Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

3,5-Bis(3-butylimidazolium-1-ylmethyl)toluene bis(hexafluorophosphate)

Rosenani A. Haque,^a Abbas Washeel,^a Siang Guan Teoh,^a Ching Kheng Quah^b‡ and Hoong-Kun Fun^b*§

^aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia Correspondence e-mail: hkfun@usm.my

Received 30 September 2010; accepted 7 October 2010

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; disorder in main residue; R factor = 0.046; wR factor = 0.122; data-to-parameter ratio = 23.2.

In the title compound [systematic name: 3,3'-Dibutyl-1,1'-(5methyl-*m*-phenylenedimethylene)diimidazol-1-ium bis(hexafluoridophosphate)], $C_{23}H_{34}N_4^{2+}\cdot 2PF_6^{-}$, the imidazole rings are inclined at angles of 68.06 (7) and 75.05 (8)° with respect to the central benzene ring. In the crystal, molecules are linked into one-dimensional columns along [010] *via* weak intermolecular C-H···F hydrogen bonds. The crystal structure is further consolidated by weak C-H··· π (arene) interactions. One of the *n*-butyl groups is disordered over two sites with refined occupancies of 0.694 (5) and 0.306 (5). In addition, four of the F atoms of one of the PF₆⁻ cations are disordered over two sites with occupancies of 0.64 (3) and 0.36 (3).

Related literature

For general background to imidazoline-2-ylidenes, see: Arduengo *et al.* (1991). For the organometallic and coordination chemistry of *N*-heterocyclic carbene ligands, see: Chen *et al.* (2002); Zhou *et al.* (2008); Hahn & Jahnke (2008); Danopoulos *et al.* (2007); Bourissou *et al.* (2000); McGuinness & Cavell (2000); Garrison *et al.* (2001). For catalytic studies related to organic synthesis, see: Cavell & McGuinness (2004); Liu *et al.* (2007). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For standard bond-length data, see: Allen *et al.* (1987).

‡ Thomson Reuters ResearcherID: A-5525-2009.

 $V = 2933.66 (5) \text{ Å}^3$

Mo $K\alpha$ radiation

 $0.49 \times 0.20 \times 0.14$ mm

45569 measured reflections

10399 independent reflections

7294 reflections with $I > 2\sigma(I)$

 $\mu = 0.25 \text{ mm}^-$

T = 100 K

 $R_{\rm int}=0.040$

Z = 4

Experimental

Crystal data

 $\begin{array}{l} C_{23}H_{34}N_{4}^{2+}\cdot 2PF_{6}^{-}\\ M_{r}=656.48\\ \text{Monoclinic, }P_{2_{1}}/c\\ a=9.6207\ (1) \text{ Å}\\ b=11.1801\ (1) \text{ Å}\\ c=27.9277\ (3) \text{ Å}\\ \beta=102.416\ (1)^{\circ} \end{array}$

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2009) $T_{min} = 0.890, T_{max} = 0.967$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.046$	448 parameters
$wR(F^2) = 0.122$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 0.39 \ {\rm e} \ {\rm \AA}^{-3}$
10399 reflections	$\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C1-C6 phenyl ring.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
C8-H8A····F4	0.93	2.42	3.0154 (16)	121
$C8-H8A\cdots F5$	0.93	2.39	3.2700 (16)	157
C16-H16A···F3	0.93	2.31	3.1941 (16)	160
C16-H16AF4	0.93	2.45	3.1677 (16)	134
$C21A - H21B \cdots F4$	0.97	2.49	3.196 (2)	130
$C3-H3A\cdots F12^{i}$	0.93	2.44	3.3147 (16)	157
$C5-H5A\cdots F9A^{ii}$	0.93	2.55	3.420 (8)	156
$C7-H7A\cdots F10A^{ii}$	0.97	2.51	3.427 (6)	158
$C9-H9A\cdots F12^{iii}$	0.93	2.48	3.2805 (17)	144
$C12-H12A\cdots F3^{iv}$	0.97	2.53	3.3358 (18)	140
$C18-H18A\cdots F8A^{v}$	0.93	2.38	3.148 (11)	140
$C22A - H22C \cdots Cg1^{vi}$	0.96	2.76	3.535 (3)	138
$C23-H23B\cdots Cg1^{vii}$	0.96	2.59	3.487 (2)	155
$C22B - H22E \cdots Cg1^{vi}$	0.96	2.86	3.637 (8)	139

Symmetry codes: (i) x - 1, y + 1, z; (ii) x - 1, y, z; (iii) -x + 1, -y + 1, -z + 2; (iv) $-x, y - \frac{1}{2}, -z + \frac{3}{2}$; (v) -x + 1, -y + 2, -z + 2; (vi) x + 1, y, z; (vii) -x, -y + 2, -z + 2.

[§] Thomson Reuters ResearcherID: A-3561-2009.

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009).

