Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

3-(1,2-Diphenylethenyl)-2-phenyl-1*H*-indole

P. A. Abdullah Mahaboob,^a M. NizamMohideen,^a* G. Bhaskar^b and P. T. Perumal^b

^aDepartment of Physics, The New College (Autonomous), Chennai 600 014, India, and ^bOrganic Chemistry Division, Central Leather Research Institute, Chennai 600 020, India

Correspondence e-mail: mnizam_new@yahoo.in

Received 9 September 2010; accepted 1 October 2010

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.005 Å; R factor = 0.070; wR factor = 0.221; data-to-parameter ratio = 17.6.

In the title compound, $C_{28}H_{21}N$, the planar pyrrole ring makes dihedral angles of 1.5 (2), 42.4 (2), 65.4 (2) and 79.7 (1)°, with the least squares planes of the four phenyl rings. The molecular structure and crystal packing are stabilized by weak inter- and intramolecular $C-H \cdots \pi$ interactions.

Related literature

For applications of heteroarenes, see: Ritleng *et al.* (2002). For their pharmaceutical properties and related reactions, see: Sundberg (1996); Ferrer *et al.* (2007); Nair *et al.* (2004; Sakai *et al.* (2006, 2008); Cheng *et al.* (2007); For standard bond lengths, see: Allen *et al.* (1987). For bond distances and angles in related structures, see: NizamMohideen *et al.* (2010*a*,*b*).

Experimental

Crystal data

 $\begin{array}{l} C_{28}H_{21}N\\ M_r = 371.46\\ Monoclinic, P2_1/c\\ a = 11.4227 \ (6) \ \text{\AA}\\ b = 8.6998 \ (5) \ \text{\AA}\\ c = 20.6203 \ (13) \ \text{\AA}\\ \beta = 94.413 \ (4)^\circ \end{array}$

V = 2043.1 (2) Å ³
Z = 4
Mo $K\alpha$ radiation
$\mu = 0.07 \text{ mm}^{-1}$
T = 298 K
$0.32 \times 0.28 \times 0.22$ mm

Data collection

Bruker Kappa APEXII CCD diffractometer' Absorption correction: multi-scan (*SADABS*; Bruker, 2004) $T_{\min} = 0.978, T_{\max} = 0.985$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.070$ $wR(F^2) = 0.221$ S = 1.014674 reflections 266 parameters 14625 measured reflections 4674 independent reflections 1701 reflections with $I > 2\sigma(I)$ $R_{int} = 0.057$

H atoms treated by a mixture of independent and constrained refinement
$$\begin{split} &\Delta\rho_{max}=0.30\ e\ \mathring{A}^{-3}\\ &\Delta\rho_{min}=-0.14\ e\ \mathring{A}^{-3} \end{split}$$

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the N1/C1/C2/C3/C8 and C3–C8 rings, respectively.

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C18-H18\cdots Cg1$ $C20-H20\cdots Cg2^{i}$	0.93 0.93	2.92 2.92	3.562 (2) 3.825 (2)	127 164

Symmetry code: (i) $x, -y - \frac{1}{2}, z - \frac{3}{2}$.

Data collection: *APEX2* (Bruker, 2004); cell refinement: *APEX2* and *SAINT* (Bruker, 2004); data reduction: *SAINT* and *XPREP* (Bruker, 2004); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL97* and *PLATON*.

MNM and PAM thank the Management of the New College (Autonomous), Chennai, India, for providing the necessary facilities.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JJ2059).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cheng, C. H., Bhuvaneswari, S. & Jeganmohan, M. (2007). Chem. Eur. J. pp. 8285–8293.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Ferrer, C., Amijs, C. H. M. & Echavarren, A. M. (2007). Chem. Eur. J. pp. 1358–1373.
- Nair, V., Ros, S., Jayan, C. N. & Pillai, B. S. (2004). *Tetrahedron* 60, 1959–1982.
- NizamMohideen, M., Bhaskar, G. & Perumal, P. T. (2010a). Acta Cryst. E66, 02506.
- NizamMohideen, M., Bhaskar, G. & Perumal, P. T. (2010b). Acta Cryst. E66, o2514.
- Ritleng, V., Sirlin, C. & Pfeffer, M. (2002). Chem. Rev. 102, 1731-1769.
- Sakai, N., Annaka, K., Fujita, A., Sato, A. & Konakahara, T. (2008). J. Org. Chem. 73, 4160–4165.

