

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Dimethyl 4,4'-(pyridine-2,6-diyl)dibenzoate

Yue Cui, Qian Gao, Huan-Huan Wang, Lin Wang and Ya-Bo Xie*

College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, People's Republic of China Correspondence e-mail: xieyabo@bjut.edu.cn

Received 17 October 2010; accepted 26 October 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.002 Å; R factor = 0.037; wR factor = 0.109; data-to-parameter ratio = 18.6.

The title molecule, $C_{21}H_{17}NO_4$, reveals axial symmetry, with the pyridine N atom located on a crystallographic twofold axis. The molecule is dish-shaped, with dihedral angles between the benzene and pyridine rings of 24.643 (1) and 24.797 (1)°, respectively. The –COO plane and the benzene ring are almost coplanar [dihedral angle = 5.286 (1)°].

Related literature

For applications of the title compound, see: Boyle *et al.* (2010). For the synthesis, see: Li & Zhou (2009).

Experimental

Crystal data

C₂₁H₁₇NO₄ $M_r = 347.36$ Orthorhombic, Cmc2₁ a = 34.296 (10) Å b = 7.401 (2) Å c = 6.623 (2) Å

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 1998) $T_{\rm min} = 0.945, T_{\rm max} = 0.966$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.037$ $wR(F^2) = 0.109$ S = 1.052264 reflections 122 parameters $V = 1681.1 (9) \text{ Å}^{3}$ Z = 4Mo K\alpha radiation $\mu = 0.10 \text{ mm}^{-1}$ T = 296 K $0.60 \times 0.40 \times 0.36 \text{ mm}$

7265 measured reflections 2264 independent reflections 2151 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.035$

 $\begin{array}{l} 1 \mbox{ restraint} \\ \mbox{H-atom parameters constrained} \\ \Delta \rho_{max} = 0.25 \mbox{ e } \mbox{A}^{-3} \\ \Delta \rho_{min} = -0.16 \mbox{ e } \mbox{A}^{-3} \end{array}$

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This work was supported by the National Natural Science Foundation of China (grant No. 21075114), the Science and Technology Development Project of Beijing Education Committee (grant No. KM200910005025) and the Special Environmental Protection Fund for Public Welfare (project No. 201009015).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2283).

References

Boyle, T. J., Ottley, L. M. & Raymond, R. (2010). J. Coord. Chem., 63, 545–557.
Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Li, J. R. & Zhou, H. C. (2009). Angew. Chem. Int. Ed. A48, 1-5.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2010). E66, o2975 [https://doi.org/10.1107/S160053681004362X]

Dimethyl 4,4'-(pyridine-2,6-diyl)dibenzoate

Yue Cui, Qian Gao, Huan-Huan Wang, Lin Wang and Ya-Bo Xie

S1. Comment

Pyridine-type compounds and their derivatives have been extensively investigated because of their wide application for the synthesis of various complex compounds (Boyle *et al.*, 2010). Herein, we report the crystal structure of the title compound (Fig. 1), dimethyl 4,4'-pyridine-2,6-diyldibenzoate.

The title compound, $C_{21}H_{17}NO_4$, was synthesised by the reaction of 2,6-dibromopyridine and 4-methoxycarbonylphenylboronic acid. The molecule reveals a crystallographic twofold axis with the N atom lying on a special position - the rotation twofold axis. The dihedral angles between the benzene ring and the pyridine ring are 24.643 (1)° and 24.797 (1)°, respectively. The –COO plane and the benzene ring are almost coplanar, and the dihedral angles are 5.363 (1)° and 4.794 (1)°, respectively.

S2. Experimental

The title compound was synthesised according to the reported procedure (Li & Zhou, 2009). Colourless single crystals suitable for X-ray diffraction were obtained by recrystallisation from a solvents mixture of ethyl acetate and hexane.

S3. Refinement

All H atoms were placed in calculated positions with C—H = 0.93–0.96 Å, and refined as riding with $U_{iso(H)} = 1.2U_{eq}(C)$ or $1.5U_{eq}(C_{methyl})$.

Figure 1

The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level, H atoms are shown as small circles of arbitrary radius. Symmetry code: A = -x, y, z.

