

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Methyl 4-(4-methoxyphenyl)-2-methyl-5oxo-1,4,5,6,7,8-hexahydroguinoline-3carboxylate

Xiao-Hui Yang, Yong-Hong Zhou,* Meng Zhang and Xing Song

Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, People's Republic of China Correspondence e-mail: hmilydear@163.com

Received 4 September 2010; accepted 5 October 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; R factor = 0.070; wR factor = 0.128; data-to-parameter ratio = 14.0.

In the title compound, $C_{19}H_{21}NO_4$, the dihydropyridine ring adopts a distorted screw-boat conformation. The fused cyclohexenone ring forms a slightly distorted envelope conformation. The dihedral angle between the mean planes of the benzene and heterocyclic rings is 86.1 (7)°. An intramolecular C-H···O interaction occurs. In the crystal, molecules are linked by intermolecular N-H···O hydrogen bonds, forming an infinite chain along the c axis.

Related literature

For the physiological activity of 1,4-dihydropyridine derivatives, see: Davies et al. (2005); Rose & Draeger (1992); Warrior et al. (2005).

Experimental

Crystal data C19H21NO4

 $M_r = 327.37$

Monoclinic, $P2_1/c$ a = 13.628 (3) Å b = 8.6300 (17) Å c = 14.577 (3) Å $\beta = 98.39$ (3)° V = 1696.0 (6) Å ³	Z = 4 Mo K\alpha radiation $\mu = 0.09 \text{ mm}^{-1}$ T = 293 K $0.20 \times 0.20 \times 0.05 \text{ mm}$
Data collection	
Enraf–Nonius CAD-4 diffractometer Absorption correction: ψ scan	3040 independent reflections 1300 reflections with $I > 2\sigma(I)$ $R_{int} = 0.078$

diffractometer	1300 reflections with $I > 2\sigma(I)$
Absorption correction: ψ scan	$R_{\rm int} = 0.078$
(North et al., 1968)	3 standard reflections every 200
$T_{\min} = 0.982, \ T_{\max} = 0.996$	reflections
3232 measured reflections	intensity decay: 1%

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.070$ 1 restraint $wR(F^2) = 0.128$ H-atom parameters constrained S = 1.00 $\Delta \rho_{\rm max} = 0.16 \text{ e} \text{ Å}^ \Delta \rho_{\rm min} = -0.19 \text{ e} \text{ Å}^{-3}$ 3040 reflections 217 parameters

Table 1	
Hydrogen-bond geometry (Å, °).	

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{l} N-H0A\cdotsO1^{i}\\ C10-H10A\cdotsO3 \end{array}$	0.86 0.96	2.05 2.08	2.884 (4) 2.818 (5)	163 132
Summature and a (i) a				

Symmetry code: (i) $x, -y - \frac{1}{2}, z + \frac{1}{2}$.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS: data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported by the President of the Chinese Academy of Forestry Foundation (CAFYBB2008009).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JJ2057).

References

- Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands
- Davies, D. T., Markwell, R. E., Pearson, N. D. & Takle, A. K. (2005). US Patent 6 911 442
- Harms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst., A24, 351-359
- Rose, U. & Draeger, M. (1992). J. Med. Chem. A, 35, 2238-2243.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Warrior, P., Heiman, D. F., Fugiel, J. A. & Petracek, P. D. (2005). WO Patent 2005060748.

supporting information

Acta Cryst. (2010). E66, o2767 [https://doi.org/10.1107/S1600536810039760]

Methyl 4-(4-methoxyphenyl)-2-methyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3carboxylate

Xiao-Hui Yang, Yong-Hong Zhou, Meng Zhang and Xing Song

S1. Comment

The development of new methods for the synthesis of 1,4-dihydropyridine derivatives is a motive for the current study. 1,4-dihydropyridine derivatives attract interest because of their presence in numerous natural products. In addition, they exhibit calcium modulatory properties (Rose & Draeger, 1992), antibacterial (Davies *et al.*, 2005) and fungicidal activity (Warrior *et al.*, 2005).