Sakai, N., Annaka, K. & Konakahara, T. (2006). *Tetrahedron Lett.* 47, 631–634. Sheldrick, G. M. (2008). *Acta Cryst.* A64, 112–122.

- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Sundberg, R. J. (1996). Indoles. London: Academic Press.

supporting information

Acta Cryst. (2010). E66, o2745 [https://doi.org/10.1107/S1600536810039309]

3-(1,2-Diphenylethenyl)-2-phenyl-1*H*-indole

P. A. Abdullah Mahaboob, M. NizamMohideen, G. Bhaskar and P. T. Perumal

S1. Comment

The indole ring system exists ubiquitously in natural products, and exhibits biological and pharmaceutical properties (Sundberg, 1996). Ferrer and co-workers reported a systematic investigation on the gold-catalyzed intra- and intermolecular addition of indoles to alkynes (Ferrer *et al.*, 2007). Cheng and co-workers investigated the reaction of indoles with alkynyl alcohols employing platinum as a catalyst (Cheng *et al.*, 2007). Development of heteroarene functionalization has attracted much attention of their wide range of applications such as fluorescent dyes, synthetic analogues of natural products, and pharmaceuticals (Ritleng *et al.*, 2002). There has been considerable interest in the catalytic use of indium(III) halides in organic synthesis (Nair *et al.*, 2004), due to their unique properties such as non-toxicity, stability in air, and water tolerance (Sakai *et al.*, 2006). Indium(III) bromide is known to catalyze intramolecular cyclization of 2-alkynylanilines (Sakai *et al.*, 2008). In continuation of our work in this area, the title compound, C₂₈H₂₁N, (I) has been prepared and its crystal structure is reported.

In the title compound the pyrrole ring is planar, the maximum deviation from the least squares plane being -0.009 (1)Å for atom N1. The dihedral angle formed by the least squares planes of the pyrrole ring and the four benzene rings is $1.5 (2)^{\circ} (C3-C8), 42.4 (2)^{\circ} (C9-C14), 65.4 (2)^{\circ} (C17-C22) and 79.7 (1)^{\circ} (C23-C28), respectively. The dihedral angle between the phenyl rings C9-C14 and C23-C28 is 88.5 (2)^{\circ}. The dihedral angle between benzene rings C3-C8 and C17-C22 is 66.7 (7)^{\circ} and between rings C17-C22 and C23-C28 is 87.0 (2)^{\circ}. All bond lengths and angles are within normal ranges (Allen$ *et al.*, 1987) and comparable with those in a previously reported structure (NizamMohideen*et al.* $, 2010a,b). The molecular packing is stabilized by an intra and intermolecular C-H···<math>\pi$ interactions (Table 1).

S2. Experimental

A mixture of diphenylacetylene (2.4 mmol), 2-Phenyl indole (2 mmol), indium tribromide (0.2 mmol) in toluene (4 ml) was stirred at 383° K temperature for 2.5 h. After completion of the reaction as indicated by TLC, the reaction mixture was diluted with water and extracted with ethyl acetate. The combined organic layers were dried over anhydrous Na₂SO₄, concentrated *in vacuo* and purified by column chromatography on silica gel (Merck, 100 - 200 mesh) to afford the desired product after crystallization.

S3. Refinement

H1N was located by a difference fourier map and refined isotropically. All other H atoms were positioned geometrically, with C—H = 0.93 and N—H = 0.89Å constrained to ride on their parent atoms, with $U_{iso}(H) = xU_{eq}(C, N)$, where x = 1.5 for methyl H and x = 1.2 for all H atoms.