RAH, AW and SGT thank Universiti Sains Malaysia (USM) for the FRGS fund (203/PKIMIA/671115), the short term grant (304/PKIMIA/639001) and the Research University Grant (1001/PKIMIA/813023). HKF and CKQ thank USM for the Research University Grant (1001/PFIZIK/811160) and CKQ also thanks USM for a research fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5143).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Arduengo, A. J., Harlow, R. L. & Kline, M. (1991). J. Am. Chem. Soc. 113, 361– 363.
- Bourissou, D., Guerret, O., Gabbai, F. P. & Bertrand, G. (2000). Chem. Rev. 100, 39–91.
- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cavell, K. J. & McGuinness, D. S. (2004). Coord. Chem. Rev. 248, 671-681.
- Chen, W., Wu, B. & Matsumoto, K. (2002). J. Organomet. Chem. 654, 233–236.
- Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
- Danopoulos, A. A., Tsoureas, N., Macgregor, S. A. & Smith, C. (2007). Organometallics, 26, 253–263.
- Garrison, J. C., Simons, R. S., Talley, J. M., Wesdemiotis, C., Tessier, C. A. & Youngs, W. J. (2001). Organometallics, 20, 1276–1278.
- Hahn, F. E. & Jahnke, M. C. (2008). Angew. Chem. Int. Ed. Engl. 47, 3122–3172.
- Liu, Q.-X., Zhao, X.-J., Wu, X.-M., Guo, J.-H. & Wang, X.-G. (2007). J. Organomet. Chem. 692, 5671–5679.
- McGuinness, D. S. & Cavell, K. J. (2000). Organometallics, 19, 741-748.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Zhou, Y., Zhang, X., Chen, W. & Qiu, H. (2008). J. Organomet. Chem. 693, 205–215.

Acta Cryst. (2010). E66, o2797-o2798 [https://doi.org/10.1107/S1600536810040055]

3,5-Bis(3-butylimidazolium-1-ylmethyl)toluene bis(hexafluorophosphate)

Rosenani A. Haque, Abbas Washeel, Siang Guan Teoh, Ching Kheng Quah and Hoong-Kun Fun

S1. Comment

Since the discovery of stable imidazoline-2-ylidenes, which were isolated and structurally characterized by Arduengo *et al.* (1991), the organometallic and coordination chemistry of *N*-heterocyclic carbene (NHC) ligands have been receiving great attention in recent years and much interest has been generated in the chemistry of the metal complexes of these ligands (Chen *et al.*, 2002; Zhou *et al.*, 2008). NHC carbene, a strong σ -donor and a weak π -acceptor, strongly interacts with different transitions metals in various oxidation states (Hahn & Jahnke, 2008; Danopoulos *et al.*, 2007). Heterocyclic carbenes derived from imidazolium ions form complexes with many transition metals; heterocyclic carbene complexes of Pd, Ni, Pt, Rh, Ru, Ag and Au have been reported (Bourissou *et al.*, 2000; McGuinness & Cavell, 2000; Garrison *et al.*, 2001). Extensive catalytic studies on the application to organic synthesis have also been reported (Cavell & McGuinness, 2004; Liu *et al.*, 2007).

The title molecule (Fig. 1) consists of a 3,5-bis(3-butylimidazolium-1- ylmethyl)toluene cation and two hexafluorophosphate anions. Bond lengths (Allen *et al.*, 1987) and angles are within normal ranges. The phenyl ring (C1-C6) is inclined at angles of 68.06 (7) and 75.05 (8) $^{\circ}$ with respect to the N1/N2/C8/C9/C10 and N3/N4/C16/C17/C18 imidazole rings. The butyl group (C19-C22) of the cation and four fluorine atoms (F7-F10) of the hexafluorophosphate anion are disordered over two positions with refined site-occupancies of 0.694 (5) : 0.306 (5) and 0.64 (3) : 0.36 (3), respectively.

In the crystal structure, (Fig. 2), the molecules are linked into one-dimensional columns along [010] via intermolecular C–H \cdots F hydrogen bonds (Table 1). The crystal structure is further consolidated by C–H \cdots Cg1 (Table 1) interactions, Cg1 is the centroid of C1-C6 phenyl ring.

S2. Experimental

N-butylimidazole (0.9 g, 7.2 mmol) was added to a stirred solution of 3,5-bis(bromomethyl)toluene (1.0 g, 3.6 mmol) in 20 ml of 1,4-dioxane. The mixture was refluxed at 373 K for 24 h. The sticky product was isolated by decantation and washed with fresh 1,4-dioxane (2 x 5 ml) and diethyl ether (2 x 3 ml). The resulting bromide salt was converted directly to its hexafluorophosphate salt by metathesis reaction using KPF₆ (1.3 g, 7.2 mmol) in 20 ml of methanol. The colourless precipitate formed was collected and washed with distilled water (2 x 5 ml), and then recrystallized from acetonitrile to give colourless crystals. Yield: 1.9 g (79%), *m. p.*: 369-371 K. Crystals suitable for X-ray diffraction studies were obtained by slow evaporation of the salt solution in acetonitrile at 281 K.

S3. Refinement

All H atoms were positioned geometrically and refined using a riding model with C-H = 0.93-0.97 Å and $U_{iso}(H) = 1.2$ or 1.5 $U_{eq}(C)$. A rotating-group model was applied for the methyl groups. Butyl group (C19-C22) of cation and four fluorine atoms (F7-F10) of the hexafluorophosphate anion are disordered over two positions with refined site-occupancies of 0.694 (5) : 0.306 (5) and 0.64 (3) : 0.36 (3), respectively.

Figure 1

The molecular structure of the title compound showing 30% probability displacement ellipsoids for non-H atoms and the atom-numbering scheme. Both disorder components are shown.

Figure 2

Part of the crystal structure of the title compound, viewed along the *b* axis. Only the major disorder component is shown. Intermolecular hydrogen bonds are shown in dashed lines.

