Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

1-Methanesulfonyl-1H-1,2,3-benzotriazole

Petr Štěpnička,* Hana Solařová and Ivana Císařová

Department of Inorganic Chemistry, Faculty of Science, Charles University in Prague; Hlavova 2030, 12840 Prague 2, Czech Republic
Correspondence e-mail: stepnic@natur.cuni.cz

Received 7 October 2010; accepted 11 October 2010

Key indicators: single-crystal X-ray study; $T=150 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.030 ; w R$ factor $=0.082$; data-to-parameter ratio $=15.8$.

The molecular geometry of the title compound, $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$, does not differ much from that of the previously reported 4toluenesulfonyl analogue. Unlike the latter compound, however, molecules of the title compound associate primarily via $\pi-\pi$ stacking interactions of their benzene rings [centroidcentroid distance $=3.5865$ (8) Å], forming columnar stacks along the crystallographic 2_{1} axes. These stacks are interconnected via weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds.

Related literature

For crystal structure of 1-(p-toluenesulfonyl)-1H-1,2,3benzotriazole, see: Rodríguez et al. (2005). For the preparation of the title compound and examples of its synthetic use, see: Katritzky et al. (1992, 2000).

Experimental

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$	$b=7.0627(2) \AA$
$M_{r}=197.22$	$c=12.4994(3) \AA$
Monoclinic, $P 2^{\downarrow} / c$	$\beta=92.984(2)^{\circ}$
$a=9.3685(3) \AA$	$V=825.93(4) \AA^{3}$

$Z=4$
Mo $K \alpha$ radiation
$\mu=0.36 \mathrm{~mm}^{-1}$
Data collection
Nonius KappaCCD diffractometer 1674 reflections with $I>2 \sigma(I)$ 14989 measured reflections 1886 independent reflections

Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030 \quad 119$ parameters
$w R\left(F^{2}\right)=0.082 \quad \mathrm{H}$-atom parameters constrained
$S=1.09$
1886 reflections
$\Delta \rho_{\max }=0.29 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.42 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry $\left(\AA,^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{O}^{\mathrm{i}}$	0.93	2.55	$3.270(2)$	135
$\mathrm{C} 6-\mathrm{H} 6 \cdots \mathrm{O}^{\mathrm{i}}$	0.93	2.55	$3.451(2)$	164
$\mathrm{C}^{\mathrm{H}}-\mathrm{H} 8 B \cdots \mathrm{~N}^{\mathrm{iii}}$	0.96	2.61	$3.446(2)$	145
$\mathrm{C} 8-\mathrm{H} 8 C \cdots \mathrm{O}^{\text {iv }}$	0.96	2.40	$3.325(2)$	161

Symmetry codes: (i) $x-1, y, z$; (ii) $-x,-y,-z+1$; (iii) $x,-y+\frac{1}{2}, z+\frac{1}{2}$; (iv)
$-x+1, y+\frac{1}{2},-z+\frac{1}{2}$.
Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski \& Minor, 1997); data reduction: DENZO (Otwinowski \& Minor, 1997) and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.

Financial support from the Ministry of Education of the Czech Republic (project No. MSM0021620857) is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2237).

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Katritzky, A. R., He, H.-Y. \& Suzuki, K. (2000). J. Org. Chem. 65, 8210-8213.
Katritzky, A. R., Shobana, N., Pernak, J., Afridi, A. S. \& Fan, W.-Q. (1992). Tetrahedron, 48, 7817-7822.
Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Rodríguez, R., Nogueras, M., Cobo, J., Low, J. N. \& Glidewell, C. (2005). Acta Cryst. E61, o2795-o2797.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2010). E66, o2840 [https://doi.org/10.1107/S1600536810040778]

1-Methanesulfonyl-1H-1,2,3-benzotriazole

Petr Štěpnička, Hana Solařová and Ivana Císařová

S1. Comment

The title compound, 1-(methanesulfonyl)-1 $H-1,2,3$-benzotriazole, is a useful and readily accessible organic reagent, acting as a convenient source of the benzotriazolyl anion. For instance, it reacts smoothly with carboxylic acids in the presence of a base to afford the corresponding 1-acyl-1H-1,2,3-benzotriazoles, which can be subsequently converted to amides in typically good yields (Katritzky et al., 2000).

