

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2,2'-Biimidazolium 5-amino-2,4,6-tribromoisophthalate

Kou-Lin Zhang,^a Han Huang^a and Seik Weng Ng^{b*}

^aCollege of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, People's Republic of China, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 12 October 2010; accepted 16 October 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.006 Å; R factor = 0.035; wR factor = 0.120; data-to-parameter ratio = 15.8.

In the cation of the title salt, $C_6H_8N_4^{2+}C_8H_2Br_3NO_4^{2-}$, the dihedral angle between the two five-membered rings is 2.1 (3)°. In the anion, the mean planes of the carboxyl units are twisted from the benzene ring by 84.3 (4) and 86.2 (3)°. In the crystal, the components are linked by imidazolium–carboxylate N-H···O hydrogen bonds, generating a chain running along [110].

Related literature

For the structure of 5-amino-2,4,6-tribromidoisophthalic acid, see: Beck *et al.* (2009). For the structures of other 2,2'-bis-(imidazolium) carboxylates, see: Gao *et al.* (2009); Li & Yang (2007); Zhou *et al.* (2009).

Experimental

c = 11.5252 (12) Å
$\alpha = 90.262 \ (1)^{\circ}$
$\beta = 108.332 (1)^{\circ}$
$\gamma = 93.136 \ (1)^{\circ}$
V = 909.96 (17) Å

Z = 2Mo $K\alpha$ radiation $\mu = 6.68 \text{ mm}^{-1}$

Data collection

Bruker SMART APEX diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\rm min} = 0.203, T_{\rm max} = 0.434$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.035$ $wR(F^2) = 0.120$ S = 1.124104 reflections 259 parameters 6 restraints T = 293 K $0.35 \times 0.25 \times 0.15 \text{ mm}$

8042 measured reflections 4104 independent reflections 3129 reflections with $I > 2\sigma(I)$ $R_{int} = 0.025$

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max} = 0.81 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.56 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H2\cdotsO1$ $N3-H3\cdotsO3^{i}$ $N4-H4\cdotsO4^{i}$ $N5-H5\cdotsO2$	$\begin{array}{c} 0.88 \ (1) \\ 0.88 \ (1) \\ 0.88 \ (1) \\ 0.88 \ (1) \\ 0.88 \ (1) \end{array}$	1.74 (2) 1.78 (2) 1.74 (1) 1.79 (2)	2.608 (4) 2.624 (5) 2.614 (5) 2.636 (4)	168 (6) 160 (5) 175 (7) 160 (4)

Symmetry code: (i) x + 1, y - 1, z.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2010).

We thank the Key Laboratory of Environmental Material and Environmental Engineering of Jiangsu Province, Yangzhou University and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5152).

References

- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
- Beck, T., Herbst-Irmer, R. & Sheldrick, G. M. (2009). Acta Cryst. C65, o237–o239.
- Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Gao, X.-L., Lu, L.-P. & Zhu, M.-L. (2009). Acta Cryst. C65, o123-o127.
- Li, Y.-P. & Yang, P. (2007). Chin. J. Chem. 25, 1715–1721.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Zhou, C.-S., Ding, L.-L., Zhang, H., Cao, M.-N. & Meng, X.-G. (2009). Acta Cryst. C65, 051–053.

supporting information

Acta Cryst. (2010). E66, o2919 [https://doi.org/10.1107/S1600536810041899]

2,2'-Biimidazolium 5-amino-2,4,6-tribromoisophthalate

Kou-Lin Zhang, Han Huang and Seik Weng Ng

S1. Comment

The crystal structure of 5-Amino-2,4,6-tribromoiodoisophthalic acid exists as a chains in which adjacent molecules are linked by O–H···O hydrogen bonds. In addition, pairs of chains are connected by further O–H···O hydrogen bonds (Beck *et al.*, 2009). This acid furnishes a small number of coordination compounds. An attempt to synthesize a lead(II) derivative that can be linked by 2,2'-biimidazole gave instead the title salt, $[C_6H_8N_4]^{2+}$ $[C_8H_2NO_4I_3]^{2-}(1)$. Other examples of crystal structure of 2,2'-bis(imidazolium) carboxylates already appear in the literature (Gao *et al.*, 2009; Li & Yang, 2007; Zhou *et al.*, 2009).