3,3'-Dibutyl-1,1'-(5-methyl-m-phenylenedimethylene)diimidazol-1-ium bis(hexafluoridophosphate)

F(000) = 1352

 $\theta = 2.2 - 32.2^{\circ}$

 $\mu = 0.25 \text{ mm}^{-1}$ T = 100 K

 $R_{\rm int} = 0.040$

 $h = -14 \rightarrow 14$ $k = -15 \rightarrow 16$ $l = -41 \rightarrow 41$

Block, colourless

 $0.49 \times 0.20 \times 0.14$ mm

45569 measured reflections 10399 independent reflections 7294 reflections with $I > 2\sigma(I)$

 $\theta_{\text{max}} = 32.3^{\circ}, \ \theta_{\text{min}} = 2.0^{\circ}$

 $D_{\rm x} = 1.486 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 9893 reflections

Crystal data

 $C_{23}H_{34}N_4^{2+}\cdot 2PF_6^{-}$ $M_r = 656.48$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 9.6207 (1) Å b = 11.1801 (1) Å c = 27.9277 (3) Å $\beta = 102.416$ (1)° V = 2933.66 (5) Å³ Z = 4

Data collection

Refinement

Secondary atom site location: difference Fourier
map
Hydrogen site location: inferred from
neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.0569P)^2 + 0.5709P]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.001$
$\Delta \rho_{\rm max} = 0.39 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
N1	0.04726 (12)	0.72856 (9)	0.87680 (4)	0.0197 (2)	
N2	0.25427 (13)	0.70746 (10)	0.85917 (4)	0.0242 (2)	

N3	0.01110 (12)	1.25423 (9)	0.87615 (4)	0.0192 (2)	
N4	0.22616 (13)	1.27303 (12)	0.86629 (5)	0.0289 (3)	
C1	-0.12271 (14)	0.98508 (11)	0.87153 (5)	0.0201 (3)	
H1A	-0.1079	0.9856	0.8397	0.024*	
C2	-0.14332 (14)	1.09268 (11)	0.89438 (5)	0.0203 (2)	
C3	-0.16796 (15)	1.09046 (12)	0.94182 (5)	0.0241 (3)	
H3A	-0.1824	1.1620	0.9570	0.029*	
C4	-0.17140 (17)	0.98323 (12)	0.96688 (6)	0.0262 (3)	
C5	-0.14902 (16)	0.87688 (12)	0.94368 (5)	0.0257 (3)	
H5A	-0.1506	0.8047	0.9601	0.031*	
C6	-0.12428(14)	0.87685 (11)	0.89618 (5)	0.0209(3)	
C7	-0.10445 (14)	0.75962 (12)	0.87112 (5)	0.0230 (3)	
H7A	-0.1524	0.6963	0.8850	0.028*	
H7B	-0.1480	0.7657	0.8365	0.028*	
C8	0 12152 (15)	0.74404(12)	0.84230(5)	0.0219(3)	
H8A	0.0861	0.7755	0.8112	0.026*	
C9	0 13609 (16)	0.67800(12)	0.91727(5)	0.0258(3)	
H9A	0.1115	0.6571	0.9466	0.031*	
C10	0.26525 (16)	0.6571 0.66465 (13)	0.9460	0.0272(3)	
H10A	0.26525 (10)	0.6327	0.9265	0.033*	
C11	0.3402 0.36527 (17)	0.0527 0.70733 (14)	0.9209	0.033	
H11A	0.4518	0.7418	0.8495	0.0322 (5)	
H11R	0.3345	0.7573	0.8013	0.039*	
C12	0.39714 (16)	0.7373 0.58281 (14)	0.81384 (6)	0.039	
U12 H12A	0.3086	0.5432	0.7001	0.0258	
1112A Ц12D	0.3080	0.5452	0.7331	0.035*	
C13	0.4430	0.5300 0.58630 (18)	0.8423 0.77702 (8)	0.035	
U13 U12 A	0.4934 (2)	0.58050 (18)	0.77702 (8)	0.0400 (3)	
	0.4300	0.0373	0.7497	0.056*	
ПІЗБ С14	0.3643 0.5180 (2)	0.0210 0.4634(2)	0.7920 0.75778 (8)	0.050°	
U14	0.5180 (2)	0.4034 (2)	0.73778(8)	0.0331(3)	
П14А 1114D	0.3779	0.4700	0.7343	0.083*	
П14D	0.4283	0.4289	0.7421	0.083*	
П14С	0.3033	0.4155	0.7843	0.083	
	-0.13094 (14)	1.21003 (12)	0.80830 (5)	0.0223 (3)	
	-0.1732	1.2004	0.8333	0.027*	
ПІЗВ	-0.1949	1.2095	0.8805	0.027^{*}	
	0.09876(15)	1.22892 (12)	0.84094 (5)	0.0222 (3)	
HI6A C17	0.0/4/	1.1809	0.81/6	0.027*	
	0.08522 (17)	1.31852 (12)	0.91586 (5)	0.0270 (3)	
HI/A	0.0493	1.3482	0.9419	0.032*	
	0.21968 (18)	1.32975 (14)	0.90954 (6)	0.0323 (3)	
HI8A	0.2942	1.3686	0.9305	0.039*	0.004.00
CI9A	0.3539 (4)	1.2443 (3)	0.84464 (16)	0.0311 (7)	0.694 (5)
HI9A	0.4058	1.3175	0.8418	0.04/*	0.694 (5)
HI9B	0.3214	1.2117	0.8120	0.047/*	0.694 (5)
C20A	0.4534 (3)	1.1550 (2)	0.87594 (12)	0.0333 (7)	0.694 (5)
H20A	0.4875	1.1894	0.9082	0.040*	0.694 (5)
H20B	0.5352	1.1428	0.8614	0.040*	0.694 (5)

