

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis(tetraphenylarsonium) di-*µ*-hydroxidobis[(nitrilotriacetato)cobalt(III)] octahydrate

Hendrik G. Visser^a* and Jack K. Clegg^b

^aDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa, and ^bDepartment of Chemistry, University of Cambridge, Lensfield Rd, Cambridge CB2 1EW, England Correspondence e-mail: visserhg.sci@mail.uovs.ac.za

Received 9 September 2010; accepted 29 September 2010

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.030; wR factor = 0.098; data-to-parameter ratio = 54.0.

In the title compound, $(C_{24}H_{20}As)_2[Co_2(C_6H_6NO_6)_2(OH)_2]$. 8H₂O, the Co^{III} atom in the binuclear centrosymmetric anion is octahedrally surrounded by one N atom and three O atoms of the tetradentate nitrilotriacetate ligand and two μ hydroxide ligands. The crystal packing is controlled by C- $H \cdots O$ and $O - H \cdots O$ hydrogen-bonding interactions. The crystal employed in this study proved to be a two-component twin around $(0\overline{1}1)$.

Related literature

For synthetic background, related structures and kinetics, see: Mori et al. (1958); Visser et al. (1997, 1999, 2001, 2002, 2003). For twinning, which was resolved using the program ROTAX, see: Cooper et al. (2002).

Experimental

Crystal data	
$(C_{24}H_{20}As)_2[Co_2(C_6H_6NO_6)_2-$	$\beta = 97.040 \ (5)^{\circ}$
$(OH)_2]\cdot 8H_2O$	$\gamma = 101.152 \ (5)^{\circ}$
$M_r = 1438.88$	V = 1542.4 (13) Å ³
Triclinic, $P\overline{1}$	Z = 1
a = 7.328 (5) Å	Mo $K\alpha$ radiation
b = 14.491 (5) Å	$\mu = 1.68 \text{ mm}^{-1}$
c = 16.564 (5) Å	T = 100 K
$\alpha = 113.555 (5)^{\circ}$	$0.44 \times 0.19 \times 0.03$ mm

 $R_{\rm int} = 0.030$

23209 measured reflections

23223 independent reflections

20726 reflections with $I > 2\sigma(I)$

Data collection

Bruker X8 APEXII 4K KappaCCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2004) $T_{\rm min} = 0.687, T_{\rm max} = 0.950$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.030$	H atoms treated by a mixture of
$wR(F^2) = 0.098$	independent and constrained
S = 0.93	refinement
23223 reflections	$\Delta \rho_{\rm max} = 0.41 \text{ e } \text{\AA}^{-3}$
430 parameters	$\Delta \rho_{\rm min} = -0.36 \text{ e } \text{\AA}^{-3}$
10 restraints	

Table 1

Selected bond lengths (Å).

 $C_{01} - O_{11}$ 1.9027 (11) $C_{01} - 07$ 1 8915 (11) 1.8903 (11) Co1 - O71.8994(11)Co1 - O3Co1-O5 Co1 - N11.8806 (11) 1.9312 (13)

Symmetry code: (i) -x + 1, -y + 2, -z + 1.

Table 2				
Hydrogen-bond	geometry	(Å,	°).	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C4-H4A\cdots O4^{ii}$	0.97	2.49	3.239 (2)	134
C13-H13···O6 ⁱⁱⁱ	0.93	2.39	3.1207 (19)	135
$C14-H14\cdots O6^{iv}$	0.93	2.55	3.146 (3)	123
$C15-H15\cdots O5^{iv}$	0.93	2.58	3.313 (3)	136
C23-H23···O7	0.93	2.56	3.4034 (19)	150
$C52-H2\cdots O9^{v}$	0.93	2.53	3.386 (2)	153
$O7-H7\cdots O4^{vi}$	0.77 (2)	2.00 (2)	2.740 (2)	162 (2)
O8−H8A···O10 ^{vii}	0.82 (2)	1.94 (2)	2.758 (2)	178 (2)
$O8-H8B\cdots O2$	0.78 (2)	1.96 (2)	2.7329 (17)	171 (2)
O9−H9A···O8	0.80(2)	2.25 (2)	3.045 (2)	170 (2)
$O9-H9B\cdots O8^{viii}$	0.82 (2)	1.92 (2)	2.7290 (19)	169 (3)
O10−H10B···O11	0.76 (2)	2.09 (2)	2.8483 (18)	174 (2)
$O10-H10C\cdots O9^{ix}$	0.82 (2)	1.95 (2)	2.771 (2)	175 (2)
$O11-H11A\cdots O4^{iii}$	0.76 (2)	2.22 (2)	2.9542 (16)	164 (2)
$O11 - H11B \cdot \cdot \cdot O2^{ix}$	0.89 (2)	2.02 (2)	2.905 (2)	172 (2)

Symmetry codes: (ii) -x + 2, -y + 2, -z + 1; (iii) -x + 1, -y + 1, -z + 1; (iv) x + 1, y, z; (v) x, y - 1, z - 1; (vi) x - 1, y, z; (vii) x + 1, y + 1, z; (viii) -x + 1, -y + 2, -z + 2; (ix) x, y - 1, z.

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2004): data reduction: SAINT-Plus and XPREP (Bruker, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

The UFS is gratefully acknowledged for funding. JKC acknowledges the Marie Curie IIF scheme of the 7th EU Framework Program

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KJ2157).

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.