The asymmetric unit of (1) is shown in Fig. 1. The cation is nearly planar as its two five-membered rings are twisted along the $C_{imidazolyl}$ – $C_{imidazolyl}$ bond by 2.1 (3) ° only. In the anion, both – CO_2 units are almost orthogonal to the bezene ring mean plane [dihedral angles between – CO_2 plane and benzene ring (r.m.s. deviation 0.018 Å) are 84.3 (4)° and 86.2 (3) °]. In the crystal structure, cations and anions are linked by $N_{imidazolyl}$ –H…O hydrogen bonds to generate a chain formation running along [110](Fig. 2).

S2. Experimental

An aqueous solution of lead nitrate (0.006 g, 0.2 mmol) in water (5 ml) was added to a mixture of 5-amino-2,4,6-tribromidoisophthalic acid (0.056 g, 0.1 mmol) in water (5 ml) and sodium hydroxide (0.2 ml, 0.5 *M*). To this solution was added 2,2'-biimidazole (0.014 g, 0.1 mmol) in DMF (5 ml). The solution was filtered; slow evaporation yielded pale yellow crystals which were collected (30% yield). CH&N elemental analysis. Calc. for $C_{14}H_{10}Br_3N_5O_4$: C 30.46, H 1.83, N 12.69%.; Found: C, 30.38; H, 1.91; N, 12.77%.

S3. Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 Å) and were included in the refinement in the riding model approximation, with U_{iso} (H) set to $1.2U_{eq}$ (C).

The imidazolyl and amino H-atoms were located in a difference Fourier map, and were refined with a distance restraint of N–H 0.88 ± 0.01 Å; their temperature factors were refined.

Figure 1

Thermal ellipsoid plot (Barbour, 2001) of $C_6H_8N_4^{2+}C_8H_2NO_4Br_3^{2-}$ at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

Figure 2

Part of the crystal structure showing hydrogen bonds as dashed lines.

2,2'-Biimidazolium 5-amino-2,4,6-tribromoisophthalate

Crystal data

 $C_{6}H_{8}N_{4}^{2+}C_{8}H_{2}Br_{3}NO_{4}^{2-}$ $M_{r} = 552.00$ Triclinic, *P*I Hall symbol: -P 1 a = 9.0525 (10) Å b = 9.2043 (10) Å c = 11.5252 (12) Å $a = 90.262 (1)^{\circ}$ $\beta = 108.332 (1)^{\circ}$ $\gamma = 93.136 (1)^{\circ}$ $V = 909.96 (17) \text{ Å}^{3}$

Z = 2 F(000) = 532 $D_x = 2.015 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2718 reflections $\theta = 2.4-27.4^{\circ}$ $\mu = 6.68 \text{ mm}^{-1}$ T = 293 KPrism, pale yellow $0.35 \times 0.25 \times 0.15 \text{ mm}$ Data collection

Bruker SMART APEX diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{\min} = 0.203, T_{\max} = 0.434$ Refinement	8042 measured reflections 4104 independent reflections 3129 reflections with $I > 2\sigma(I)$ $R_{int} = 0.025$ $\theta_{max} = 27.5^{\circ}, \theta_{min} = 1.9^{\circ}$ $h = -11 \rightarrow 11$ $k = -11 \rightarrow 11$ $l = -14 \rightarrow 14$
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.035$ $wR(F^2) = 0.120$ S = 1.12 4104 reflections 259 parameters 6 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0618P)^2 + 0.430P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.81$ e Å ⁻³ $\Delta\rho_{min} = -0.56$ e Å ⁻³