In the title compound the heterocyclic ring adopts a distorted screw-boat conformation (Fig. 1). Atoms C7 and N deviate from the mean plane of C1/C6/C8/C9 by 0.177 (3)Å and 0.067 (7)Å, respectively. The fused cyclohexene ring displays a slightly distorted envelope conformation, with atom C3 out of the plane of the atoms by -0.314 (5)°. The dihedral angle between the mean planes of the benzene and heterocyclic rings is 86.1 (7)°. The methoxy group is nearly coplanar with the attached benzene ring with a C19/O4/C16/C17 torsion angle of -4.1 (6)°. Crystal packing is stabilized by an intermolecular N—H…O hydrogen bond forming an infinite chain of molecules along the *c* axis (Table 1, Fig. 2).

S2. Experimental

A mixture of 4-methoxybenzaldehyde (2 mmol), methyl 3-oxobutanoate (4 mmol), cyclohexane-1,3-dione (2 mmol) and NH₄CO₃ (2 mmol) was stirred in water (2 ml) at 353 K. After completion of the reaction (TLC monitoring),the mixture was diluted with cold water (20 ml) and filtered to obtain the precipitated product which was further purified by recrystallization. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution.

S3. Refinement

Atom H0A was located in a difference map and refined isotropically. All other H atoms were positioned geometrically and treated as riding, with C—H distances in the range 0.93–0.98 Å and $U_{iso}(H) = 1.2$ or 1.5 times $U_{eq}(C)$. In the absence of significant anomalous dispersion effects, Friedel pairs were merged.

Figure 1

Molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.

Figure 2

The packing of the title compound, viewed along the *a* axis. Dashed lines indicate N—H…O hydrogen bonds.

Methyl 4-(4-methoxyphenyl)-2-methyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate

Crystal data

C₁₉H₂₁NO₄ $M_r = 327.37$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 13.628 (3) Å b = 8.6300 (17) Å c = 14.577 (3) Å $\beta = 98.39$ (3)° V = 1696.0 (6) Å³ Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer Radiation source: fine-focus sealed tube Graphite monochromator $\omega/2\theta$ scans Absorption correction: ψ scan (North *et al.*, 1968) $T_{\min} = 0.982, T_{\max} = 0.996$ 3232 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.070$ $wR(F^2) = 0.128$ S = 1.003040 reflections 217 parameters 1 restraint Primary atom site location: structure-invariant direct methods F(000) = 696 $D_x = 1.282 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 25 reflections $\theta = 9-12^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 293 KBlock, colourless $0.20 \times 0.20 \times 0.05 \text{ mm}$

3040 independent reflections 1300 reflections with $I > 2\sigma(I)$ $R_{int} = 0.078$ $\theta_{max} = 25.3^{\circ}, \ \theta_{min} = 1.5^{\circ}$ $h = 0 \rightarrow 16$ $k = 0 \rightarrow 10$ $I = -17 \rightarrow 17$ 3 standard reflections every 200 reflections intensity decay: 1%

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.030P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.16$ e Å⁻³ $\Delta\rho_{min} = -0.19$ e Å⁻³