- Brandenburg, K. & Putz, H. (2005). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Bruker (2004). SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cooper, R. I., Gould, R. O., Parsons, S. & Watkin, D. J. (2002). J. Appl. Cryst. 35, 168–174.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Mori, M., Shibata, M., Kyuno, E. & Okubo, Y. (1958). Bull. Chem. Soc. Jpn, 31, 940–947.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Visser, H. G., Purcell, W. & Basson, S. S. (1999). Polyhedron, 18, 2795-2799.
- Visser, H. G., Purcell, W. & Basson, S. S. (2001). *Polyhedron*, **20**, 185–190.
- Visser, H. G., Purcell, W. & Basson, S. S. (2002). *Transition Met. Chem.* 27, 461–465.
- Visser, H. G., Purcell, W. & Basson, S. S. (2003). *Transition Met. Chem.* 28, 235–240.
- Visser, H. G., Purcell, W., Basson, S. S. & Claassen, Q. (1997). Polyhedron, 16, 2851–2854.

Acta Cryst. (2010). E66, m1401-m1402 [https://doi.org/10.1107/S160053681003895X]

Bis(tetraphenylarsonium) di-µ-hydroxido-bis[(nitrilotriacetato)cobalt(III)] octahydrate

Hendrik G. Visser and Jack K. Clegg

S1. Comment

The title complex, $(AsC_{24}H_20)_2[Co(C_6H_6N)(\mu-OH)]_2.8(H_2O)$, forms a part of an ongoing investigation of the structural and kinetic behaviour of Co^{III}-nitrilotriacetato compounds (Visser *et al.*, (1997, 1999, 2001, 2002, 2003). The Co^{III} atom is octahedrally surrounded by one N atom and three O atoms of the tetradentate nitrilotriacetato ligand and two μ -hydroxo ligands (Fig. 1). The Co–O bond distances which vary between 1.8806 (11) and 1.9027 (11) Å and the Co–N1 distance of 1.9312 (13) Å fall well within the normal range (Table 1). The octahedron around the Co atom is only slighlty distorted. The crystal packing is controlled by C–H–O and O–H–O hydrogen bonding interactions (Table 2), creating a three dimensional network.

S2. Experimental

The title compound was prepared similar to the method described by Mori *et al.* (1958). $CoCl_2.6H_2O$ (5 g, 21 mmol) and nitrilotriacetic acid (4 g, 21 mmol) was added to a KHCO₃ solution (25 cm³, 2.5 *M*). H_2O_2 (1 ml, 30%) was added to this solution and the mixture was placed on an ice bath. After 5 h a purple precipitate separated out. The precipitate was filtered and washed several times with cold water. The product was then redissolved in hot water after which an excess of tetraphenylarsonium was added. Purple crystals of the title compound were obtained after several days.

S3. Refinement

The methyl and aromatic H atoms were placed in geometrically idealized positions (C—H = 0.93-0.96 Å) and constrained to ride on their parent atoms, with $U_{iso}(H) = 1.5U_{eq}(C)$ and $1.2U_{eq}(C)$, respectively. The hydrogen atoms of the aqua solvent molecules were obtained from the difference Fourier map. Despite appearing (at least visually) to be single, the crystal employed in this study proved to be a two-component twin around (0 -1 1). Twinning which was resolved using the programs ROTAX (Cooper *et al.*, 2002) and Make HKLF5 (Farrugia, 1999) with a final minor component of 0.0712 (4).

Figure 1

View of the title compund (50% probability displacement ellipsoids). Hydrogen atoms and solvent water molecules omitted for clarity.

Bis(tetraphenylarsonium) di-µ-hydroxido-bis[(nitrilotriacetato)cobalt(III)] octahydrate

Crystal data

$(C_{24}H_{20}As)_{2}[Co_{2}(C_{6}H_{6}NO_{6})_{2}(OH)_{2}]\cdot 8H_{2}O$ $M_{r} = 1438.88$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 7.328 (5) Å b = 14.491 (5) Å c = 16.564 (5) Å a = 113.555 (5)° $\beta = 97.040$ (5)° $\gamma = 101.152$ (5)° V = 1542.4 (13) Å ³	Z = 1 F(000) = 740 $D_x = 1.549 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9875 reflections $\theta = 2.5-28.3^{\circ}$ $\mu = 1.68 \text{ mm}^{-1}$ T = 100 K Plate, purple 0.44 × 0.19 × 0.03 mm
Data collection Bruker X8 APEXII 4K KappaCCD diffractometer	23209 measured reflections 23223 independent reflections
Radiation source: sealed tube Graphite monochromator Detector resolution: 0 pixels mm ⁻¹ phi and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2004) $T_{\min} = 0.687, T_{\max} = 0.950$	20726 reflections with $I > 2\sigma(I)$ $R_{int} = 0.030$ $\theta_{max} = 25.0^{\circ}, \theta_{min} = 1.6^{\circ}$ $h = -8 \rightarrow 8$ $k = -17 \rightarrow 17$ $l = -19 \rightarrow 19$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.030$	Hydrogen site location: inferred from
$wR(F^2) = 0.098$	neighbouring sites
S = 0.93	H atoms treated by a mixture of independent
23223 reflections	and constrained refinement
430 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0699P)^2 + 0.5465P]$
10 restraints	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.001$
direct methods	$\Delta \rho_{\rm max} = 0.41 \text{ e } \text{\AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.36 \text{ e } \text{\AA}^{-3}$