The molecular structure of the title compound (Fig. 1) is rather unexceptional, particularly in view of the geometric data reported earlier for the related $1 H-1,2,3$-benzotriazole derivative, 1 -(p-toluenesulfonyl)-1 H-1,2,3-benzotriazole (Rodríguez et al., 2005). The $\mathrm{N}-\mathrm{N}$ bonds within the triazole ring clearly maintain their localized character (cf. $\mathrm{N} 1-\mathrm{N} 2$ $=1.389(2) \AA, \mathrm{N} 3-\mathrm{N} 2=1.288(2) \AA)$, which is, however, not reflected in the adjacent bonds. The lengths of the remaining in-ring bonds, $\mathrm{N} 1-\mathrm{C} 7 \mathrm{~A}, \mathrm{C} 7 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}$ and $\mathrm{C} 3 \mathrm{~A}-\mathrm{N} 3$, differ by less than $c a 0.006 \AA$, while all in-ring angles span a range of $103.5(1)-109.9(1)^{\circ}$. On the other hand, the variation in the analogous parameters describing the geometry of the annelating benzene ring is less pronounced (cf. $\mathrm{C}-\mathrm{C}=1.371$ (2)-1.408 (2) $\AA, \mathrm{C}-\mathrm{C}-\mathrm{C}=115.5$ (1)$\left.122.7(1)^{\circ}\right)$.

The methanesulfonyl group binds to the triazole ring somewhat unsymmetrically, which is best demonstrated by the difference in the S—N1—N2 $\left(120.12(9){ }^{\circ}\right)$ and S—N1—C7A $\left(129.8(1)^{\circ}\right)$ angles. Moreover, it is angularly distorted: The bond angles around sulfur span a range of 103.43 (6)-120.31 (7) ${ }^{\circ}$ with the $\mathrm{N} 1-\mathrm{S}-\mathrm{C} 8$ and $\mathrm{O} 1-\mathrm{S}-\mathrm{O} 2$ angles being the lower and upper limit, respectively. The remaining angles do not differ much in the pairs: $\mathrm{N} 1-\mathrm{S}-\mathrm{O}(1 / 2)(c a$ 105°, difference $c a 0.4^{\circ}$), $\mathrm{C} 8-\mathrm{S} 1-\mathrm{O}(1 / 2)\left(c a 110^{\circ}\right.$, difference $\left.c a 1.2^{\circ}\right)$. Indeed, such a variation in bond angles corresponds with distances to the sulfur atom (S—O1 1.425 (1), S—O2 1.419 (1), S—N1 1.692 (1), S—C8 1.744 (2) Å) as the most acute angle is associated with the shortest bonds.
In the crystal, molecules of the title compound assemble via $\pi-\pi$ stacking interactions of their benzene rings (Fig. 2a). Since this interaction involves molecules related by the crystallographic 2_{1} screw axes, it results in the formation of infinite columnar stacks in the direction of the crystallographic b axis. It is worth pointing out that the observed separation of the ring centroids $[C g \cdots g(-x, 1 / 2+y, 1 / 2-z ; 3.5865(8) \AA]$ is slightly shorter than that reported for $\alpha-$ graphite (ca $3.65 \AA$), where, however, the rings are slipped by ca $1.42 \AA$. Finally, the neighboring columnar stacks are interlinked by soft $\mathrm{C}-\mathrm{H}^{\cdots} \mathrm{O}$ and $\mathrm{C}-\mathrm{H}^{\cdots} \mathrm{N}$ hydrogen bonds (Table 1) into a complicated three-dimensional array (Figs. 2 b and 2 c).

S2. Experimental

The title compound was synthesized from $1 H-1,2,3$-benzotriazole and methanesulfonyl chloride as described in the literature with a yield of 91% (Katritzky et al., 2000). Crystals suitable for X-ray diffraction analysis were obtained by crystallization from warm benzene.

S3. Refinement

H -atoms were included in calculated positions and refined as riding atoms with fixed $\mathrm{C}-\mathrm{H}$ distances $[\mathrm{C}-\mathrm{H}=0.96 \AA$ for CH_{3}, and $0.93 \AA$ for aromatic CH$]$ and $U_{\mathrm{iso}}(\mathrm{H})$ assigned to $1.5 U_{\mathrm{eq}}(\mathrm{C})\left(\mathrm{CH}_{3}\right)$ or $1.2 U_{\mathrm{eq}}(\mathrm{C})($ aromatic CH$)$ of their bonding carbon atom.

Figure 1
Molecular structure of the title compound showing displacement ellipsoids for the non-H atoms at the 50% probability level. Hydrogen atoms are presented as spheres with arbitrary radii.

(c)

Figure 2
(a) Section of columnar stacks connected by $\pi-\pi$ interactions of the benzene rings [$C g \cdots C g=3.5865$ (8) \AA]. (b) H-bond interactions generated by the molecules of the title compounds. (c) View of the unit cell along the crystallographic a axis.