Special details

Experimental. Absorption correction: semi-empirical absorption based on psi-scan (North et al., 1968)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N	0.7089 (2)	-0.1346 (4)	1.10531 (19)	0.0561 (9)	
H0A	0.7239	-0.1617	1.1624	0.067*	
01	0.7167 (2)	-0.2573 (3)	0.79342 (17)	0.0675 (8)	
C1	0.7348 (2)	-0.2312 (4)	1.0380 (2)	0.0437 (9)	
03	0.5828 (3)	0.3072 (4)	1.0342 (2)	0.1228 (14)	
O2	0.5564 (2)	0.2194 (3)	0.8893 (2)	0.0691 (8)	
C2	0.7719 (3)	-0.3882 (4)	1.0694 (2)	0.0579 (11)	
H2A	0.7161	-0.4545	1.0764	0.069*	
H2B	0.8130	-0.3795	1.1294	0.069*	
C3	0.8315 (3)	-0.4604 (5)	1.0013 (3)	0.0783 (14)	
H3A	0.8450	-0.5680	1.0178	0.094*	
H3B	0.8944	-0.4069	1.0040	0.094*	
O4	1.0127 (2)	0.2744 (3)	0.7949 (2)	0.0800 (9)	
C4	0.7756 (3)	-0.4514 (5)	0.9038 (3)	0.0713 (13)	
H4A	0.8194	-0.4841	0.8606	0.086*	
H4B	0.7204	-0.5234	0.8983	0.086*	
C5	0.7367 (3)	-0.2935 (5)	0.8765 (3)	0.0571 (11)	
C6	0.7201 (3)	-0.1864 (4)	0.9470 (2)	0.0444 (9)	
C7	0.6864 (3)	-0.0254 (4)	0.9202 (2)	0.0488 (10)	
H7A	0.6318	-0.0343	0.8686	0.059*	
C8	0.6458 (3)	0.0595 (4)	0.9990 (3)	0.0477 (9)	
C9	0.6599 (3)	0.0044 (4)	1.0854 (3)	0.0486 (10)	
C10	0.6220 (3)	0.0715 (4)	1.1683 (2)	0.0673 (12)	
H10A	0.5884	0.1673	1.1514	0.101*	
H10B	0.6767	0.0903	1.2165	0.101*	
H10C	0.5767	0.0000	1.1902	0.101*	
C11	0.5931 (3)	0.2038 (5)	0.9799 (3)	0.0648 (12)	
C12	0.5003 (4)	0.3605 (5)	0.8655 (3)	0.1003 (17)	
H12A	0.4785	0.3631	0.7998	0.151*	
H12B	0.5416	0.4487	0.8832	0.151*	
H12C	0.4437	0.3628	0.8977	0.151*	
C13	0.7696 (3)	0.0644 (4)	0.8845 (2)	0.0432 (9)	
C14	0.8566 (3)	0.0938 (4)	0.9442 (2)	0.0570 (11)	
H14A	0.8619	0.0646	1.0061	0.068*	
C15	0.9360 (3)	0.1667 (5)	0.9120 (3)	0.0635 (12)	
H15A	0.9937	0.1868	0.9527	0.076*	
C16	0.9296 (3)	0.2093 (5)	0.8199 (3)	0.0577 (11)	
C17	0.8445 (3)	0.1823 (4)	0.7607 (2)	0.0519 (10)	
H17A	0.8393	0.2115	0.6988	0.062*	
C18	0.7645 (3)	0.1101 (4)	0.7942 (2)	0.0500 (10)	
H18A	0.7063	0.0927	0.7537	0.060*	
C19	1.0128 (3)	0.3077 (6)	0.6991 (3)	0.0961 (17)	
H19A	1.0752	0.3531	0.6908	0.144*	
H19B	0.9602	0.3788	0.6781	0.144*	
H19C	1.0032	0.2135	0.6638	0.144*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supporting information

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ν	0.080 (2)	0.055 (2)	0.0358 (17)	0.0012 (18)	0.0164 (16)	-0.0055 (16)
O1	0.096 (2)	0.071 (2)	0.0380 (14)	-0.0014 (16)	0.0202 (15)	-0.0075 (15)
C1	0.047 (2)	0.039 (2)	0.046 (2)	-0.0057 (18)	0.0089 (17)	-0.0011 (18)
O3	0.212 (4)	0.069 (2)	0.091 (3)	0.048 (3)	0.033 (3)	-0.015 (2)
O2	0.076 (2)	0.0566 (19)	0.074 (2)	0.0125 (16)	0.0078 (16)	0.0084 (16)
C2	0.072 (3)	0.047 (3)	0.055 (2)	-0.002 (2)	0.008 (2)	0.002 (2)
C3	0.113 (4)	0.055 (3)	0.066 (3)	0.012 (3)	0.012 (3)	-0.005 (2)
O4	0.072 (2)	0.092 (2)	0.079 (2)	-0.0276 (18)	0.0220 (16)	0.0123 (18)
C4	0.096 (4)	0.060 (3)	0.061 (3)	0.001 (3)	0.022 (3)	-0.008(2)
C5	0.071 (3)	0.043 (2)	0.060 (3)	-0.010 (2)	0.018 (2)	-0.013 (2)
C6	0.052 (2)	0.044 (2)	0.038 (2)	-0.0081 (19)	0.0100 (17)	-0.0026 (18)
C7	0.056 (2)	0.040 (2)	0.053 (2)	-0.0059 (19)	0.016 (2)	-0.0072 (18)
C8	0.049 (2)	0.040 (2)	0.058 (2)	-0.0060 (19)	0.0200 (19)	-0.007 (2)
C9	0.066 (3)	0.037 (2)	0.048 (2)	0.0044 (19)	0.025 (2)	0.0020 (19)
C10	0.100 (3)	0.051 (3)	0.057 (2)	0.002 (2)	0.034 (2)	-0.009 (2)
C11	0.085 (3)	0.044 (3)	0.069 (3)	-0.007 (3)	0.022 (3)	-0.003 (2)
C12	0.108 (4)	0.072 (3)	0.126 (4)	0.006 (3)	0.032 (3)	0.026 (3)
C13	0.047 (2)	0.037 (2)	0.044 (2)	0.0087 (18)	0.0037 (18)	-0.0025 (17)
C14	0.073 (3)	0.054 (3)	0.042 (2)	-0.009 (2)	0.002 (2)	0.0095 (19)
C15	0.071 (3)	0.063 (3)	0.056 (3)	-0.001 (2)	0.005 (2)	-0.002 (2)
C16	0.061 (3)	0.054 (3)	0.062 (3)	-0.010 (2)	0.021 (2)	-0.008(2)
C17	0.068 (3)	0.047 (2)	0.042 (2)	-0.013 (2)	0.014 (2)	0.0054 (18)
C18	0.052 (2)	0.053 (3)	0.046 (2)	-0.002 (2)	0.0082 (18)	0.004 (2)
C19	0.086 (4)	0.116 (4)	0.093 (4)	-0.036 (3)	0.035 (3)	0.007 (3)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