Special details

Experimental. The crystal was coated in Exxon Paratone N hydrocarbon oil and mounted on a thin mohair fibre attached to a copper pin. Upon mounting on the diffractometer, the crystal was quenched to 100(K) under a cold nitrogen gas stream supplied by an Oxford Cryosystems Cryostream and data were collected at this temperature.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}*/U_{ m eq}$	
As	0.39743 (2)	0.447716 (10)	0.212481 (9)	0.01293 (5)	
Col	0.52032 (3)	0.909913 (13)	0.511641 (11)	0.00933 (6)	
05	0.37750 (13)	0.76948 (7)	0.46088 (6)	0.0136 (2)	
06	0.37392 (15)	0.61846 (7)	0.46771 (7)	0.0226 (2)	
03	0.67319 (13)	0.87442 (7)	0.42572 (6)	0.0118 (2)	
O7	0.35509 (14)	0.94527 (7)	0.43838 (6)	0.0103 (2)	
C25	-0.0013 (2)	0.57427 (12)	0.12621 (10)	0.0239 (4)	
H25	-0.1144	0.5486	0.0827	0.029*	
C22	0.3389 (2)	0.65222 (11)	0.25432 (9)	0.0183 (3)	
H22	0.4537	0.6783	0.2969	0.022*	
C24	0.0660 (2)	0.68072 (12)	0.18135 (10)	0.0249 (4)	
H24	-0.0029	0.7261	0.1754	0.030*	
N1	0.69776 (16)	0.87921 (8)	0.58731 (7)	0.0111 (2)	
C44	0.6324 (2)	0.27716 (12)	-0.04076 (10)	0.0270 (4)	
H44	0.6776	0.2413	-0.0912	0.032*	
C54	-0.0652 (2)	0.19678 (11)	0.24101 (10)	0.0223 (4)	
H4	-0.1589	0.1472	0.2459	0.027*	
C13	0.7874 (2)	0.53345 (10)	0.45190 (9)	0.0159 (3)	
H13	0.7972	0.5165	0.5005	0.019*	
C11	0.6130 (2)	0.51328 (10)	0.31153 (9)	0.0141 (3)	
C16	0.7629 (2)	0.58563 (10)	0.30779 (9)	0.0171 (3)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H36	0.7538	0.6028	0.2593	0.021*
C12	0.6230(2)	0.48623 (10)	0.38328 (9)	0.0145 (3)
H12	0.5222	0.4378	0.3854	0.017*
C3	0.8420 (2)	0.87705 (10)	0.45975 (9)	0.0114 (3)
C55	-0.0350 (2)	0.30323 (11)	0.29762 (9)	0.0189 (3)
Н5	-0.1083	0.3244	0.3403	0.023*
C6	0.6159 (2)	0.76932 (10)	0.57216 (9)	0.0168 (3)
H6B	0.5795	0.7698	0.6267	0.020*
H6A	0.7129	0.7317	0.5603	0.020*
C23	0.2356 (2)	0.71896 (12)	0.24507 (10)	0.0241 (4)
H23	0.2805	0.7903	0.2820	0.029*
C5	0.4429 (2)	0.71259 (11)	0.49372 (9)	0.0150 (3)
C4	0.8820 (2)	0.89285 (11)	0.55782 (9)	0.0136 (3)
H4B	0.9468	0.8425	0.5631	0.016*
H4A	0.9641	0.9624	0.5962	0.016*
C51	0.2135 (2)	0.34422 (10)	0.22566 (9)	0.0141 (3)
C21	0.2698 (2)	0.54575 (11)	0.19945 (9)	0.0155 (3)
C46	0.6374 (2)	0.33354 (11)	0.11640 (10)	0.0209 (3)
H46	0.6868	0.3365	0.1721	0.025*
C14	0.9360 (2)	0.60521 (11)	0.44813 (9)	0.0169 (3)
H14	1.0451	0.6362	0.4945	0.020*
C53	0.0440 (2)	0.16579 (11)	0.17818 (10)	0.0229 (4)
H3	0.0234	0.0951	0.1410	0.028*
C45	0.7061 (2)	0.28103 (11)	0.04135 (10)	0.0258 (4)
H45	0.8017	0.2485	0.0465	0.031*
C15	0.9256 (2)	0.63202 (10)	0.37639 (9)	0.0170 (3)
H15	1.0266	0.6805	0.3745	0.020*
C52	0.1852 (2)	0.23883 (11)	0.16938 (9)	0.0190 (3)
H2	0.2587	0.2175	0.1269	0.023*
C56	0.1045 (2)	0.37675 (11)	0.28960 (9)	0.0163 (3)
H21	0.1252	0.4475	0.3268	0.020*
C41	0.4944 (2)	0.38168 (10)	0.10790 (9)	0.0165 (3)
C42	0.4214 (2)	0.37872 (12)	0.02556 (10)	0.0243 (4)
H42	0.3265	0.4115	0.0201	0.029*
C26	0.0983 (2)	0.50630(11)	0.13542 (10)	0.0195 (3)
H27	0.0516	0.4348	0.0993	0.023*
C43	0.4924 (3)	0.32580 (12)	-0.04900 (10)	0.0322 (4)
H43	0.4448	0.3233	-0.1047	0.039*
01	0.38813 (13)	0.94103 (7)	0.60717 (6)	0.0128 (2)
O4	0.97100 (13)	0.86981 (7)	0.41750 (6)	0.0142 (2)
O2	0.45349 (15)	1.00672 (8)	0.75721 (6)	0.0219 (2)
C1	0.4993 (2)	0.96884 (10)	0.68350 (9)	0.0144 (3)
C2	0.7004 (2)	0.95505 (11)	0.68087 (9)	0.0143 (3)
H2A	0.7902	1.0216	0.6967	0.017*
H2B	0.7395	0.9288	0.7238	0.017*
08	0.68108 (17)	1.03630 (9)	0.91382 (8)	0.0247 (3)
011	0.17288 (17)	0.12264 (9)	0.75373 (7)	0.0268 (3)
09	0.33579 (19)	1.08138 (10)	0.99202 (9)	0.0304 (3)