Dimethyl 4,4'-(pyridine-2,6-diyl)dibenzoate

Crystal data

 $C_{21}H_{17}NO_4$ $M_r = 347.36$ Orthorhombic, $Cmc2_1$ Hall symbol: C 2c -2 a = 34.296 (10) Å b = 7.401 (2) Å c = 6.623 (2) Å V = 1681.1 (9) Å³ Z = 4

Data collection

Bruker APEXII CCD	7265 measured reflections
diffractometer	2264 independent reflections
Radiation source: fine-focus sealed tube	2151 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.035$
φ and ω scans	$\theta_{\text{max}} = 30.5^{\circ}, \ \theta_{\text{min}} = 2.4^{\circ}$
Absorption correction: multi-scan	$h = -48 \longrightarrow 44$
(SADABS; Bruker, 1998)	$k = -10 \rightarrow 10$
$T_{\min} = 0.945, \ T_{\max} = 0.966$	$l = -9 \rightarrow 7$

Refinement

Secondary atom site location: difference Fourier
map
Hydrogen site location: inferred from
neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.069P)^2 + 0.231P]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta \rho_{\rm max} = 0.25 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.16 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

F(000) = 728

 $\theta = 2.4 - 30.5^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$

Block. colourless

 $0.60 \times 0.40 \times 0.36 \text{ mm}$

T = 296 K

 $D_{\rm x} = 1.372 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 4869 reflections

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.20583 (3)	0.17226 (19)	0.8336 (2)	0.0693 (4)	
N1	0.0000	0.24751 (18)	0.5426 (2)	0.0316 (3)	
C1	0.17708 (3)	0.24851 (18)	0.8930 (2)	0.0429 (3)	
O2	0.17487 (3)	0.32976 (15)	1.0717 (2)	0.0535 (3)	
C2	0.13992 (3)	0.25470 (16)	0.77804 (19)	0.0360 (3)	

C3	0.13855 (4)	0.16771 (18)	0.5923 (2)	0.0424 (3)	
H3	0.1609	0.1139	0.5408	0.051*	
C4	0.10431 (4)	0.16036 (18)	0.4834 (2)	0.0416 (3)	
H4	0.1038	0.1010	0.3597	0.050*	
C5	0.07037 (3)	0.24139 (14)	0.55745 (17)	0.0323 (2)	
C6	0.07197 (3)	0.33053 (14)	0.74267 (19)	0.0328 (2)	
H6	0.0496	0.3854	0.7936	0.039*	
C7	0.10641 (3)	0.33846 (14)	0.8520 (2)	0.0343 (2)	
H7	0.1072	0.3996	0.9746	0.041*	
C8	0.03362 (3)	0.23143 (15)	0.44012 (18)	0.0330 (3)	
C9	0.03455 (4)	0.20276 (19)	0.2306 (2)	0.0405 (3)	
H9	0.0583	0.1927	0.1634	0.049*	
C10	0.0000	0.1898 (3)	0.1258 (3)	0.0439 (4)	
H10	0.0000	0.1725	-0.0133	0.053*	
C11	0.21015 (5)	0.3231 (3)	1.1922 (3)	0.0644 (5)	
H11A	0.2192	0.2006	1.2007	0.097*	
H11B	0.2048	0.3677	1.3254	0.097*	
H11C	0.2299	0.3967	1.1303	0.097*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0334 (4)	0.0929 (10)	0.0817 (9)	0.0119 (5)	0.0066 (5)	-0.0199 (8)
N1	0.0386 (6)	0.0284 (6)	0.0279 (7)	0.000	0.000	-0.0001 (5)
C1	0.0309 (5)	0.0434 (7)	0.0545 (9)	-0.0021 (4)	0.0080 (5)	-0.0022 (5)
O2	0.0386 (4)	0.0624 (7)	0.0597 (7)	0.0080 (4)	-0.0070(5)	-0.0122 (5)
C2	0.0305 (4)	0.0341 (6)	0.0435 (7)	-0.0025 (4)	0.0093 (4)	-0.0004 (4)
C3	0.0374 (5)	0.0446 (7)	0.0453 (8)	0.0031 (5)	0.0150 (5)	-0.0053 (5)
C4	0.0450 (6)	0.0423 (6)	0.0374 (7)	0.0019 (5)	0.0111 (5)	-0.0080(5)
C5	0.0371 (5)	0.0294 (5)	0.0305 (6)	-0.0024(4)	0.0065 (5)	0.0006 (4)
C6	0.0316 (5)	0.0340 (5)	0.0328 (6)	0.0008 (4)	0.0076 (4)	-0.0022 (4)
C7	0.0329 (5)	0.0356 (5)	0.0344 (6)	-0.0004(4)	0.0060 (5)	-0.0053 (4)
C8	0.0419 (6)	0.0275 (5)	0.0298 (6)	-0.0016 (4)	0.0034 (4)	0.0001 (4)
C9	0.0513 (7)	0.0404 (6)	0.0297 (6)	-0.0019 (5)	0.0072 (5)	-0.0001 (5)
C10	0.0669 (12)	0.0405 (9)	0.0244 (8)	0.000	0.000	-0.0014 (7)
C11	0.0470 (7)	0.0742 (11)	0.0722 (13)	0.0074 (8)	-0.0192 (8)	-0.0093 (9)