1-Methanesulfonyl-1H-1,2,3-benzotriazole

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$

$M_{r}=197.22$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=9.3685$ (3) \AA
$b=7.0627(2) \AA$
$c=12.4994(3) \AA$
$\beta=92.984$ (2) ${ }^{\circ}$
$V=825.93$ (4) \AA^{3}
$Z=4$

$$
\begin{aligned}
& F(000)=408 \\
& D_{\mathrm{x}}=1.586 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 2027 \text { reflections } \\
& \theta=1.0-27.5^{\circ} \\
& \mu=0.36 \mathrm{~mm}^{-1} \\
& T=150 \mathrm{~K} \\
& \text { Block, colourless } \\
& 0.50 \times 0.30 \times 0.25 \mathrm{~mm}
\end{aligned}
$$

Data collection

Nonius KappaCCD
diffractometer
Radiation source: fine-focus sealed tube
Horizontally mounted graphite crystal monochromator
Detector resolution: 9.091 pixels mm^{-1}
ω and π scans to fill the Ewald sphere
14989 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030$
$w R\left(F^{2}\right)=0.082$
$S=1.09$
1886 reflections
119 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

```
1886 independent reflections
1674 reflections with \(I>2 \sigma(I)\)
\(R_{\text {int }}=0.023\)
\(\theta_{\text {max }}=27.5^{\circ}, \theta_{\text {min }}=2.2^{\circ}\)
\(h=-12 \rightarrow 12\)
\(k=-9 \rightarrow 9\)
\(l=-16 \rightarrow 16\)
```

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0431 P)^{2}+0.2983 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.29$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.42 \mathrm{e}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two least-squares planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving least-squares planes.
Refinement. Refinement of F^{2} against all diffractions. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} U_{\text {eq }}$
S	$0.39056(3)$	$0.07483(5)$	$0.36695(2)$	$0.02263(12)$
O1	$0.32920(11)$	$-0.04099(16)$	$0.44586(8)$	$0.0318(3)$
O2	$0.51042(11)$	$0.01011(18)$	$0.31253(8)$	$0.0337(3)$
N1	$0.25880(13)$	$0.10614(17)$	$0.27080(9)$	$0.0236(3)$
N2	$0.29032(13)$	$0.10541(18)$	$0.16344(9)$	$0.0274(3)$
N3	$0.17185(13)$	$0.11648(19)$	$0.10673(9)$	$0.0289(3)$
C3A	$0.05897(15)$	$0.1243(2)$	$0.17395(11)$	$0.0233(3)$
C4	$-0.08866(16)$	$0.1336(2)$	$0.14889(12)$	$0.0290(3)$
H4	-0.1253	0.1381	0.0784	0.035^{*}
C5	$-0.17615(16)$	$0.1359(2)$	$0.23349(12)$	$0.0295(3)$
H5	-0.2746	0.1413	0.2200	0.035^{*}
C6	$-0.12050(16)$	$0.1302(2)$	$0.34029(12)$	$0.0290(3)$
H6	-0.1837	0.1318	0.3953	0.035^{*}
C7	$0.02458(16)$	$0.1222(2)$	$0.36641(11)$	$0.0273(3)$
H7	0.0611	0.1199	0.4370	0.033^{*}
C7A	$0.11237(14)$	$0.11801(19)$	$0.27980(11)$	$0.0218(3)$

C8	$0.41970(16)$	$0.3025(2)$	$0.41766(11)$	$0.0277(3)$
H8A	0.4901	0.2977	0.4762	0.042^{*}
H8B	0.3319	0.3521	0.4424	0.042^{*}
H8C	0.4531	0.3828	0.3623	0.042^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S	$0.02097(19)$	$0.0276(2)$	$0.01921(18)$	$0.00087(12)$	$0.00002(12)$	$0.00117(12)$
O1	$0.0327(6)$	$0.0361(6)$	$0.0263(5)$	$-0.0063(5)$	$-0.0026(4)$	$0.0100(4)$
O2	$0.0245(5)$	$0.0461(7)$	$0.0306(5)$	$0.0088(5)$	$0.0010(4)$	$-0.0071(5)$
N1	$0.0209(6)$	$0.0317(6)$	$0.0183(5)$	$0.0002(5)$	$0.0016(4)$	$0.0007(4)$
N2	$0.0275(6)$	$0.0369(7)$	$0.0180(5)$	$-0.0017(5)$	$0.0030(4)$	$0.0007(5)$
N3	$0.0264(6)$	$0.0402(7)$	$0.0201(6)$	$-0.0023(5)$	$0.0002(5)$	$0.0017(5)$
C3A	$0.0252(7)$	$0.0222(7)$	$0.0223(6)$	$-0.0016(5)$	$-0.0002(5)$	$0.0008(5)$
C4	$0.0266(7)$	$0.0293(7)$	$0.0304(7)$	$-0.0015(6)$	$-0.0052(6)$	$0.0009(6)$
C5	$0.0220(7)$	$0.0251(7)$	$0.0413(8)$	$-0.0012(6)$	$0.0005(6)$	$0.0008(6)$
C6	$0.0263(7)$	$0.0262(7)$	$0.0352(8)$	$0.0000(6)$	$0.0100(6)$	$0.0008(6)$
C7	$0.0290(7)$	$0.0294(7)$	$0.0238(7)$	$0.0010(6)$	$0.0038(5)$	$0.0010(6)$
C7A	$0.0212(6)$	$0.0217(6)$	$0.0225(6)$	$0.0001(5)$	$0.0005(5)$	$0.0006(5)$
C8	$0.0301(7)$	$0.0290(7)$	$0.0239(6)$	$-0.0017(6)$	$0.0001(5)$	$-0.0003(6)$