O10	0.04230 (18)	0.13286 (10)	0.91136 (8)	0.0327 (3)	
H9B	0.315 (4)	1.0439 (17)	1.0176 (15)	0.079 (9)*	
H8B	0.616 (3)	1.0211 (15)	0.8671 (13)	0.056 (5)*	
H8A	0.789 (3)	1.0632 (15)	0.9127 (13)	0.056 (5)*	
H9A	0.430 (3)	1.0771 (13)	0.9721 (12)	0.035 (4)*	
H10B	0.069 (3)	0.1294 (14)	0.8674 (12)	0.047 (4)*	
H11A	0.157 (3)	0.1295 (14)	0.7106 (12)	0.044 (4)*	
H11B	0.265 (3)	0.0912 (13)	0.7531 (12)	0.044 (4)*	
H7	0.254 (3)	0.9294 (13)	0.4445 (11)	0.035 (4)*	
H10C	0.126 (3)	0.1179 (14)	0.9378 (12)	0.047 (4)*	

Atomic displacement parameters $(Å^2)$

	U^{11}	<i>U</i> ²²	<i>U</i> ³³	U^{12}	U^{13}	<i>U</i> ²³
As	0.01200 (8)	0.01345 (9)	0.01245 (8)	0.00238 (6)	0.00164 (6)	0.00552 (6)
Col	0.00692 (10)	0.01049 (10)	0.01102 (10)	0.00240 (8)	0.00233 (8)	0.00496 (8)
05	0.0106 (5)	0.0127 (5)	0.0169 (5)	0.0017 (4)	0.0024 (4)	0.0068 (4)
O6	0.0148 (6)	0.0148 (5)	0.0392 (6)	0.0025 (5)	0.0063 (5)	0.0133 (5)
O3	0.0095 (5)	0.0139 (5)	0.0123 (5)	0.0044 (4)	0.0034 (4)	0.0051 (4)
O7	0.0070 (5)	0.0105 (5)	0.0128 (5)	0.0014 (4)	0.0021 (4)	0.0049 (4)
C25	0.0205 (9)	0.0330 (9)	0.0250 (8)	0.0095 (8)	0.0061 (7)	0.0180 (7)
C22	0.0254 (9)	0.0190 (8)	0.0117 (7)	0.0051 (7)	0.0077 (7)	0.0071 (6)
C24	0.0349 (10)	0.0310 (9)	0.0272 (9)	0.0213 (8)	0.0195 (8)	0.0217 (8)
N1	0.0099 (6)	0.0112 (6)	0.0125 (6)	0.0030 (5)	0.0024 (5)	0.0055 (5)
C44	0.0320 (10)	0.0193 (8)	0.0241 (9)	0.0003 (7)	0.0169 (8)	0.0040 (7)
C54	0.0172 (8)	0.0223 (8)	0.0296 (9)	-0.0005 (7)	0.0019 (7)	0.0170 (7)
C13	0.0173 (8)	0.0187 (8)	0.0146 (7)	0.0092 (7)	0.0038 (6)	0.0081 (6)
C11	0.0154 (8)	0.0130 (7)	0.0114 (7)	0.0048 (6)	0.0026 (6)	0.0025 (6)
C16	0.0192 (8)	0.0176 (8)	0.0157 (7)	0.0060 (7)	0.0055 (6)	0.0073 (6)
C12	0.0121 (7)	0.0133 (7)	0.0180 (7)	0.0038 (6)	0.0040 (6)	0.0061 (6)
C3	0.0112 (7)	0.0058 (7)	0.0145 (7)	0.0004 (6)	0.0017 (6)	0.0029 (6)
C55	0.0159 (8)	0.0254 (8)	0.0187 (8)	0.0059 (7)	0.0042 (6)	0.0126 (7)
C6	0.0175 (8)	0.0154 (7)	0.0226 (8)	0.0044 (6)	0.0054 (7)	0.0130 (6)
C23	0.0397 (11)	0.0175 (8)	0.0191 (8)	0.0104 (8)	0.0139 (8)	0.0087 (7)
C5	0.0123 (8)	0.0153 (8)	0.0208 (8)	0.0049 (6)	0.0104 (6)	0.0086 (6)
C4	0.0095 (7)	0.0154 (7)	0.0174 (7)	0.0045 (6)	0.0034 (6)	0.0079 (6)
C51	0.0119 (7)	0.0157 (7)	0.0143 (7)	0.0012 (6)	-0.0009 (6)	0.0084 (6)
C21	0.0170 (8)	0.0178 (7)	0.0153 (7)	0.0051 (6)	0.0065 (6)	0.0097 (6)
C46	0.0171 (8)	0.0211 (8)	0.0179 (8)	0.0033 (7)	0.0000 (7)	0.0040 (6)
C14	0.0126 (8)	0.0173 (8)	0.0159 (7)	0.0052 (6)	0.0007 (6)	0.0025 (6)
C53	0.0237 (9)	0.0139 (8)	0.0257 (8)	0.0011 (7)	0.0013 (7)	0.0061 (7)
C45	0.0191 (9)	0.0192 (8)	0.0321 (9)	0.0040 (7)	0.0078 (7)	0.0042 (7)
C15	0.0145 (8)	0.0152 (7)	0.0211 (8)	0.0043 (6)	0.0079 (6)	0.0066 (6)
C52	0.0184 (8)	0.0189 (8)	0.0190 (8)	0.0069 (7)	0.0052 (7)	0.0064 (6)
C56	0.0182 (8)	0.0139 (7)	0.0144 (7)	0.0053 (6)	0.0014 (6)	0.0040 (6)
C41	0.0154 (8)	0.0140 (7)	0.0164 (7)	-0.0001 (6)	0.0046 (6)	0.0046 (6)
C42	0.0298 (10)	0.0277 (9)	0.0204 (8)	0.0116 (8)	0.0080 (7)	0.0131 (7)
C26	0.0191 (8)	0.0184 (8)	0.0212 (8)	0.0043 (7)	0.0049 (7)	0.0091 (6)