Figure 1

The molecular structure of the title compound with the atom numbering scheme and 50% probability displacement ellipsoids. H atoms are presented as a small spheres of arbitrary radius.

Figure 2

C—H··· π interactions (dashed lines) in the title compound. *Cg* denotes the ring centroid. [Symmetry codes: (i) *x*,*y*,*z*; (ii) *x*,1/2-*y*,-1/2+*z*]

3-(1,2-Diphenylethenyl)-2-phenyl-1*H*-indole

Crystal data

 $C_{28}H_{21}N$ $M_r = 371.46$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 11.4227 (6) Å b = 8.6998 (5) Å c = 20.6203 (13) Å $\beta = 94.413$ (4)° V = 2043.1 (2) Å³ Z = 4

Data collection

Bruker Kappa APEXII CCD	14625 measured reflections
diffractometer'	4674 independent reflections
Radiation source: fine-focus sealed tube	1701 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.057$
ω and φ scans	$\theta_{\rm max} = 28.4^{\circ}, \ \theta_{\rm min} = 2.5^{\circ}$
Absorption correction: multi-scan	$h = -15 \rightarrow 13$
(SADABS; Bruker, 2004)	$k = -11 \rightarrow 10$
$T_{\min} = 0.978, \ T_{\max} = 0.985$	<i>l</i> = −27→27

F(000) = 784

 $\theta = 2.5 - 18.8^{\circ}$

 $\mu = 0.07 \text{ mm}^{-1}$ T = 298 K

Block. colourless

 $0.32 \times 0.28 \times 0.22 \text{ mm}$

 $D_{\rm x} = 1.208 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 1461 reflections

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.070$	Hydrogen site location: inferred from
$wR(F^2) = 0.221$	neighbouring sites
S = 1.01	H atoms treated by a mixture of independent
4674 reflections	and constrained refinement
266 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0923P)^2]$
0 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta \rho_{\rm max} = 0.30 \ {\rm e} \ {\rm \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.14 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	y	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	
C1	0.6739 (3)	0.0471 (4)	0.09769 (15)	0.0597 (9)	
C2	0.7394 (3)	0.1773 (4)	0.11004 (14)	0.0567 (8)	
C3	0.6655 (3)	0.2848 (4)	0.14155 (14)	0.0553 (8)	