C21A	0.3866 (2)	1.0333 (2)	0.88191 (8)	0.0271 (6)	0.694 (5)
H21A	0.3007	1.0451	0.8942	0.041*	0.694 (5)
H21B	0.3600	0.9950	0.8501	0.041*	0.694 (5)
C22A	0.4863 (3)	0.9528 (3)	0.91641 (12)	0.0333 (6)	0.694 (5)
H22A	0.4374	0.8806	0.9215	0.040*	0.694 (5)
H22B	0.5185	0.9928	0.9472	0.040*	0.694 (5)
H22C	0.5666	0.9335	0.9025	0.040*	0.694 (5)
C19B	0.3518 (10)	1.2886 (6)	0.8487 (4)	0.0292 (15)	0.306 (5)
H19C	0.4196	1.3384	0.8707	0.044*	0.306 (5)
H19D	0.3316	1.3243	0.8163	0.044*	0.306 (5)
C20B	0.4073 (6)	1.1615 (5)	0.8473 (2)	0.0280 (13)	0.306 (5)
H20C	0.4935	1.1632	0.8346	0.034*	0.306 (5)
H20D	0.3372	1.1145	0.8249	0.034*	0.306 (5)
C21B	0.4395 (6)	1.1003 (5)	0.8976 (2)	0.0306 (14)	0.306 (5)
H21C	0.5222	1.1373	0.9183	0.046*	0.306 (5)
H21D	0.3594	1.1108	0.9131	0.046*	0.306 (5)
C22B	0.4668 (8)	0.9706 (7)	0.8925 (4)	0.049 (2)	0.306 (5)
H22D	0.4743	0.9320	0.9237	0.058*	0.306 (5)
H22E	0.5541	0.9602	0.8816	0.058*	0.306 (5)
H22F	0.3898	0.9359	0.8691	0.058*	0.306 (5)
C23	-0.2051 (2)	0.98208 (14)	1.01718 (6)	0.0348 (4)	
H23A	-0.2508	1.0557	1.0225	0.052*	
H23B	-0.1185	0.9735	1.0415	0.052*	
H23C	-0.2673	0.9162	1.0196	0.052*	
P1	0.03700 (4)	0.98649 (3)	0.736481 (13)	0.02052 (8)	
F1	0.14427 (10)	1.08561 (8)	0.72469 (3)	0.0333 (2)	
F2	0.13549 (10)	0.88117 (8)	0.72386 (3)	0.0322 (2)	
F3	-0.06262 (9)	1.09104 (7)	0.75081 (3)	0.02749 (18)	
F4	0.12345 (10)	0.98346 (7)	0.79273 (3)	0.0288 (2)	
F5	-0.07193 (9)	0.88809 (8)	0.74956 (3)	0.02905 (19)	
F6	-0.05042 (10)	0.98987 (7)	0.68110 (3)	0.02762 (19)	
P2	0.70821 (4)	0.49928 (3)	0.947765 (13)	0.02189 (8)	
F7A	0.5758 (12)	0.4191 (10)	0.9282 (3)	0.078 (2)	0.64 (3)
F8A	0.6652 (12)	0.5050 (9)	0.9993 (4)	0.0473 (18)	0.64 (3)
F9A	0.8492 (8)	0.5779 (7)	0.9694 (3)	0.0372 (10)	0.64 (3)
F10A	0.7584 (13)	0.4898 (3)	0.8965 (2)	0.0429 (14)	0.64 (3)
F7B	0.5535 (12)	0.4370 (13)	0.9296 (4)	0.052 (2)	0.36 (3)
F8B	0.689 (2)	0.5172 (17)	1.0023 (7)	0.050 (3)	0.36 (3)
F9B	0.8528 (13)	0.5644 (17)	0.9618 (8)	0.053 (3)	0.36 (3)
F10B	0.7239 (19)	0.4851 (9)	0.8938 (4)	0.056 (3)	0.36 (3)
F11	0.62602 (11)	0.62115 (9)	0.93069 (4)	0.0452 (3)	~ /
F12	0.79372 (13)	0.37811 (8)	0.96468 (4)	0.0462 (3)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0263 (6)	0.0145 (5)	0.0190 (5)	0.0008 (4)	0.0065 (4)	-0.0006 (4)
N2	0.0266 (6)	0.0214 (5)	0.0256 (6)	0.0007 (5)	0.0077 (5)	0.0003 (5)