C43	0.0478 (12)	0.0314 (9)	0.0189 (8)	0.0078 (9)	0.0119 (8)	0.0125 (7)
01	0.0102 (5)	0.0159 (5)	0.0142 (5)	0.0039 (4)	0.0042 (4)	0.0078 (4)
O4	0.0097 (5)	0.0163 (5)	0.0160 (5)	0.0031 (4)	0.0051 (4)	0.0058 (4)
O2	0.0205 (6)	0.0339 (6)	0.0144 (5)	0.0131 (5)	0.0085 (5)	0.0096 (5)
C1	0.0147 (8)	0.0144 (7)	0.0164 (8)	0.0031 (6)	0.0041 (6)	0.0092 (6)
C2	0.0142 (8)	0.0177 (7)	0.0119 (7)	0.0054 (6)	0.0034 (6)	0.0065 (6)
08	0.0244 (7)	0.0317 (7)	0.0205 (6)	0.0069 (6)	0.0048 (5)	0.0142 (5)
O11	0.0276 (7)	0.0400 (7)	0.0196 (6)	0.0191 (6)	0.0096 (5)	0.0141 (6)
09	0.0297 (7)	0.0379 (7)	0.0403 (7)	0.0168 (6)	0.0195 (6)	0.0267 (6)
O10	0.0264 (7)	0.0510 (8)	0.0320 (7)	0.0129 (6)	0.0107 (6)	0.0267 (7)

Geometric parameters (Å, °)

As—C11	1.9049 (15)	С3—О3	1.2816 (18)
As—C21	1.9102 (15)	C3—C4	1.5288 (19)
As—C51	1.9145 (15)	C55—C56	1.387 (2)
As—C41	1.9134 (15)	С55—Н5	0.9300
Co1—O5	1.8806 (11)	C6—C5	1.520 (2)
Co1—O1	1.9027 (11)	C6—H6B	0.9700
Co1—O3	1.8903 (11)	С6—Н6А	0.9700
Co1—O5	1.8806 (11)	C23—H23	0.9300
Co1—O3	1.8903 (11)	C5—O6	1.2295 (16)
Co1—O7	1.8915 (11)	C5—O5	1.2855 (17)
Co1—O7	1.8915 (11)	C4—H4B	0.9700
Co1—O7 ⁱ	1.8994 (11)	C4—H4A	0.9700
Co1—N1	1.9312 (13)	C51—C56	1.391 (2)
Co1—Co1 ⁱ	2.8516 (10)	C51—C52	1.3916 (19)
O5—C5	1.2855 (17)	C21—C26	1.394 (2)
O6—C5	1.2295 (16)	C46—C41	1.389 (2)
O3—C3	1.2816 (18)	C46—C45	1.387 (2)
O7—Co1 ⁱ	1.8994 (11)	C46—H46	0.9300
O7—H7	0.765 (18)	C14—C15	1.3881 (19)
C25—C26	1.377 (2)	C14—H14	0.9300
C25—C24	1.388 (2)	C53—C52	1.396 (2)
C25—H25	0.9300	С53—Н3	0.9300
C22—C23	1.381 (2)	C45—H45	0.9300
C22—C21	1.388 (2)	C15—H15	0.9300
C22—H22	0.9300	С52—Н2	0.9300
C24—C23	1.382 (2)	C56—H21	0.9300
C24—H24	0.9300	C41—C42	1.383 (2)
N1—C4	1.4956 (19)	C42—C43	1.392 (2)
N1—C6	1.4943 (17)	C42—H42	0.9300
N1—C2	1.4941 (17)	C26—H27	0.9300
C44—C43	1.375 (3)	C43—H43	0.9300
C44—C45	1.375 (2)	O1—C1	1.2799 (16)
C44—H44	0.9300	O2—C1	1.2415 (17)
C54—C53	1.376 (2)	C1—O2	1.2415 (17)
C54—C55	1.403 (2)	C1—C2	1.528 (2)