C4	0.6798 (3)	0.4337 (4)	0.16344 (16)	0.0663 (9)
H4	0.7507	0.4842	0.1595	0.080*
C5	0.5896 (3)	0.5078 (4)	0.19108 (15)	0.0716 (10)
Н5	0.6000	0.6082	0.2059	0.086*
C6	0.4831 (3)	0.4337 (5)	0.19703 (17)	0.0770 (11)
H6	0.4230	0.4842	0.2163	0.092*
C7	0.4662 (3)	0.2860 (5)	0.17452 (17)	0.0755 (11)
H7	0.3951	0.2356	0.1777	0.091*
C8	0.5580(3)	0.2157 (4)	0.14725 (16)	0.0606 (9)
C9	0.7056 (3)	-0.1003 (4)	0.06783 (15)	0.0594 (9)
C10	0.6325 (3)	-0.1789 (5)	0.02351 (19)	0.0823 (11)
H10	0.5589	-0.1383	0.0111	0.099*
C11	0.6650 (4)	-0.3161 (5)	-0.0031(2)	0.0910 (12)
H11	0.6136	-0.3684	-0.0325	0.109*
C12	0.7729 (5)	-0.3737 (5)	0.0142 (2)	0.0926 (13)
H12	0.7963	-0.4649	-0.0045	0.111*
C13	0.8484 (3)	-0.3000(5)	0.0588 (2)	0.0807 (11)
H13	0.9214	-0.3426	0.0712	0.097*
C14	0.8157 (3)	-0.1631 (4)	0.08506 (17)	0.0687 (10)
H14	0.8675	-0.1119	0.1146	0.082*
C15	0.8582 (3)	0.2075 (4)	0.09030 (17)	0.0633 (9)
C16	0.8850 (3)	0.1954 (4)	0.02908 (16)	0.0647 (9)
H16	0.9649	0.1998	0.0233	0.078*
C17	0.8091 (3)	0.1761 (4)	-0.03113 (15)	0.0558 (8)
C18	0.6996 (3)	0.2448 (4)	-0.04003 (16)	0.0598 (9)
H18	0.6674	0.2921	-0.0051	0.072*
C19	0.6376 (3)	0.2438 (4)	-0.1002 (2)	0.0757 (10)
H19	0.5648	0.2918	-0.1059	0.091*
C20	0.6835 (4)	0.1720 (5)	-0.15140 (19)	0.0947 (13)
H20	0.6419	0.1727	-0.1920	0.114*
C21	0.7894 (4)	0.0995 (5)	-0.1438 (2)	0.0995 (13)
H21	0.8189	0.0484	-0.1787	0.119*
C22	0.8522 (3)	0.1024 (4)	-0.08424 (19)	0.0801 (11)
H22	0.9249	0.0541	-0.0793	0.096*
C23	0.9520 (3)	0.2436 (4)	0.14166 (17)	0.0627 (9)
C24	1.0480 (3)	0.3370 (5)	0.1295 (2)	0.0875 (12)
H24	1.0514	0.3805	0.0885	0.105*
C25	1.1354 (3)	0.3657 (5)	0.1754 (2)	0.1007 (14)
H25	1.1977	0.4287	0.1662	0.121*
C26	1.1321 (4)	0.3016 (6)	0.2357 (2)	0.1003 (14)
H26	1.1942	0.3174	0.2669	0.120*
C27	1.0389 (4)	0.2150 (5)	0.2505 (2)	0.0953 (13)
H27	1.0362	0.1739	0.2920	0.114*
C28	0.9482 (3)	0.1884 (4)	0.20368 (19)	0.0793 (11)
H28	0.8834	0.1320	0.2144	0.095*
N1	0.5641 (3)	0.0706 (4)	0.11907 (15)	0.0738 (9)
H1N	0.506 (3)	0.001 (5)	0.1187 (18)	0.107 (15)*
	× /			

