

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

5-Chloro-2-hydroxybenzaldehyde thiosemicarbazone

Hadi Kargar,^a Reza Kia,^b Mehmet Akkurt^{c*} and Orhan **Büyükgüngör**^d

^aDepartment of Chemistry, School of Science, Payame Noor University (PNU), Ardakan, Yazd, Iran, ^bDepartment of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran, ^cDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, and ^dDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey Correspondence e-mail: akkurt@erciyes.edu.tr

Received 24 October 2010; accepted 25 October 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.004 Å; R factor = 0.044; wR factor = 0.120; data-to-parameter ratio = 14.8.

In the title compound, C₈H₈ClN₃OS, the whole molecule assumes a planar structure, with an r.m.s. deviation of 0.108 (2) Å, and an intramolecular $O-H \cdots N$ hydrogen bond generates and S(6) and ring motif. In the crystal structure, each of two pairs of intermolecular N-H···S hydrogen bonds connects two molecules, forming inversion dimers with $R_2^2(8)$ motifs.

Related literature

For the biological activities and pharmaceutical properties of thiosemicarbazones and their derivatives, see: Casas et al. (2000); Ferrari et al. (2000); Maccioni et al. (2003). For bondlength data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental

Crystal data

C₈H₈ClN₃OS $M_{\rm r} = 229.69$ Monoclinic, $P2_1/c$ a = 5.8303 (4) Å b = 23.6579 (17) Å c = 7.5893 (5) Å $\beta = 104.164 \ (6)^{\circ}$

V = 1014.99 (12) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 0.55 \text{ mm}^-$ T = 296 K $0.52 \times 0.33 \times 0.08 \text{ mm}$ organic compounds

4469 measured reflections

 $R_{\rm int} = 0.051$

1895 independent reflections

1524 reflections with $I > 2\sigma(I)$

Data collection

Stoe IPDS II diffractometer Absorption correction: integration (X-RED32; Stoe & Cie, 2002) $T_{\min} = 0.763, \ T_{\max} = 0.957$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.044$	128 parameters
$wR(F^2) = 0.120$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.20 \text{ e } \text{\AA}^{-3}$
1895 reflections	$\Delta \rho_{\rm min} = -0.37 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H2\cdots S1^{i}$ $N3-H3A\cdots S1^{ii}$ $N3-H3A\cdots N1$ $N3-H3B\cdots S1^{iii}$	0.86 0.86 0.86 0.86	2.70 2.87 2.36 2.55	3.491 (2) 3.387 (2) 2.693 (3) 3.390 (2)	153 120 103 167

Symmetry codes: (i) -x, -y, -z + 1; (ii) x + 1, y, z; (iii) -x + 1, -y, -z + 2.

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS II diffractometer (purchased under grant F.279 of the University Research Fund). HK thanks Payame Noor University (PNU) for financial support of this work. RK thanks the Science and Research Branch of Islamic Azad University of Tehran.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2621).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Casas, J. S., Garcia-Tasende, M. S. & Sordo, J. (2000). Coord. Chem. Rev. 209, 197 - 261
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Ferrari, M. B., Capacchi, S., Reffo, G., Pelosi, G., Tarasconi, P., Albertini, R., Pinelli, S. & Lunghi, P. (2000). J. Inorg. Biochem. 81, 89-97.
- Maccioni, E., Cardia, M. C., Distinto, S., Bonsignore, L. & De Logu, A. (2003). Il Farmaco, 58, 951-959.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.

Acta Cryst. (2010). E66, o2981 [https://doi.org/10.1107/S1600536810043448]

5-Chloro-2-hydroxybenzaldehyde thiosemicarbazone

Hadi Kargar, Reza Kia, Mehmet Akkurt and Orhan Büyükgüngör

S1. Comment

Thiosemicarbazones constitute an important class of *N*,*S* donor ligands due to their propensity to react with a wide range of metals (Casas *et al.*, 2000). Thiosemicarbazones exhibit various biological activities and have therefore attracted considerable pharmaceutical interest (Maccioni *et al.*, 2003; Ferrari *et al.*, 2000). We here report the crystal structure of the title compound (I).

The title molecule (I) shown in Fig. 1 is planar with an r.m.s. deviation of 0.108 Å and all bond lengths agree with standard values (Allen *et al.*, 1987). Intramolecular O—H···N and N—H···N hydrogen bonds (Table 1) generate the S(6) and S(5) ring motifs, respectively (Bernstein *et al.*, 1995).