С54—Н4	0.9300	C2—H2A	0.9700
C13—C14	1.379 (2)	C2—H2B	0.9700
C13—C12	1.391 (2)	O8—H8B	0.780 (19)
C13—H13	0.9300	O8—H8A	0.82 (2)
C11—C12	1.3906 (19)	O11—H11A	0.758 (17)
C11—C16	1 390 (2)	011—H11B	0.886 (19)
C16-C15	1.390(2) 1.383(2)	09—H9B	0.82(2)
C16—H36	0.9300	09_H9A	0.02(2)
C12 H12	0.0300	010 H10P	0.000(19)
C_{12}	1.2206(19)		0.702(18)
$C_3 = 04$	1.2396 (18)	010—HIOC	0.822 (18)
03-04	1.2396 (18)		
C11—As—C21	112.01 (6)	O4—C3—O3	122.95 (13)
C11—As—C51	111.91 (6)	O4—C3—O3	122.95 (13)
C21—As—C51	107.22 (7)	O4—C3—O3	122.95 (13)
C11—As—C41	105.75 (7)	O4—C3—C4	120.09 (12)
C21—As—C41	110.79 (6)	Q4—C3—C4	120.09 (12)
C_{51} As C_{41}	109 18 (6)	03-C3-C4	116.94 (12)
$05-C_01-03$	89.83 (5)	03-C3-C4	116.94(12)
$O_5 C_{01} O_3$	80.83 (5)	C_{5} C_{5} C_{5} C_{5}	110.94 (12)
05 - 01 - 03	89.83 (5)	$C_{56} = C_{55} = C_{54}$	119.00 (13)
05 - 01 - 03	89.85 (5) 80.82 (5)	C54 C55 H5	120.2
05 - 01 - 05	09.03(3)	C34-C35-H3	120.2
05_01_07	95.00 (5)		112.41 (11)
05-01-07	93.60 (5)		109.1
03-Col-07	92.04 (5)	С5—С6—Н6В	109.1
O3—Co1—O7	92.04 (5)	N1—C6—H6A	109.1
O5—Co1—O7	93.60 (5)	С5—С6—Н6А	109.1
O5—Co1—O7	93.60 (5)	H6B—C6—H6A	107.9
O3—Co1—O7	92.04 (5)	C24—C23—C22	120.60 (14)
O3—Co1—O7	92.04 (5)	С24—С23—Н23	119.7
O7—Co1—O7	0.00 (5)	С22—С23—Н23	119.7
O5—Co1—O7 ⁱ	175.18 (4)	O6—C5—O5	125.03 (13)
O5Co1O7 ⁱ	175.18 (4)	O6—C5—O5	125.03 (13)
O3—Co1—O7 ⁱ	93.03 (5)	O6—C5—O5	125.03 (13)
O3—Co1—O7 ⁱ	93.03 (5)	O6—C5—O5	125.03 (13)
07—Co1—O7 ⁱ	82.43 (5)	Q6—C5—C6	119.13 (12)
$07-001-07^{i}$	82.43 (5)	06	119.13 (12)
05-Co1-O1	89.72 (5)	05	115 82 (12)
05-Co1-01	89.72 (5)	05 - C5 - C6	115.82(12)
$03-C_{0}1-01$	17272(4)	N1 - C4 - C3	109.35(11)
$O_3 = Co_1 = O_1$	172.72(4) 172.72(4)	$N_1 = C_4 = C_3$ $N_1 = C_4 = HAB$	109.35 (11)
03 - 01 - 01	172.72(4)	C_{1}^{-} C_{4}^{-} H_{4}^{-} H_{4}^{-}	109.8
07 - 01 - 01	95.25 (0) 05.25 (6)	$C_3 - C_4 - H_4 D$	109.8
$O_{1} = O_{1} = O_{1}$	95.25(0) 97.02(4)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.0
0^{-} 0^{-} 0^{-} 0^{-} 0^{-}	07.75 (4) 00 70 (5)	C_{J}	109.0
05-01-NI	δδ. /δ (5)	H4B - U4 - H4A	108.5
US-Col-NI	88.78(5)	$C_{50} - C_{51} - C_{52}$	121.13 (13)
U3—Col—NI	87.07 (6)	C56—C51—As	118.76 (10)
O3—Co1—N1	87.07 (6)	C52—C51—As	120.06 (11)