supporting information

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
C1	0.051 (2)	0.076 (3)	0.053 (2)	0.0087 (17)	0.0059 (15)	0.0111 (17)
C2	0.061 (2)	0.065 (2)	0.0440 (19)	0.0007 (18)	0.0009 (15)	-0.0004 (16)
C3	0.0518 (19)	0.070 (2)	0.0433 (19)	-0.0028 (17)	-0.0002 (14)	0.0064 (17)
C4	0.067 (2)	0.072 (3)	0.060 (2)	-0.0061 (19)	0.0086 (17)	0.0030 (19)
C5	0.081 (3)	0.073 (2)	0.061 (2)	0.008 (2)	0.0041 (19)	-0.0043 (19)
C6	0.064 (2)	0.106 (3)	0.062 (2)	0.025 (2)	0.0081 (18)	0.001 (2)
C7	0.053 (2)	0.104 (3)	0.070 (3)	-0.004 (2)	0.0087 (17)	0.016 (2)
C8	0.059 (2)	0.063 (2)	0.059 (2)	0.0065 (18)	-0.0016 (16)	0.0055 (18)
C9	0.065 (2)	0.061 (2)	0.053 (2)	-0.0056 (18)	0.0043 (17)	0.0070 (17)
C10	0.076 (3)	0.085 (3)	0.083 (3)	-0.013 (2)	-0.010 (2)	0.004 (2)
C11	0.112 (4)	0.076 (3)	0.083 (3)	-0.020 (3)	-0.008 (3)	-0.017 (2)
C12	0.124 (4)	0.072 (3)	0.086 (3)	-0.013 (3)	0.036 (3)	-0.011 (2)
C13	0.084 (3)	0.071 (3)	0.089 (3)	0.000 (2)	0.020 (2)	0.009 (2)
C14	0.076 (3)	0.064 (2)	0.067 (2)	-0.0036 (19)	0.0091 (19)	0.0002 (19)
C15	0.058 (2)	0.074 (2)	0.058 (2)	0.0023 (16)	0.0013 (17)	-0.0049 (18)
C16	0.060 (2)	0.073 (2)	0.061 (2)	-0.0035 (17)	0.0036 (18)	-0.0031 (18)
C17	0.0472 (19)	0.068 (2)	0.051 (2)	-0.0121 (16)	-0.0044 (15)	-0.0015 (17)
C18	0.066 (2)	0.060 (2)	0.052 (2)	-0.0105 (17)	-0.0013 (17)	-0.0002 (16)
C19	0.079 (2)	0.072 (3)	0.073 (3)	-0.0073 (19)	-0.012 (2)	0.010 (2)
C20	0.115 (4)	0.113 (3)	0.052 (3)	-0.021 (3)	-0.011 (2)	-0.007 (2)
C21	0.100 (3)	0.136 (4)	0.063 (3)	-0.016 (3)	0.008 (2)	-0.032 (3)
C22	0.065 (2)	0.100 (3)	0.076 (3)	0.000 (2)	0.009 (2)	-0.022 (2)
C23	0.053 (2)	0.071 (2)	0.062 (2)	0.0034 (17)	-0.0091 (17)	-0.0047 (18)
C24	0.063 (2)	0.128 (4)	0.071 (3)	-0.006 (2)	0.002 (2)	-0.018 (2)
C25	0.058 (3)	0.152 (4)	0.091 (3)	-0.008 (2)	-0.002 (2)	-0.023 (3)
C26	0.062 (3)	0.146 (4)	0.089 (4)	0.014 (3)	-0.016 (2)	-0.030 (3)
C27	0.091 (3)	0.129 (4)	0.063 (3)	0.005 (3)	-0.011 (2)	-0.012 (2)
C28	0.076 (3)	0.092 (3)	0.067 (3)	-0.004 (2)	-0.013 (2)	0.000 (2)
N1	0.060 (2)	0.083 (2)	0.078 (2)	-0.0147 (18)	0.0016 (16)	0.0084 (18)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

C1—C2	1.370 (4)	C15—C16	1.326 (4)
C1—N1	1.376 (4)	C15—C23	1.481 (5)
C1—C9	1.479 (4)	C16—C17	1.468 (4)
C2—C3	1.446 (4)	C16—H16	0.9300
C2—C15	1.470 (4)	C17—C18	1.386 (4)
C3—C4	1.377 (4)	C17—C22	1.391 (4)
C3—C8	1.380 (4)	C18—C19	1.381 (5)
C4—C5	1.376 (4)	C18—H18	0.9300
C4—H4	0.9300	C19—C20	1.365 (5)
C5—C6	1.392 (5)	C19—H19	0.9300
С5—Н5	0.9300	C20—C21	1.362 (5)
C6—C7	1.374 (5)	C20—H20	0.9300
С6—Н6	0.9300	C21—C22	1.375 (5)