Acta Cryst. (2010). E66, o2797–o2798

N3	0.0255 (6)	0.0136 (5)	0.0181 (5)	-0.0010 (4)	0.0040 (4)	0.0006 (4)
N4	0.0256 (6)	0.0331 (7)	0.0261 (6)	-0.0044 (5)	0.0013 (5)	0.0069 (5)
C1	0.0220 (6)	0.0206 (6)	0.0192 (6)	-0.0008 (5)	0.0080 (5)	-0.0014 (5)
C2	0.0231 (6)	0.0169 (5)	0.0221 (6)	0.0001 (5)	0.0075 (5)	0.0001 (5)
C3	0.0312 (7)	0.0176 (6)	0.0268 (7)	0.0000 (5)	0.0133 (6)	-0.0024 (5)
C4	0.0362 (8)	0.0212 (6)	0.0252 (7)	-0.0007 (5)	0.0159 (6)	-0.0009 (5)
C5	0.0352 (8)	0.0182 (6)	0.0269 (7)	-0.0015 (5)	0.0137 (6)	0.0022 (5)
C6	0.0235 (6)	0.0171 (6)	0.0238 (7)	-0.0005 (5)	0.0091 (5)	-0.0021 (5)
C7	0.0249 (7)	0.0180 (6)	0.0278 (7)	-0.0005 (5)	0.0097 (6)	-0.0027 (5)
C8	0.0287 (7)	0.0177 (6)	0.0196 (6)	0.0003 (5)	0.0060 (5)	0.0002 (5)
C9	0.0381 (8)	0.0210 (6)	0.0180 (6)	0.0027 (6)	0.0055 (6)	0.0025 (5)
C10	0.0322 (8)	0.0238 (7)	0.0238 (7)	0.0037 (6)	0.0025 (6)	0.0020 (5)
C11	0.0287 (8)	0.0318 (8)	0.0400 (9)	-0.0006 (6)	0.0160 (7)	0.0007 (7)
C12	0.0237 (7)	0.0362 (8)	0.0298 (8)	0.0016 (6)	0.0078 (6)	-0.0029 (6)
C13	0.0449 (10)	0.0491 (11)	0.0542 (12)	0.0066 (9)	0.0292 (9)	0.0007 (9)
C14	0.0530 (12)	0.0621 (13)	0.0593 (14)	0.0055 (10)	0.0320 (11)	-0.0127 (11)
C15	0.0240 (6)	0.0191 (6)	0.0244 (7)	0.0023 (5)	0.0065 (5)	0.0038 (5)
C16	0.0265 (7)	0.0204 (6)	0.0192 (6)	0.0005 (5)	0.0038 (5)	0.0005 (5)
C17	0.0444 (9)	0.0164 (6)	0.0182 (6)	-0.0023 (6)	0.0022 (6)	-0.0024 (5)
C18	0.0410 (9)	0.0254 (7)	0.0254 (7)	-0.0105 (6)	-0.0039 (6)	0.0028 (6)
C19A	0.0258 (13)	0.0306 (18)	0.0399 (16)	-0.0018 (16)	0.0136 (11)	0.0025 (16)
C20A	0.0234 (12)	0.0317 (13)	0.0454 (19)	-0.0030 (9)	0.0088 (12)	-0.0032 (12)
C21A	0.0245 (11)	0.0269 (12)	0.0288 (11)	-0.0001 (9)	0.0034 (9)	-0.0041 (9)
C22A	0.0267 (13)	0.0304 (13)	0.0396 (16)	0.0037 (10)	0.0005 (13)	-0.0037 (13)
C19B	0.027 (3)	0.025 (3)	0.034 (3)	-0.002 (3)	0.003 (2)	0.001 (3)
C20B	0.019 (2)	0.041 (3)	0.022 (3)	-0.007 (2)	0.002 (2)	-0.002 (2)
C21B	0.023 (2)	0.028 (3)	0.043 (3)	0.004 (2)	0.014 (2)	0.010 (2)
C22B	0.031 (4)	0.038 (4)	0.072 (6)	0.004 (3)	0.000 (4)	0.015 (4)
C23	0.0534 (10)	0.0283 (7)	0.0287 (8)	0.0001 (7)	0.0223 (7)	0.0005 (6)
P1	0.02485 (18)	0.01586 (15)	0.01977 (17)	-0.00042 (12)	0.00237 (13)	-0.00059 (12)
F1	0.0344 (5)	0.0262 (4)	0.0401 (5)	-0.0078 (4)	0.0098 (4)	0.0037 (4)
F2	0.0330 (5)	0.0254 (4)	0.0368 (5)	0.0078 (4)	0.0042 (4)	-0.0055 (4)
F3	0.0323 (4)	0.0242 (4)	0.0245 (4)	0.0060 (3)	0.0028 (3)	-0.0049 (3)
F4	0.0343 (5)	0.0232 (4)	0.0236 (4)	-0.0004 (3)	-0.0055 (4)	-0.0011 (3)
F5	0.0328 (5)	0.0250 (4)	0.0279 (4)	-0.0080 (3)	0.0032 (4)	0.0026 (3)
F6	0.0398 (5)	0.0230 (4)	0.0182 (4)	0.0021 (3)	0.0021 (4)	-0.0010 (3)
P2	0.02675 (18)	0.01888 (16)	0.01996 (17)	-0.00170 (13)	0.00483 (14)	-0.00076 (13)
F7A	0.074 (4)	0.063 (3)	0.079 (3)	-0.047 (3)	-0.024 (2)	0.005 (2)
F8A	0.057 (3)	0.057 (2)	0.037 (4)	0.0006 (17)	0.031 (3)	0.003 (2)
F9A	0.039 (2)	0.0269 (14)	0.0385 (18)	-0.0080 (11)	-0.0080 (11)	-0.0024 (12)
F10A	0.084 (4)	0.0229 (17)	0.0288 (16)	0.0030 (13)	0.0279 (19)	0.0019 (9)
F7B	0.027 (3)	0.067 (4)	0.058 (4)	-0.022 (3)	0.001 (2)	0.029 (3)
F8B	0.068 (7)	0.060 (5)	0.022 (3)	0.024 (5)	0.008 (3)	-0.013 (3)
F9B	0.015 (3)	0.049 (6)	0.088 (8)	-0.007 (3)	-0.005 (4)	0.023 (5)
F10B	0.057 (5)	0.095 (7)	0.021 (2)	0.026 (3)	0.015 (2)	0.011 (3)
F11	0.0385 (6)	0.0373 (5)	0.0541 (7)	0.0151 (4)	-0.0025 (5)	0.0061 (5)
F12	0.0840 (8)	0.0214 (4)	0.0350 (5)	0.0163 (5)	0.0168 (5)	0.0048 (4)

Geometric parameters (Å, °)