Geometric parameters $\left({ }_{A},{ }^{\circ}\right)$

S-O2	1.4185 (10)	C4-H4	0.9300
$\mathrm{S}-\mathrm{O} 1$	1.4254 (11)	C5-C6	1.408 (2)
S-N1	1.6919 (12)	C5-H5	0.9300
S-C8	1.7444 (15)	C6-C7	1.382 (2)
N1-C7A	1.3848 (17)	C6-H6	0.9300
$\mathrm{N} 1-\mathrm{N} 2$	1.3890 (16)	C7-C7A	1.3936 (19)
N2-N3	1.2878 (17)	C7-H7	0.9300
N3-C3A	1.3856 (18)	C8-H8A	0.9600
C3A-C7A	1.3905 (18)	С8-H8B	0.9600
C3A-C4	1.4037 (19)	C8-H8C	0.9600
C4-C5	1.371 (2)		
$\mathrm{O} 2-\mathrm{S}-\mathrm{O} 1$	120.31 (7)	C4-C5-H5	119.2
$\mathrm{O} 2-\mathrm{S}-\mathrm{N} 1$	105.55 (6)	C6-C5-H5	119.2
$\mathrm{O} 1-\mathrm{S}-\mathrm{N} 1$	105.13 (6)	C7-C6-C5	122.41 (14)
$\mathrm{O} 2-\mathrm{S}-\mathrm{C} 8$	111.01 (7)	C7-C6-H6	118.8
$\mathrm{O} 1-\mathrm{S}-\mathrm{C} 8$	109.79 (7)	C5-C6-H6	118.8
N1-S-C8	103.43 (6)	C6-C7-C7A	115.48 (13)
C7A-N1-N2	109.87 (11)	C6- $\mathrm{C} 7-\mathrm{H} 7$	122.3
C7A-N1-S	129.75 (9)	C7A-C7-H7	122.3
N2-N1-S	120.12 (9)	N1-C7A-C3A	103.50 (11)
N3-N2-N1	108.12 (11)	N1-C7A-C7	133.75 (13)
N2-N3-C3A	109.37 (11)	C3A-C7A-C7	122.74 (13)
N3-C3A-C7A	109.12 (12)	S-C8-H8A	109.5

$\mathrm{N} 3-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4$	$129.85(13)$
$\mathrm{C} 7 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4$	$121.02(13)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3 \mathrm{~A}$	$116.74(13)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4$	121.6
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4-\mathrm{H} 4$	121.6
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$121.60(14)$

S-C8-H8B	109.5
H8A-C8-H8B	109.5
S-C8-H8C	109.5
H8A-C8-H8C	109.5
H8B-C8-H8C	109.5

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 5 — \mathrm{H} 5 \cdots \mathrm{O}^{\mathrm{i}}$	0.93	2.55	$3.270(2)$	135
$\mathrm{C} 6 — \mathrm{H} 6 \cdots 1^{\mathrm{ii}}$	0.93	2.55	$3.451(2)$	164
$\mathrm{C} 8 — \mathrm{H} 8 B \cdots \mathrm{~N} 3^{\mathrm{iii}}$	0.96	2.61	$3.446(2)$	145
$\mathrm{C} 8 — \mathrm{H} 8 C \cdots \mathrm{O} 2^{\mathrm{iv}}$	0.96	2.40	$3.325(2)$	161

Symmetry codes: (i) $x-1, y, z$; (ii) $-x,-y,-z+1$; (iii) $x,-y+1 / 2, z+1 / 2$; (iv) $-x+1, y+1 / 2,-z+1 / 2$.