O7—Co1—N1	177.45 (4)	C22—C21—C26	120.58 (14)
O7—Co1—N1	177.45 (4)	C22—C21—As	121.78 (11)
O7 ⁱ —Co1—N1	95.23 (5)	C26—C21—As	117.57 (11)
O1—Co1—N1	85.65 (6)	C41—C46—C45	119.64 (14)
O5—Co1—Co1 ⁱ	134.86 (4)	C41—C46—H46	120.2
O5—Co1—Co1 ⁱ	134.86 (4)	C45—C46—H46	120.2
O3—Co1—Co1 ⁱ	93.37 (3)	C13—C14—C15	121.14 (13)
O3—Co1—Co1 ⁱ	93.37 (3)	C13—C14—H14	119.4
O7—Co1—Co1 ⁱ	41.32 (3)	C15—C14—H14	119.4
O7—Co1—Co1 ⁱ	41.32 (3)	C54—C53—C52	121.04 (14)
07^{i} —Co1—Co1 ⁱ	41.11 (4)	С54—С53—Н3	119.5
$O1-Co1-Co1^i$	92.10 (3)	С52—С53—Н3	119.5
N1—Co1—Co1 ⁱ	136.33 (3)	C44—C45—C46	119.77 (16)
C5-O5-C01	115.09 (9)	C44—C45—H45	120.1
C3-O3-Co1	113.20 (9)	C46—C45—H45	120.1
$Co1-O7-Co1^{i}$	97.57 (5)	C16—C15—C14	119.09 (14)
Со1—О7—Н7	108.2 (13)	С16—С15—Н15	120.5
Col ⁱ —O7—H7	117.9 (13)	C14—C15—H15	120.5
$C_{26} - C_{25} - C_{24}$	120.49 (15)	C53 - C52 - C51	118.51 (15)
C26—C25—H25	119.8	С53—С52—Н2	120.7
C24—C25—H25	119.8	С51—С52—Н2	120.7
C23—C22—C21	119.29 (14)	C55—C56—C51	119.68 (13)
C23—C22—H22	120.4	С55—С56—Н21	120.2
C21—C22—H22	120.4	С51—С56—Н21	120.2
C_{23} C_{24} C_{25}	119.74 (14)	C46-C41-C42	120.64 (14)
C23—C24—H24	120.1	C46—C41—As	117.79 (11)
C25—C24—H24	120.1	C42—C41—As	121.54 (12)
C4—N1—C6	112.32 (10)	C41—C42—C43	118.91 (16)
C4-N1-C2	115.56 (11)	C41—C42—H42	120.5
C6—N1—C2	111.17 (10)	C43—C42—H42	120.5
C4—N1—Co1	106.22 (8)	C_{25} C_{26} C_{21}	119.29 (14)
C6-N1-Co1	107.09 (8)	C25—C26—H27	120.4
C2-N1-Co1	103.62 (9)	C21—C26—H27	120.4
C43—C44—C45	120.61 (15)	C44-C43-C42	120.42 (15)
C43—C44—H44	119.7	C44—C43—H43	119.8
C45—C44—H44	119.7	C42—C43—H43	119.8
C53—C54—C55	119.99 (14)	C1 - O1 - Co1	111.85 (10)
С53—С54—Н4	120.0	02—C1—O1	123.92 (14)
С55—С54—Н4	120.0	02—C1—O1	123.92 (14)
C14—C13—C12	120.32 (13)	02—C1—C2	119.79 (12)
С14—С13—Н13	119.8	02—C1—C2	119.79 (12)
C12—C13—H13	119.8	01	116.28 (12)
C12—C11—C16	121.26 (13)	N1—C2—C1	108.05 (11)
C12—C11—As	120.89 (11)	N1—C2—H2A	110.1
C16—C11—As	117.79 (10)	C1—C2—H2A	110.1
C15—C16—C11	119.81 (13)	N1—C2—H2B	110.1
C15—C16—H36	120.1	C1—C2—H2B	110.1
C11—C16—H36	120.1	H2A—C2—H2B	108.4

C13—C12—C11	118.38 (13)	H8B—O8—H8A	107 (2)
C13—C12—H12	120.8	H11A—O11—H11B	108 (2)
C11—C12—H12	120.8	H9B—O9—H9A	112 (2)
O4—C3—O3	122.95 (13)	H10B—O10—H10C	107 (2)
O3—Co1—O5—C5	88.39 (10)	N1—C6—C5—O5	-9.19 (18)
O3—Co1—O5—C5	88.39 (10)	N1-C6-C5-O5	-9.19 (18)
O7—Co1—O5—C5	-179.58 (10)	C6—N1—C4—C3	91.91 (12)
O7—Co1—O5—C5	-179.58 (10)	C2—N1—C4—C3	-139.11 (11)
O1—Co1—O5—C5	-84.34 (10)	Co1—N1—C4—C3	-24.85 (12)
N1-Co1-O5-C5	1.32 (10)	O4—C3—C4—N1	-169.55 (11)
Col ⁱ —Col—O5—C5	-177.02 (8)	O4—C3—C4—N1	-169.55 (11)
O5—Co1—O3—C3	-107.97 (9)	O3—C3—C4—N1	12.06 (16)
O5—Co1—O3—C3	-107.97 (9)	O3—C3—C4—N1	12.06 (16)
O7—Co1—O3—C3	158.44 (9)	C11—As—C51—C56	72.54 (12)
O7—Co1—O3—C3	158.44 (9)	C21—As—C51—C56	-50.66 (12)
O7 ⁱ —Co1—O3—C3	75.91 (9)	C41—As—C51—C56	-170.74 (11)
N1—Co1—O3—C3	-19.18 (9)	C11—As—C51—C52	-110.07 (12)
Co1 ⁱ —Co1—O3—C3	117.09 (8)	C21—As—C51—C52	126.73 (11)
O5-Co1-O7-Co1 ⁱ	177.26 (4)	C41—As—C51—C52	6.65 (13)
O5-Co1-O7-Co1 ⁱ	177.26 (4)	C23—C22—C21—C26	0.2 (2)
O3-Co1-O7-Co1 ⁱ	-92.78 (5)	C23—C22—C21—As	-176.62 (11)
O3-Co1-O7-Co1 ⁱ	-92.78 (5)	C11—As—C21—C22	3.51 (14)
01-Co1-07-Co1 ⁱ	87.20 (5)	C51—As—C21—C22	126.65 (12)
O5-Co1-N1-C4	114.14 (8)	C41—As—C21—C22	-114.30 (12)
O5-Co1-N1-C4	114.14 (8)	C11—As—C21—C26	-173.39 (11)
O3—Co1—N1—C4	24.25 (8)	C51—As—C21—C26	-50.25 (13)
O3—Co1—N1—C4	24.25 (8)	C41—As—C21—C26	68.80 (13)
O7 ⁱ —Co1—N1—C4	-68.53 (8)	C55—C54—C53—C52	-0.2 (2)
O1—Co1—N1—C4	-156.04 (8)	C43—C44—C45—C46	0.7 (2)
Col ⁱ —Col—Nl—C4	-67.56 (9)	C41—C46—C45—C44	0.1 (2)
O5-Co1-N1-C6	-6.07 (8)	C56—C51—C52—C53	0.2 (2)
O5-Co1-N1-C6	-6.07 (8)	As-C51-C52-C53	-177.17 (11)
O3—Co1—N1—C6	-95.97 (9)	C54—C55—C56—C51	-0.1 (2)
O3—Co1—N1—C6	-95.97 (9)	C52—C51—C56—C55	-0.1 (2)
O7 ⁱ —Co1—N1—C6	171.26 (8)	As-C51-C56-C55	177.30 (10)
O1—Co1—N1—C6	83.74 (9)	C45—C46—C41—C42	-0.7(2)
Col ⁱ —Col—Nl—C6	172.23 (7)	C45—C46—C41—As	177.33 (11)
O5-Co1-N1-C2	-123.66 (9)	C11—As—C41—C46	39.24 (12)
O5-Co1-N1-C2	-123.66 (9)	C21—As—C41—C46	160.81 (11)
O3—Co1—N1—C2	146.44 (8)	C51—As—C41—C46	-81.33 (12)
O3—Co1—N1—C2	146.44 (8)	C11—As—C41—C42	-142.74 (12)
O7 ⁱ —Co1—N1—C2	53.67 (9)	C21—As—C41—C42	-21.17 (13)
01—Co1—N1—C2	-33.85 (8)	C51—As—C41—C42	96.69 (13)
Col ⁱ —Col—N1—C2	54.64 (10)	C46—C41—C42—C43	0.6 (2)
C21—As—C11—C12	119.23 (12)	As-C41-C42-C43	-177.37 (12)
C51—As—C11—C12	-1.21 (14)	C24—C25—C26—C21	-1.4 (2)
C41—As—C11—C12	-119.99 (12)	C22—C21—C26—C25	0.8 (2)