supporting information

C7—C8	1 372 (4)	C21—H21	0 9300
C7—H7	0.9300	С22—Н22	0.9300
C8—N1	1 393 (4)	C^{23} C^{28}	1 370 (5)
C9-C10	1 372 (5)	C^{23} C^{24}	1.370(5) 1 404 (5)
C9-C14	1.372(3) 1 392(4)	C_{24} C_{25}	1.101(5) 1.345(5)
	1.372(4) 1.377(5)	$C_{24} = C_{23}$	0.0300
C10_H10	0.0300	$C_{24} = 1124$	1 365 (6)
C_{11} C_{12}	1 252 (5)	$C_{25} = C_{20}$	0.0200
C11_U12	1.332(3)	C25—II25	1 258 (5)
	0.9300	C_{20}	1.556 (5)
C12—C13	1.3/1(3)	C20—H20	0.9300
C12—H12	0.9300	$C_2 = C_2 $	1.380 (5)
C13—C14	1.372 (5)	$C_2/-H_2/$	0.9300
С13—Н13	0.9300	C28—H28	0.9300
C14—H14	0.9300	NI—HIN	0.89 (4)
C2—C1—N1	108.4 (3)	C2—C15—C23	118.2 (3)
C2—C1—C9	130.3 (3)	C15—C16—C17	130.5 (3)
N1—C1—C9	121.4 (3)	C15—C16—H16	114.8
C1—C2—C3	106.8 (3)	C17—C16—H16	114.8
C1—C2—C15	126.7 (3)	C18—C17—C22	117.7 (3)
C_{3} — C_{2} — C_{15}	126.3 (3)	C18—C17—C16	122.1 (3)
C4—C3—C8	117.8 (3)	C22-C17-C16	119.8 (3)
C4-C3-C2	134 2 (3)	C19 - C18 - C17	120.8(3)
$C_{8} - C_{3} - C_{2}$	108.0(3)	C19 - C18 - H18	119.6
$C_{5} - C_{4} - C_{3}$	120.2(3)	C17 - C18 - H18	119.6
$C_5 - C_4 - H_4$	119.9	C_{20} C_{19} C_{18}	119.8 (4)
$C_3 = C_4 = H_4$	110.0	$C_{20} = C_{10} = C_{10}$	120.1
C_{1} C_{2} C_{3} C_{6}	120.5 (3)	$C_{18} C_{19} H_{19}$	120.1
$C_{4} = C_{5} = C_{0}$	110.8	$C_{10} = C_{10} = C_{10}$	120.1 120.0(4)
C4-C5-H5	119.0	$C_{21} = C_{20} = C_{13}$	120.9 (4)
$C_{0} = C_{0} = C_{0}$	117.0	$C_{21} = C_{20} = H_{20}$	119.5
C/-CO-CS	120.5 (5)	C19 - C20 - H20	119.5
C = C = H C	119.9	$C_{20} = C_{21} = C_{22}$	119.4 (4)
	119.9	$C_{20} = C_{21} = H_{21}$	120.5
$C_8 = C_7 = U_7$	117.0 (3)	$C_{22} = C_{21} = H_{21}$	120.3
C8-C7-H7	121.2	$C_{21} = C_{22} = C_{17}$	121.3 (4)
C_{0} C_{1} C_{1} C_{2} C_{3} C_{3}	121.2	C21—C22—H22	119.3
$C/-C\delta-C\delta$	123.0 (3)	C1/-C22-H22	119.5
C/-C8-NI	129.8 (3)	$C_{28} = C_{23} = C_{24}$	116.8 (3)
C3—C8—N1	106.6 (3)	C28—C23—C15	121.4 (3)
C10-C9-C14	117.7 (3)	C24—C23—C15	121.8 (3)
C10—C9—C1	123.6 (3)	C25—C24—C23	122.0 (4)
C14—C9—C1	118.6 (3)	C25—C24—H24	119.0
C9—C10—C11	121.9 (4)	C23—C24—H24	119.0
C9—C10—H10	119.0	C24—C25—C26	119.6 (4)
C11—C10—H10	119.0	C24—C25—H25	120.2
C12—C11—C10	119.0 (4)	C26—C25—H25	120.2
C12—C11—H11	120.5	C27—C26—C25	120.5 (4)
C10—C11—H11	120.5	C27—C26—H26	119.7