N1—C8	1.3285 (17)	C17—C18	1.349 (2)
N1—C9	1.3828 (18)	C17—H17A	0.9300
N1—C7	1.4753 (17)	C18—H18A	0.9300
N2—C8	1.3272 (18)	C19A—C20A	1.522 (5)
N2—C10	1.3825 (18)	C19A—H19A	0.9700
N2—C11	1.4751 (19)	C19A—H19B	0.9700
N3—C16	1.3238 (17)	C20A—C21A	1.528 (3)
N3—C17	1.3837 (17)	C20A—H20A	0.9700
N3—C15	1.4764 (18)	C20A—H20B	0.9700
N4—C16	1.3238 (18)	C21A—C22A	1.504 (4)
N4—C18	1.378 (2)	C21A—H21A	0.9700
N4—C19B	1.410 (10)	C21A—H21B	0.9700
N4—C19A	1.516 (4)	C22A—H22A	0.9600
C1—C6	1.3938 (18)	C22A—H22B	0.9600
C1—C2	1.3959 (17)	C22A—H22C	0.9600
C1—H1A	0.9300	C19B—C20B	1.521 (9)
C2—C3	1.3954 (18)	C19B—H19C	0.9700
C2—C15	1.5141 (18)	C19B—H19D	0.9700
C3—C4	1.3921 (19)	C20B—C21B	1.532 (8)
С3—НЗА	0.9300	C20B—H20C	0.9700
C4—C5	1.3927 (19)	C20B—H20D	0.9700
C4—C23	1.508 (2)	C21B—C22B	1.485 (9)
C5—C6	1.3972 (19)	C21B—H21C	0.9700
C5—H5A	0.9300	C21B—H21D	0.9700
C6—C7	1.5170 (18)	C22B—H22D	0.9600
C7—H7A	0.9700	C22B—H22E	0.9600
С7—Н7В	0.9700	C22B—H22F	0.9600
C8—H8A	0.9300	С23—Н23А	0.9600
C9—C10	1.351 (2)	С23—Н23В	0.9600
С9—Н9А	0.9300	С23—Н23С	0.9600
C10—H10A	0.9300	P1—F6	1.5941 (9)
C11—C12	1.515 (2)	P1—F1	1.5960 (9)
C11—H11A	0.9700	P1—F2	1.5976 (9)
C11—H11B	0.9700	P1—F4	1.6120 (9)
C12—C13	1.525 (2)	P1—F5	1.6145 (9)
C12—H12A	0.9700	P1—F3	1.6154 (9)
C12—H12B	0.9700	P2—F9B	1.544 (13)
C13—C14	1.512 (3)	P2—F10B	1.556 (11)
C13—H13A	0.9700	P2—F7A	1.557 (6)
C13—H13B	0.9700	P2—F8A	1.583 (9)
C14—H14A	0.9600	P2—F8B	1.584 (16)
C14—H14B	0.9600	P2—F11	1.5959 (10)
C14—H14C	0.9600	P2—F12	1.6024 (10)
C15—H15A	0.9700	P2—F10A	1.610 (6)
C15—H15B	0.9700	P2—F9A	1.620 (7)
C16—H16A	0.9300	P2—F7B	1.622 (10)

C8—N1—C9	108.18 (12)	H20A—C20A—H20B	107.5
C8—N1—C7	124.42 (12)	C22A—C21A—C20A	112.2 (2)
C9—N1—C7	127.40 (12)	C22A—C21A—H21A	109.2
C8—N2—C10	108.38 (12)	C20A—C21A—H21A	109.2
C8—N2—C11	124.06 (13)	C22A - C21A - H21B	109.2
C10 - N2 - C11	127.46 (13)	C_{20A} C_{21A} H_{21B}	109.2
C16—N3—C17	108.54 (12)	$H_{21}A - C_{21}A - H_{21}B$	107.9
C16—N3—C15	124.05 (11)	N4—C19B—C20B	103.1 (5)
C17—N3—C15	127.23 (12)	N4—C19B—H19C	111.2
C16 - N4 - C18	108 47 (13)	C_{20B} C_{19B} H_{19C}	111.2
C16—N4—C19B	133.8 (4)	N4—C19B—H19D	111.2
C18—N4—C19B	116.9 (4)	C_{20B} C_{19B} H_{19D}	111.2
C16 N4 $C19A$	121.1 (2)	H19C-C19B-H19D	109.1
C18—N4—C19A	129.8 (2)	C19B-C20B-C21B	113 3 (6)
C19B N4 C19A	19.6 (3)	C19B-C20B-H20C	108.9
C6-C1-C2	120.31(12)	C_{21B} C_{20B} H_{20C}	108.9
C6-C1-H1A	119.8	$C_{19B} = C_{20B} = H_{20D}$	108.9
$C_2 - C_1 - H_1 A$	119.8	C_{21B} C_{20B} H_{20D}	108.9
$C_3 - C_2 - C_1$	119.0	$H_{20}C - C_{20}B - H_{20}D$	107.7
C_{3} C_{2} C_{15}	120.34(12)	$C_{22B} - C_{21B} - C_{20B}$	107.7 110.8(7)
$C_1 - C_2 - C_{15}$	120.31(12) 120.41(12)	$C_{22B} = C_{21B} = C_{20B}$	109.5
C4-C3-C2	120.41(12) 121.32(12)	C_{20B} C_{21B} H_{21C}	109.5
C4-C3-H3A	119.3	$C_{22}B = C_{21}B = H_{21}D$	109.5
$C_2 - C_3 - H_3 A$	119.3	$C_{20}B = C_{21}B = H_{21}D$	109.5
$C_2 = C_3 = C_4 = C_5$	119.5	$H_{21}C - C_{21}B - H_{21}D$	109.5
C_{3} C_{4} C_{23}	120 58 (13)	$C_{21B} - C_{22B} - H_{22D}$	100.1
$C_{5} - C_{4} - C_{23}$	120.30(13) 120.77(13)	$C_{21B} = C_{22B} = H_{22E}$	109.5
C4-C5-C6	120.77(13) 121.11(13)	H_{22D} C_{22B} H_{22E}	109.5
C4 - C5 - H5A	119.4	$C_{21B} C_{22B} H_{22F}$	109.5
C6-C5-H5A	119.1	H_{22D} C_{22B} H_{22F}	109.5
C1 - C6 - C5	119.4	H22E C22B H22E	109.5
C1 - C6 - C7	119.40(12) 120.42(12)	C4-C23-H23A	109.5
C_{5}	120.42(12) 120.14(12)	C4-C23-H23B	109.5
N1 - C7 - C6	120.14(12) 111.93(11)	$H_{23}A = C_{23} = H_{23}B$	109.5
N1-C7-H7A	109.2	$C4 - C^{23} + H^{23}C$	109.5
C6-C7-H7A	109.2	$H_{23A} - C_{23} - H_{23C}$	109.5
N1—C7—H7B	109.2	$H_{23B} - C_{23} - H_{23C}$	109.5
C6-C7-H7B	109.2	F6—P1—F1	90 75 (5)
H7A - C7 - H7B	107.9	F6—P1—F2	91.01.(5)
N2-C8-N1	109.20 (12)	F1F2	91.61 (5)
N2-C8-H8A	125.4	F6—P1—F4	179.23 (6)
N1—C8—H8A	125.4	F1—P1—F4	89.69 (5)
C10—C9—N1	107.24 (12)	F2—P1—F4	89.61 (5)
С10—С9—Н9А	126.4	F6—P1—F5	90.17 (5)
N1—C9—H9A	126.4	F1—P1—F5	178.60 (5)
C9—C10—N2	107.00 (13)	F2—P1—F5	89.56 (5)
C9—C10—H10A	126.5	F4—P1—F5	89.38 (5)
			· · · ·