N—C1	1.372 (4)	C7—H7A	0.9800
N—C9	1.383 (4)	C8—C9	1.334 (4)
N—H0A	0.8600	C8—C11	1.444 (5)
O1—C5	1.242 (4)	C9—C10	1.498 (4)
C1—C6	1.367 (4)	C10—H10A	0.9600
C1—C2	1.495 (4)	C10—H10B	0.9600
O3—C11	1.214 (4)	C10—H10C	0.9600
O2—C11	1.349 (4)	C12—H12A	0.9600
O2—C12	1.453 (4)	C12—H12B	0.9600
C2—C3	1.506 (5)	C12—H12C	0.9600
C2—H2A	0.9700	C13—C18	1.366 (4)
C2—H2B	0.9700	C13—C14	1.388 (4)
C3—C4	1.514 (5)	C14—C15	1.390 (5)
С3—НЗА	0.9700	C14—H14A	0.9300
С3—Н3В	0.9700	C15—C16	1.383 (5)
O4—C16	1.361 (4)	C15—H15A	0.9300
O4—C19	1.426 (4)	C16—C17	1.361 (5)
C4—C5	1.495 (5)	C17—C18	1.403 (4)

supporting information

C4—H4A	0.9700	C17—H17A	0.9300
C4—H4B	0.9700	C18—H18A	0.9300
C5—C6	1.425 (4)	C19—H19A	0.9600
C6—C7	1.497 (4)	С19—Н19В	0.9600
C7—C13	1.527 (4)	С19—Н19С	0.9600
C7—C8	1.532 (4)		
C1—N—C9	122.9 (3)	C8—C9—C10	127.2 (4)
C1—N—H0A	118.5	N	112.3 (3)
C9—N—H0A	118.5	C9—C10—H10A	109.5
C6—C1—N	120.4 (3)	C9-C10-H10B	109.5
C6—C1—C2	123.3 (3)	H10A—C10—H10B	109.5
N—C1—C2	116.2 (3)	C9—C10—H10C	109.5
C11—O2—C12	115.1 (3)	H10A—C10—H10C	109.5
C1—C2—C3	111.3 (3)	H10B-C10-H10C	109.5
C1—C2—H2A	109.4	O3—C11—O2	120.2 (4)
C3—C2—H2A	109.4	O3—C11—C8	127.5 (4)
C1—C2—H2B	109.4	O2—C11—C8	112.2 (4)
С3—С2—Н2В	109.4	O2—C12—H12A	109.5
H2A—C2—H2B	108.0	O2—C12—H12B	109.5
C2—C3—C4	110.6 (4)	H12A—C12—H12B	109.5
С2—С3—НЗА	109.5	O2—C12—H12C	109.5
С4—С3—НЗА	109.5	H12A—C12—H12C	109.5
С2—С3—Н3В	109.5	H12B—C12—H12C	109.5
C4—C3—H3B	109.5	C18—C13—C14	118.0 (3)
НЗА—СЗ—НЗВ	108.1	C18—C13—C7	122.6 (3)
C16—O4—C19	117.7 (3)	C14—C13—C7	119.3 (3)
C5—C4—C3	114.0 (3)	C13—C14—C15	120.4 (3)
C5—C4—H4A	108.7	C13—C14—H14A	119.8
C3—C4—H4A	108.7	C15—C14—H14A	119.8
C5—C4—H4B	108.7	C16—C15—C14	120.4 (4)
C3—C4—H4B	108.7	C16—C15—H15A	119.8
H4A—C4—H4B	107.6	C14—C15—H15A	119.8
O1—C5—C6	120.4 (4)	C17—C16—O4	124.5 (4)
O1—C5—C4	120.5 (4)	C17—C16—C15	119.8 (4)
C6—C5—C4	119.1 (3)	O4—C16—C15	115.6 (4)
C1—C6—C5	120.0 (4)	C16—C17—C18	119.2 (3)
C1—C6—C7	120.7 (3)	C16—C17—H17A	120.4
C5—C6—C7	119.2 (3)	C18—C17—H17A	120.4
C6—C7—C13	110.2 (3)	C13—C18—C17	122.1 (3)
C6—C7—C8	112.3 (3)	C13—C18—H18A	119.0
С13—С7—С8	112.3 (3)	C17—C18—H18A	119.0
С6—С7—Н7А	107.2	O4—C19—H19A	109.5
С13—С7—Н7А	107.2	O4—C19—H19B	109.5
С8—С7—Н7А	107.2	H19A—C19—H19B	109.5
C9—C8—C11	119.3 (4)	O4—C19—H19C	109.5
C9—C8—C7	121.3 (4)	H19A—C19—H19C	109.5
C11—C8—C7	119.4 (3)	H19B—C19—H19C	109.5