In the crystal structure, molecules are linked by N—H···S hydrogen bonds, forming $R_2^2(8)$ dimers (Table 1 and Fig. 2).

S2. Experimental

A mixture of 5-chlorosalicylalehyde (0.01 mol) and hydrazinecarbothioamide (0.01 mol) in 20 ml of ethanol was refluxed for about 2 h. On cooling, the solid separated was filtered and recrystallized from ethanol. Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of ethanol.

S3. Refinement

All H atoms were geometrically placed (C—H = 0.93 Å, N—H = 0.86 Å and O—H = 0.82 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C,N)$ and $1.5U_{eq}(O)$.

Figure 1

The title molecule with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.

Figure 2

View of the packing and hydrogen bonding interactions of (I), showing dimer formation by $R^2_2(8)$ ring motif. All H atoms not involved in hydrogen bonding have been omitted for clarity.

5-Chloro-2-hydroxybenzaldehyde thiosemicarbazone

Crystal data

C₈H₈ClN₃OS $M_r = 229.69$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 5.8303 (4) Å b = 23.6579 (17) Å c = 7.5893 (5) Å $\beta = 104.164$ (6)° V = 1014.99 (12) Å³ Z = 4 F(000) = 472 $D_x = 1.503 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 8344 reflections $\theta = 1.7-26.2^{\circ}$ $\mu = 0.55 \text{ mm}^{-1}$ T = 296 KPrism, colourless $0.52 \times 0.33 \times 0.08 \text{ mm}$ Data collection

Stoe IPDS II diffractometer Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus Plane graphite monochromator Detector resolution: 6.67 pixels mm ⁻¹ ω scans Absorption correction: integration (<i>X-RED32</i> ; Stoe & Cie, 2002)	$T_{\min} = 0.763, T_{\max} = 0.957$ 4469 measured reflections 1895 independent reflections 1524 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.051$ $\theta_{\max} = 25.6^{\circ}, \theta_{\min} = 1.7^{\circ}$ $h = -5 \rightarrow 7$ $k = -28 \rightarrow 26$ $l = -9 \rightarrow 9$
Refinement	
Refinement on F^2 Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.044$ wR(F^2) = 0.120	Hydrogen site location: inferred from neighbouring sites
S = 1.04	H-atom parameters constrained
1895 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0681P)^2 + 0.120P]$
128 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.20 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.37 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted *R*-factors *wR* and all goodnesses of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The observed criterion of $F^2 > \sigma(F^2)$ is used only for calculating *-R*-factor-obs *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	y	Z	$U_{ m iso}$ */ $U_{ m eq}$	
C11	0.36123 (17)	0.20555 (4)	-0.30970 (10)	0.0868 (3)	
S 1	0.15507 (9)	0.01021 (3)	0.79551 (8)	0.0559 (2)	
01	0.8537 (3)	0.13549 (11)	0.4272 (3)	0.0750 (8)	
N1	0.4525 (3)	0.08332 (9)	0.4467 (3)	0.0489 (6)	
N2	0.3002 (3)	0.05468 (10)	0.5260 (3)	0.0523 (6)	
N3	0.5874 (3)	0.04298 (10)	0.7883 (3)	0.0524 (7)	
C1	0.4996 (4)	0.13306 (11)	0.1830 (3)	0.0493 (8)	
C2	0.7333 (4)	0.15067 (12)	0.2573 (4)	0.0573 (8)	
C3	0.8480 (5)	0.18395 (14)	0.1559 (4)	0.0687 (10)	
C4	0.7368 (6)	0.20095 (13)	-0.0164 (4)	0.0702 (10)	
C5	0.5049 (5)	0.18372 (12)	-0.0912 (4)	0.0604 (9)	
C6	0.3886 (5)	0.15099 (11)	0.0062 (3)	0.0542 (8)	
C7	0.3665 (4)	0.09979 (11)	0.2818 (3)	0.0507 (8)	
C8	0.3636 (4)	0.03756 (11)	0.6999 (3)	0.0454 (7)	
H1	0.76270	0.12040	0.48000	0.1120*	
H2	0.15960	0.04740	0.46260	0.0630*	