N2-C10-H10A	126.5	F6—P1—F3	90.33 (5)
N2—C11—C12	112.49 (13)	F1—P1—F3	89.61 (5)
N2—C11—H11A	109.1	F2—P1—F3	178 26 (5)
C_{12} C_{11} H_{11A}	109.1	F4—P1—F3	89.04 (5)
N2-C11-H11B	109.1	F5—P1—F3	89.34 (5)
C12_C11_H11B	109.1	F9B-P2-F10B	91.4(7)
H11A—C11—H11B	107.8	F9B - P2 - F7A	1700(7)
$C_{11} - C_{12} - C_{13}$	111 65 (14)	$F10B P2 F7\Delta$	81 0 (6)
C_{11} C_{12} H_{12A}	109.3	$FQB P2 F8\Delta$	98.5(0)
$C_{12} = C_{12} = H_{12A}$	109.3	F10B P2 F8A	170.0(7)
C_{13} $-C_{12}$ H_{12R}	109.3	F7A $D2$ $F8A$	170.0(7)
C_{11} C_{12} C_{12} H_{12} H_{12}	109.3	$\Gamma / A - \Gamma 2 - \Gamma \delta A$	89.3 (5)
	109.3	$\Gamma \partial D = \Gamma \partial D$	179.2(9)
H12A - C12 - H12B	108.0	F10B-P2-F8B	1/8.3(8)
C14 - C13 - C12	112.30 (10)	F/A P2 F8B	99.0 (8)
C12 - C12 - H13A	109.1	F8A - P2 - F8B	9.7 (11)
C12—C13—H13A	109.1	F9B—P2—F11	92.0 (7)
C14—C13—H13B	109.1	F10B—P2—F11	86.7 (4)
C12—C13—H13B	109.1	F7A—P2—F11	94.1 (5)
H13A—C13—H13B	107.9	F8A—P2—F11	91.6 (4)
C13—C14—H14A	109.5	F8B—P2—F11	91.6 (7)
C13—C14—H14B	109.5	F9B—P2—F12	86.9 (7)
H14A—C14—H14B	109.5	F10B—P2—F12	92.8 (4)
C13—C14—H14C	109.5	F7A—P2—F12	86.9 (5)
H14A—C14—H14C	109.5	F8A—P2—F12	89.1 (4)
H14B—C14—H14C	109.5	F8B—P2—F12	88.9 (7)
N3—C15—C2	110.71 (11)	F11—P2—F12	178.80 (7)
N3-C15-H15A	109.5	F9B—P2—F10A	80.3 (7)
C2C15H15A	109.5	F10B—P2—F10A	11.7 (7)
N3—C15—H15B	109.5	F7A—P2—F10A	91.7 (4)
C2-C15-H15B	109.5	F8A—P2—F10A	177.3 (5)
H15A—C15—H15B	108.1	F8B-P2-F10A	168.9 (8)
N3-C16-N4	109.00 (12)	F11—P2—F10A	90.8 (2)
N3-C16-H16A	125.5	F12—P2—F10A	88.5 (2)
N4—C16—H16A	125.5	F9B—P2—F9A	9.4 (10)
C18—C17—N3	106.69 (13)	F10B—P2—F9A	99.8 (7)
C18—C17—H17A	126.7	F7A—P2—F9A	177.6 (5)
N3—C17—H17A	126.7	F8A—P2—F9A	90.0 (5)
C17—C18—N4	107.30(13)	F8B—P2—F9A	80.3 (9)
C17—C18—H18A	126.4	F11—P2—F9A	88.3 (3)
N4—C18—H18A	126.4	F12—P2—F9A	90.8 (3)
N4—C19A—C20A	111.9 (3)	F10A—P2—F9A	88 9 (4)
N4—C19A—H19A	109.2	F9B—P2—F7B	175 9 (8)
C_{20A} C_{19A} H_{19A}	109.2	F10B-P2-F7B	85 8 (7)
N4—C19A—H19B	109.2	F7A - P2 - F7B	10.6(9)
C_{20A} C_{19A} H_{19B}	109.2	F8A—P2—F7B	84 3 (6)
H19A - C19A - H19B	107.9	F8B—P2—F7B	93 9 (9)
C19A - C20A - C21A	114.8 (3)	F11—P2—F7B	84 9 (5)
$C_{19A} = C_{20A} = H_{20A}$	108.6	F12_P2_F7R	96.2 (5)
	100.0	112 12 1/D	10.4 (11