C8—C9—N	120.4 (3)		
C9—N—C1—C6	5.7 (5)	C11—C8—C9—C10	3.5 (6)
C9—N—C1—C2	-170.1 (3)	C7—C8—C9—C10	-177.9 (3)
C6—C1—C2—C3	25.1 (5)	C1—N—C9—C8	-8.0 (5)
N—C1—C2—C3	-159.3 (3)	C1—N—C9—C10	168.2 (3)
C1—C2—C3—C4	-49.6 (5)	C12—O2—C11—O3	-3.8 (6)
C2—C3—C4—C5	49.9 (5)	C12—O2—C11—C8	178.5 (3)
C3—C4—C5—O1	158.2 (4)	C9—C8—C11—O3	22.9 (7)
C3—C4—C5—C6	-23.5 (6)	C7—C8—C11—O3	-155.7 (4)
N-C1-C6-C5	-173.0 (3)	C9—C8—C11—O2	-159.6 (4)
C2-C1-C6-C5	2.4 (5)	C7—C8—C11—O2	21.8 (5)
N-C1-C6-C7	6.9 (5)	C6—C7—C13—C18	112.6 (4)
C2-C1-C6-C7	-177.6 (3)	C8—C7—C13—C18	-121.4 (4)
O1-C5-C6-C1	174.9 (4)	C6—C7—C13—C14	-63.6 (4)
C4—C5—C6—C1	-3.4 (5)	C8—C7—C13—C14	62.4 (4)
O1—C5—C6—C7	-5.1 (5)	C18—C13—C14—C15	-0.4 (5)
C4—C5—C6—C7	176.7 (3)	C7—C13—C14—C15	175.9 (3)
C1—C6—C7—C13	110.8 (4)	C13—C14—C15—C16	-0.7 (6)
C5—C6—C7—C13	-69.3 (4)	C19—O4—C16—C17	-4.1 (6)
C1—C6—C7—C8	-15.3 (5)	C19—O4—C16—C15	174.6 (4)
C5—C6—C7—C8	164.7 (3)	C14—C15—C16—C17	1.2 (6)
C6—C7—C8—C9	13.1 (5)	C14—C15—C16—O4	-177.5 (3)
C13—C7—C8—C9	-111.8 (4)	O4—C16—C17—C18	178.0 (4)
C6—C7—C8—C11	-168.3 (3)	C15-C16-C17-C18	-0.6 (6)
C13—C7—C8—C11	66.8 (4)	C14—C13—C18—C17	1.1 (5)
C11—C8—C9—N	179.2 (3)	C7-C13-C18-C17	-175.1 (3)
C7—C8—C9—N	-2.2 (6)	C16—C17—C18—C13	-0.6 (5)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H··· A
N—H0A····O1 ⁱ	0.86	2.05	2.884 (4)	163
C10—H10A…O3	0.96	2.08	2.818 (5)	132

Symmetry code: (i) x, -y-1/2, z+1/2.