H3	1.00350	0.19500	0.20550	0.0830*	
H3A	0.68790	0.05710	0.73440	0.0630*	
H3B	0.63280	0.03240	0.89980	0.0630*	
H4	0.81520	0.22370	-0.08260	0.0840*	
H6	0.23310	0.14030	-0.04510	0.0650*	
H7	0.21210	0.08970	0.22430	0.0610*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.1118 (7)	0.0820 (6)	0.0700 (4)	0.0054 (5)	0.0287 (4)	0.0188 (4)
S 1	0.0349 (3)	0.0795 (5)	0.0526 (3)	-0.0048 (3)	0.0096 (2)	0.0063 (3)
01	0.0458 (10)	0.0951 (17)	0.0791 (12)	-0.0077 (10)	0.0058 (9)	0.0132 (11)
N1	0.0379 (9)	0.0554 (12)	0.0544 (10)	-0.0011 (8)	0.0131 (8)	0.0019 (9)
N2	0.0336 (9)	0.0683 (14)	0.0529 (10)	-0.0059 (9)	0.0065 (8)	0.0074 (9)
N3	0.0334 (9)	0.0742 (15)	0.0485 (10)	-0.0031 (9)	0.0079 (7)	0.0017 (9)
C1	0.0447 (12)	0.0466 (14)	0.0597 (13)	0.0017 (10)	0.0189 (10)	-0.0007 (10)
C2	0.0453 (12)	0.0558 (16)	0.0729 (15)	0.0009 (11)	0.0186 (11)	0.0020 (12)
C3	0.0489 (14)	0.0623 (18)	0.100(2)	-0.0044 (12)	0.0281 (14)	0.0079 (15)
C4	0.0725 (17)	0.0577 (18)	0.0926 (19)	0.0020 (14)	0.0438 (15)	0.0108 (15)
C5	0.0729 (17)	0.0490 (15)	0.0653 (14)	0.0056 (13)	0.0283 (12)	0.0030 (11)
C6	0.0540 (13)	0.0505 (15)	0.0595 (12)	0.0029 (11)	0.0168 (10)	-0.0014 (11)
C7	0.0403 (12)	0.0544 (15)	0.0570 (12)	0.0002 (10)	0.0111 (10)	0.0015 (11)
C8	0.0344 (10)	0.0510 (14)	0.0505 (11)	0.0009 (9)	0.0096 (9)	-0.0029 (10)

Geometric parameters (Å, °)

Cl1—C5	1.743 (3)	C1—C2	1.404 (4)	
S1—C8	1.690 (2)	C1—C6	1.405 (3)	
O1—C2	1.357 (4)	C1—C7	1.438 (3)	
O1—H1	0.8200	C2—C3	1.383 (4)	
N1—N2	1.368 (3)	C3—C4	1.370 (4)	
N1C7	1.289 (3)	C4—C5	1.393 (5)	
N2-C8	1.343 (3)	C5—C6	1.361 (4)	
N3—C8	1.319 (3)	С3—Н3	0.9300	
N2—H2	0.8600	C4—H4	0.9300	
N3—H3A	0.8600	С6—Н6	0.9300	
N3—H3B	0.8600	С7—Н7	0.9300	
Cl1····C5 ⁱ	3.606 (3)	C7····C8 ^{vi}	3.598 (4)	
S1…N3 ⁱⁱ	3.387 (2)	C7…N3 ^{vi}	3.440 (4)	
S1…N2 ⁱⁱⁱ	3.491 (2)	C7…C3 ⁱⁱ	3.550 (4)	
S1…N3 ^{iv}	3.390 (2)	C8····C7 ^{vi}	3.598 (4)	
S1…H3A ⁱⁱ	2.8700	C8····C6 ^{vii}	3.530 (3)	
S1…H2 ⁱⁱⁱ	2.7000	C8…N1 ^{vi}	3.339 (3)	
S1…H3B ^{iv}	2.5500	C3…H7 ^v	3.0300	
S1…H7 ⁱⁱⁱ	3.1700	C3····H4 ^{viii}	2.9900	
01…N1	2.681 (3)	C7···H3 ⁱⁱ	3.0500	