C21A—C20A—H20A C19A—C20A—H20B	108.6 108.6	F10A—P2—F7B F9A—P2—F7B	97.1 (5) 170.9 (6)
C21A—C20A—H20B	108.6		
C6—C1—C2—C3	-1.1 (2)	N2-C11-C12-C13	170.61 (14)
C6—C1—C2—C15	178.02 (13)	C11—C12—C13—C14	-176.02 (17)
C1—C2—C3—C4	0.4 (2)	C16—N3—C15—C2	90.70 (15)
C15—C2—C3—C4	-178.69 (14)	C17—N3—C15—C2	-83.84 (16)
C2—C3—C4—C5	0.3 (2)	C3—C2—C15—N3	92.95 (15)
C2—C3—C4—C23	-177.08 (15)	C1-C2-C15-N3	-86.17 (15)
C3—C4—C5—C6	-0.3 (2)	C17—N3—C16—N4	0.59 (15)
C23—C4—C5—C6	177.02 (15)	C15—N3—C16—N4	-174.83 (11)
C2-C1-C6-C5	1.1 (2)	C18—N4—C16—N3	-0.45 (16)
C2-C1-C6-C7	178.94 (12)	C19B—N4—C16—N3	-169.1 (5)
C4—C5—C6—C1	-0.3 (2)	C19A—N4—C16—N3	171.83 (19)
C4—C5—C6—C7	-178.22 (14)	C16—N3—C17—C18	-0.49 (15)
C8—N1—C7—C6	-101.42 (15)	C15—N3—C17—C18	174.74 (12)
C9—N1—C7—C6	79.54 (16)	N3—C17—C18—N4	0.22 (16)
C1-C6-C7-N1	86.62 (16)	C16—N4—C18—C17	0.13 (17)
C5-C6-C7-N1	-95.51 (15)	C19B-N4-C18-C17	171.0 (4)
C10—N2—C8—N1	1.08 (16)	C19A—N4—C18—C17	-171.3 (2)
C11—N2—C8—N1	177.63 (12)	C16—N4—C19A—C20A	-105.3 (3)
C9—N1—C8—N2	-0.99 (15)	C18—N4—C19A—C20A	65.2 (3)
C7—N1—C8—N2	179.81 (11)	C19B—N4—C19A—C20A	119.3 (17)
C8—N1—C9—C10	0.52 (16)	N4—C19A—C20A—C21A	61.1 (4)
C7—N1—C9—C10	179.69 (12)	C19A—C20A—C21A—C22A	-175.4 (3)
N1-C9-C10-N2	0.13 (16)	C16—N4—C19B—C20B	-72.2 (7)
C8—N2—C10—C9	-0.73 (16)	C18—N4—C19B—C20B	119.9 (5)
C11—N2—C10—C9	-177.13 (14)	C19A—N4—C19B—C20B	-15.9 (11)
C8—N2—C11—C12	-105.44 (16)	N4-C19B-C20B-C21B	-60.3 (7)
C10—N2—C11—C12	70.44 (19)	C19B—C20B—C21B—C22B	169.3 (6)

Hydrogen-bond geometry (Å, °) Cg1 is the centroid of the C1–C6 phenyl ring.

<i>D</i> —H··· <i>A</i>	D—H	H···A	D··· A	D—H··· A
C8—H8A····F4	0.93	2.42	3.0154 (16)	121
C8—H8A…F5	0.93	2.39	3.2700 (16)	157
C16—H16A…F3	0.93	2.31	3.1941 (16)	160
C16—H16A…F4	0.93	2.45	3.1677 (16)	134
C21 <i>A</i> —H21 <i>B</i> …F4	0.97	2.49	3.196 (2)	130
C3— $H3A$ ···F12 ⁱ	0.93	2.44	3.3147 (16)	157
C5—H5 <i>A</i> ···F9 <i>A</i> ⁱⁱ	0.93	2.55	3.420 (8)	156
C7—H7A····F10A ⁱⁱ	0.97	2.51	3.427 (6)	158
C9—H9A…F12 ⁱⁱⁱ	0.93	2.48	3.2805 (17)	144
C12—H12A…F3 ^{iv}	0.97	2.53	3.3358 (18)	140
C18—H18A…F8A ^v	0.93	2.38	3.148 (11)	140
C22 A —H22 C ··· $Cg1^{vi}$	0.96	2.76	3.535 (3)	138

C23—H23 B ···Cg1 ^{vii}	0.96	2.59	3.487 (2)	155	
C22B—H22E···Cg1 ^{vi}	0.96	2.86	3.637 (8)	139	

Symmetry codes: (i) x-1, y+1, z; (ii) x-1, y, z; (iii) -x+1, -y+1, -z+2; (iv) -x, y-1/2, -z+3/2; (v) -x+1, -y+2, -z+2; (vi) x+1, y, z; (vii) -x, -y+2, -z+2.