C21—As—C11—C16	-63.40 (13)	As-C21-C26-C25	177.78 (11)
C51—As—C11—C16	176.16 (11)	C45—C44—C43—C42	-0.8 (2)
C41—As—C11—C16	57.38 (13)	C41—C42—C43—C44	0.1 (2)
As-C11-C16-C15	-177.37 (11)	O5—Co1—O1—C1	114.55 (9)
As-C11-C12-C13	177.29 (10)	O5—Co1—O1—C1	114.55 (9)
Co1—O3—C3—O4	-170.26 (10)	O7—Co1—O1—C1	-151.86 (9)
Co1—O3—C3—O4	-170.26 (10)	O7—Co1—O1—C1	-151.86 (9)
Co1-O3-C3-C4	8.08 (14)	O7 ⁱ —Co1—O1—C1	-69.66 (9)
C53—C54—C55—C56	0.3 (2)	N1—Co1—O1—C1	25.75 (9)
C4—N1—C6—C5	-106.93 (13)	Co1 ⁱ Co1C1	-110.57 (8)
C2—N1—C6—C5	121.84 (13)	Co1-01-C1-02	169.64 (11)
Co1—N1—C6—C5	9.30 (13)	Co1-01-C1-02	169.64 (11)
C25—C24—C23—C22	0.1 (2)	Co1-01-C1-C2	-9.27 (14)
C21—C22—C23—C24	-0.6 (2)	C4—N1—C2—C1	151.43 (11)
Co1	-177.51 (11)	C6—N1—C2—C1	-79.03 (13)
Co1—O5—C5—O6	-177.51 (11)	Co1—N1—C2—C1	35.68 (12)
Co1	4.07 (15)	O2—C1—C2—N1	162.19 (12)
N1-C6-C5-O6	172.29 (12)	O2—C1—C2—N1	162.19 (12)
N1—C6—C5—O6	172.29 (12)	O1-C1-C2-N1	-18.86 (16)

Symmetry code: (i) -x+1, -y+2, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H···· A
C4—H4A····O4 ⁱⁱ	0.97	2.49	3.239 (2)	134
С13—Н13…Обііі	0.93	2.39	3.1207 (19)	135
C14—H14····O6 ^{iv}	0.93	2.55	3.146 (3)	123
C15—H15····O5 ^{iv}	0.93	2.58	3.313 (3)	136
С23—Н23…О7	0.93	2.56	3.4034 (19)	150
С52—Н2…О9 ^v	0.93	2.53	3.386 (2)	153
O7—H7····O4 ^{vi}	0.77 (2)	2.00 (2)	2.740 (2)	162 (2)
O8—H8A…O10 ^{vii}	0.82 (2)	1.94 (2)	2.758 (2)	178 (2)
O8—H8 <i>B</i> ···O2	0.78 (2)	1.96 (2)	2.7329 (17)	171 (2)
O9—H9A…O8	0.80 (2)	2.25 (2)	3.045 (2)	170 (2)
O9—H9 <i>B</i> ···O8 ^{viii}	0.82 (2)	1.92 (2)	2.7290 (19)	169 (3)
O10—H10B…O11	0.76 (2)	2.09 (2)	2.8483 (18)	174 (2)
O10—H10 <i>C</i> ···O9 ^{ix}	0.82 (2)	1.95 (2)	2.771 (2)	175 (2)
O11—H11A····O4 ⁱⁱⁱ	0.76 (2)	2.22 (2)	2.9542 (16)	164 (2)
O11—H11 <i>B</i> ····O2 ^{ix}	0.89 (2)	2.02 (2)	2.905 (2)	172 (2)

Symmetry codes: (ii) -*x*+2, -*y*+2, -*z*+1; (iii) -*x*+1, -*y*+1, -*z*+1; (iv) *x*+1, *y*, *z*; (v) *x*, *y*-1, *z*-1; (vi) *x*-1, *y*, *z*; (vii) *x*+1, *y*+1, *z*; (viii) -*x*+1, -*y*+2, -*z*+2; (ix) *x*, *y*-1, *z*.