O1···N2 ^v	3.168 (3)	C7…H1	2.4800
O1···H2 ^v	2.7100	H1…N1	1.9700
N1…O1	2.681 (3)	H1…C7	2.4800
N1…N3	2.693 (3)	Н1…НЗА	2.5600
N1····C8 ^{vi}	3.339 (3)	H2···O1 ⁱⁱ	2.7100
N2…O1 ⁱⁱ	3.168 (3)	H2…H7	2.1500
N2…S1 ⁱⁱⁱ	3.491 (2)	H2…S1 ⁱⁱⁱ	2.7000
N3····C6 ^{vii}	3.398 (3)	H3····C7 ^v	3.0500
N3…S1 ^{iv}	3.390 (2)	H3A····S1 ^v	2.8700
N3…S1 ^v	3.387 (2)	H3A…N1	2.3600
N3…N1	2.693 (3)	НЗА…Н1	2.5600
N3····C7 ^{vi}	3.440 (4)	H3B…S1 ^{iv}	2.5500
N1…H1	1.9700	H4···C3 ⁱ	2.9900
N1···H3A	2.3600	H6…H7	2.4000
C3…C7 ^v	3.550 (4)	H7···C3 ⁱⁱ	3.0300
C5…Cl1 ^{viii}	3.606 (3)	H7…H2	2.1500
C6…N3 ^{ix}	3.398 (3)	Н7…Н6	2.4000
C6…C8 ^{ix}	3.530 (3)	H7…S1 ⁱⁱⁱ	3.1700
C2-O1-H1	109.00	Cl1—C5—C4	119.6 (2)
N2—N1—C7	115.9 (2)	Cl1—C5—C6	119.9 (2)
N1—N2—C8	122.0 (2)	C4—C5—C6	120.5 (3)
C8—N2—H2	119.00	C1—C6—C5	121.1 (3)
N1—N2—H2	119.00	N1—C7—C1	122.7 (2)
H3A—N3—H3B	120.00	N2—C8—N3	118.1 (2)
C8—N3—H3A	120.00	S1—C8—N2	118.92 (18)
C8—N3—H3B	120.00	S1—C8—N3	123.01 (18)
C2—C1—C6	118.0 (2)	С2—С3—Н3	119.00
C6—C1—C7	118.8 (2)	С4—С3—Н3	119.00
C2—C1—C7	123.2 (2)	C3—C4—H4	120.00
O1—C2—C1	121.9 (2)	C5—C4—H4	120.00
C1—C2—C3	120.0 (3)	C1—C6—H6	119.00
O1—C2—C3	118.1 (2)	С5—С6—Н6	119.00
C2—C3—C4	121.2 (3)	N1—C7—H7	119.00
C3—C4—C5	119.2 (3)	C1—C7—H7	119.00
C7—N1—N2—C8	-176.7 (2)	C6—C1—C2—C3	-0.9 (4)
N2—N1—C7—C1	176.5 (2)	C7—C1—C2—O1	2.5 (4)
N1—N2—C8—S1	171.99 (18)	O1—C2—C3—C4	-179.8 (3)
N1—N2—C8—N3	-8.0 (4)	C1—C2—C3—C4	0.9 (5)
C7—C1—C2—C3	-178.2 (3)	C2—C3—C4—C5	-0.8 (5)
C2-C1-C6-C5	1.0 (4)	C3—C4—C5—C11	179.5 (2)
C7—C1—C6—C5	178.3 (3)	C3—C4—C5—C6	0.8 (5)
C2-C1-C7-N1	-0.3(4)	Cl1—C5—C6—C1	-179.6 (2)
	(-)		1,,,,,(2)

C6—C1—C7—N1	-177.6 (2)	C4—C5—C6—C1	-0.9 (4)
C6-C1-C2-O1	179.8 (2)		

Symmetry codes: (i) *x*, -*y*+1/2, *z*-1/2; (ii) *x*-1, *y*, *z*; (iii) -*x*, -*y*, -*z*+1; (iv) -*x*+1, -*y*, -*z*+2; (v) *x*+1, *y*, *z*; (vi) -*x*+1, -*y*, -*z*+1; (vii) *x*, *y*, *z*+1; (viii) *x*, -*y*+1/2, *z*+1/2; (ix) *x*, *y*, *z*-1.

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
01—H1…N1	0.82	1.97	2.681 (3)	144
N2—H2···S1 ⁱⁱⁱ	0.86	2.70	3.491 (2)	153
$N3 - H3A - S1^{\vee}$	0.86	2.87	3.387 (2)	120
N3—H3 <i>A</i> …N1	0.86	2.36	2.693 (3)	103
N3—H3 B ···S1 ^{iv}	0.86	2.55	3.390 (2)	167

Symmetry codes: (iii) -*x*, -*y*, -*z*+1; (iv) -*x*+1, -*y*, -*z*+2; (v) *x*+1, *y*, *z*.