C11—C12—C13	121.1 (4)	C25—C26—H26	119.7
C11—C12—H12	119.4	C26—C27—C28	119.7 (4)
C13—C12—H12	119.4	C26—C27—H27	120.2
C12—C13—C14	119.6 (4)	C28—C27—H27	120.2
C12—C13—H13	120.2	C23—C28—C27	121.3 (4)
C14—C13—H13	120.2	C23—C28—H28	119.4
C13—C14—C9	120.5 (4)	C27—C28—H28	119.4
C13—C14—H14	119.7	C1—N1—C8	110.1 (3)
C9—C14—H14	119.7	C1—N1—H1N	126 (2)
C16—C15—C2	122.4 (3)	C8—N1—H1N	124 (2)
C16—C15—C23	119.4 (3)		
N1—C1—C2—C3	0.9 (3)	C3—C2—C15—C16	-120.7 (4)
C9—C1—C2—C3	-178.4 (3)	C1—C2—C15—C23	-122.5 (3)
N1—C1—C2—C15	-174.5 (3)	C3—C2—C15—C23	63.0 (4)
C9—C1—C2—C15	6.2 (5)	C2-C15-C16-C17	10.5 (6)
C1—C2—C3—C4	-177.6 (3)	C23—C15—C16—C17	-173.2 (3)
C15—C2—C3—C4	-2.2 (6)	C15—C16—C17—C18	35.3 (5)
C1—C2—C3—C8	0.1 (3)	C15—C16—C17—C22	-152.4 (4)
C15—C2—C3—C8	175.5 (3)	C22—C17—C18—C19	-2.0 (4)
C8—C3—C4—C5	1.2 (4)	C16—C17—C18—C19	170.4 (3)
C2—C3—C4—C5	178.8 (3)	C17—C18—C19—C20	1.2 (5)
C3—C4—C5—C6	-0.2 (5)	C18—C19—C20—C21	0.8 (6)
C4—C5—C6—C7	-0.9 (5)	C19—C20—C21—C22	-1.8 (6)
C5—C6—C7—C8	0.9 (5)	C20—C21—C22—C17	0.9 (6)
C6—C7—C8—C3	0.2 (5)	C18—C17—C22—C21	1.0 (5)
C6—C7—C8—N1	-177.8 (3)	C16—C17—C22—C21	-171.6 (3)
C4—C3—C8—C7	-1.3 (5)	C16—C15—C23—C28	-148.1(3)
C2—C3—C8—C7	-179.4(3)	C2-C15-C23-C28	28.3 (5)
C4—C3—C8—N1	177.1 (3)	C16—C15—C23—C24	32.6 (5)
C2—C3—C8—N1	-1.0(3)	C2-C15-C23-C24	-150.9(3)
C2-C1-C9-C10	-138.1 (4)	C28—C23—C24—C25	3.1 (5)
N1—C1—C9—C10	42.6 (5)	C15—C23—C24—C25	-177.6 (3)
C2—C1—C9—C14	41.5 (5)	C23—C24—C25—C26	0.5 (6)
N1—C1—C9—C14	-137.8 (3)	C24—C25—C26—C27	-3.0(7)
C14—C9—C10—C11	0.6 (5)	C25—C26—C27—C28	1.7 (6)
C1—C9—C10—C11	-179.8 (3)	C24—C23—C28—C27	-4.4 (5)
C9-C10-C11-C12	-1.1 (6)	C15—C23—C28—C27	176.3 (3)
C10-C11-C12-C13	1.8 (6)	C26—C27—C28—C23	2.1 (6)
C11—C12—C13—C14	-2.0(6)	C2-C1-N1-C8	-1.6(4)
C12—C13—C14—C9	1.4 (5)	C9—C1—N1—C8	177.8 (3)
C10-C9-C14-C13	-0.7(5)	C7—C8—N1—C1	179.9 (3)
C1-C9-C14-C13	179.6 (3)	C3—C8—N1—C1	1.6 (4)
C1—C2—C15—C16	53.8 (5)		(·)

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the N1/C1/C2/C3/C8 and C3-C8 rings, respectively.

D—H···A	D—H	H···A	$D \cdots A$	D—H··· A
C18—H18…Cg1	0.93	2.92	3.562 (2)	127
C20—H20····Cg2 ⁱ	0.93	2.92	3.825 (2)	164

Symmetry code: (i) x, -y-1/2, z-3/2.