С4—С3—Н3	120.0	C36—C37—C38	118.7 (3)
C3—C4—C5	117.5 (3)	С36—С37—Н37	120.7
C3—C4—C9	123.4 (3)	С38—С37—Н37	120.7
C5—C4—C9	119.1 (3)	O8—C38—C37	117.9 (3)
N2—C5—C4	122.5 (3)	O8—C38—C33	121.3 (3)
N2—C5—C6	118.2 (2)	C37—C38—C33	120.9 (3)
C4—C5—C6	119.2 (2)		

Hydrogen-bond geometry (Å, °)

	<i>D</i> —Н	H···A	D···A	D—H···A
03—H31…O1	0.82	1.86	2.581 (2)	147
O4—H27…O2	0.82	1.87	2.582 (3)	145
O7—H34…O6	0.82	1.87	2.592 (2)	146
O8—H38…O5	0.82	1.83	2.562 (3)	148