Geometric parameters (Å, °)

01—C1	1.2025 (16)	C5—C8	1.4823 (15)	_
$N1-C8^{i}$	1.3433 (13)	C6—C7	1.3866 (17)	
N1—C8	1.3433 (13)	С6—Н6	0.9300	
C1—O2	1.3294 (19)	С7—Н7	0.9300	
C1—C2	1.4854 (17)	C8—C9	1.4041 (18)	
O2—C11	1.4503 (18)	C9—C10	1.3768 (17)	
C2—C3	1.3895 (19)	С9—Н9	0.9300	
C2—C7	1.3945 (14)	C10-C9 ⁱ	1.3768 (17)	
C3—C4	1.379 (2)	C10—H10	0.9300	

supporting information

С3—Н3	0.9300	C11—H11A	0.9600
C4—C5	1.3981 (16)	C11—H11B	0.9600
C4—H4	0.9300	C11—H11C	0.9600
С5—С6	1.3940 (17)		
C8 ⁱ —N1—C8	118.29 (15)	С5—С6—Н6	119.6
O1—C1—O2	123.39 (14)	C6—C7—C2	119.98 (11)
O1—C1—C2	123.39 (14)	С6—С7—Н7	120.0
O2—C1—C2	113.18 (10)	С2—С7—Н7	120.0
C1—O2—C11	115.28 (12)	N1—C8—C9	122.14 (12)
C3—C2—C7	119.28 (11)	N1—C8—C5	117.42 (11)
C3—C2—C1	117.95 (11)	C9—C8—C5	120.42 (11)
C7—C2—C1	122.73 (12)	С10—С9—С8	119.31 (13)
C4—C3—C2	120.65 (11)	С10—С9—Н9	120.3
С4—С3—Н3	119.7	С8—С9—Н9	120.3
С2—С3—Н3	119.7	C9 ⁱ —C10—C9	118.78 (17)
C3—C4—C5	120.59 (12)	C9 ⁱ —C10—H10	120.6
C3—C4—H4	119.7	С9—С10—Н10	120.6
C5—C4—H4	119.7	O2—C11—H11A	109.5
C6—C5—C4	118.59 (11)	O2—C11—H11B	109.5
C6—C5—C8	121.23 (9)	H11A—C11—H11B	109.5
C4—C5—C8	120.18 (10)	O2—C11—H11C	109.5
C7—C6—C5	120.88 (10)	H11A—C11—H11C	109.5
С7—С6—Н6	119.6	H11B—C11—H11C	109.5
	/		/>
O1—C1—O2—C11	0.9 (2)	C5—C6—C7—C2	-0.78 (16)
C2-C1-O2-C11	178.41 (13)	C3—C2—C7—C6	1.58 (17)
O1—C1—C2—C3	0.0 (2)	C1—C2—C7—C6	-176.21 (11)
O2—C1—C2—C3	-177.60 (12)	C8 ⁱ —N1—C8—C9	1.5 (2)
O1—C1—C2—C7	177.77 (15)	C8 ⁱ —N1—C8—C5	-177.32 (8)
O2—C1—C2—C7	0.22 (18)	C6—C5—C8—N1	-24.37 (16)
C7—C2—C3—C4	-1.41 (18)	C4—C5—C8—N1	155.51 (12)
C1—C2—C3—C4	176.48 (12)	C6—C5—C8—C9	156.81 (12)
C2—C3—C4—C5	0.4 (2)	C4—C5—C8—C9	-23.31 (16)
C3—C4—C5—C6	0.39 (18)	N1-C8-C9-C10	-0.29 (19)
C3—C4—C5—C8	-179.49 (11)	C5—C8—C9—C10	178.47 (14)
C4—C5—C6—C7	-0.21 (16)	C8—C9—C10—C9 ⁱ	-0.9 (3)
C8—C5—C6—C7	179.67 (10)		

Symmetry code: (i) -x, y, z.