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Br1	0.44985 (5)	0.68067 (5)	0.04955 (4)	0.03399 (14)	
Br2	0.30262 (7)	0.89508 (6)	0.45860 (5)	0.05335 (18)	
Br3	0.80240 (6)	0.52283 (6)	0.52786 (5)	0.05028 (17)	
01	0.6388 (4)	0.3751 (3)	0.2311 (3)	0.0364 (7)	
O2	0.8128 (4)	0.5529 (3)	0.2201 (3)	0.0424 (8)	
03	0.1481 (4)	0.8223 (4)	0.1385 (3)	0.0419 (8)	
O4	0.3322 (4)	1.0034 (3)	0.1754 (4)	0.0465 (9)	
N1	0.5757 (6)	0.7119 (6)	0.5998 (4)	0.0536 (12)	
N2	0.7881 (4)	0.1504 (4)	0.2018 (4)	0.0326 (8)	
N3	0.9353 (4)	-0.0118 (4)	0.1680 (4)	0.0356 (9)	
N4	1.1546 (4)	0.2242 (4)	0.1272 (3)	0.0305 (8)	
N5	1.0016 (4)	0.3864 (4)	0.1539 (3)	0.0258 (7)	
C1	0.6952 (5)	0.5045 (5)	0.2451 (4)	0.0300 (9)	
C2	0.6062 (5)	0.6121 (4)	0.2971 (4)	0.0265 (8)	
C3	0.4913 (5)	0.6934 (4)	0.2216 (4)	0.0246 (8)	
C4	0.4030 (5)	0.7833 (4)	0.2686 (4)	0.0276 (9)	
C5	0.4310 (5)	0.7852 (5)	0.3941 (4)	0.0329 (10)	
C6	0.5465 (5)	0.7061 (5)	0.4750 (4)	0.0343 (10)	
C7	0.6352 (5)	0.6244 (4)	0.4223 (4)	0.0293 (9)	
C8	0.2831 (5)	0.8777 (4)	0.1859 (4)	0.0310 (9)	
C9	0.7208 (6)	0.0171 (5)	0.2144 (5)	0.0491 (13)	
H9	0.6293	-0.0004	0.2337	0.059*	
C10	0.8132 (6)	-0.0853 (5)	0.1932 (5)	0.0485 (13)	
H10	0.7967	-0.1857	0.1954	0.058*	

C11	0.9166 (5)	0.1302 (4)	0.1731 (4)	0.0260 (8)	
C12	1.0206 (5)	0.2449 (4)	0.1518 (4)	0.0253 (8)	
C13	1.2192 (5)	0.3590 (5)	0.1138 (4)	0.0343 (10)	
H13	1.3118	0.3773	0.0960	0.041*	
C14	1.1255 (5)	0.4600 (4)	0.1306 (4)	0.0307 (9)	
H14	1.1414	0.5604	0.1273	0.037*	
H2	0.751 (7)	0.232 (4)	0.217 (5)	0.068 (19)*	
Н3	1.005 (5)	-0.054 (5)	0.143 (5)	0.054 (16)*	
H4	1.215 (6)	0.151 (5)	0.139 (6)	0.09 (2)*	
Н5	0.923 (4)	0.424 (5)	0.171 (4)	0.035 (13)*	
H11	0.519 (6)	0.764 (6)	0.631 (5)	0.07 (2)*	
H12	0.624 (6)	0.640 (4)	0.643 (4)	0.056 (18)*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.0363 (3)	0.0361 (3)	0.0319 (2)	0.01227 (19)	0.01250 (19)	-0.00142 (18)
Br2	0.0560 (4)	0.0543 (4)	0.0623 (4)	0.0200 (3)	0.0340 (3)	-0.0138 (3)
Br3	0.0441 (3)	0.0611 (4)	0.0420 (3)	0.0224 (3)	0.0049 (2)	0.0071 (2)
O1	0.0342 (17)	0.0232 (15)	0.060 (2)	0.0058 (13)	0.0254 (15)	-0.0047 (14)
O2	0.0372 (19)	0.0282 (17)	0.075 (2)	0.0075 (14)	0.0350 (18)	0.0010 (16)
O3	0.0223 (16)	0.0374 (19)	0.063 (2)	0.0091 (14)	0.0084 (15)	-0.0072 (16)
04	0.0372 (19)	0.0170 (16)	0.088 (3)	0.0121 (14)	0.0217 (18)	0.0094 (16)
N1	0.067 (3)	0.062 (3)	0.036 (2)	0.020 (3)	0.019 (2)	-0.005 (2)
N2	0.0230 (18)	0.0250 (19)	0.055 (2)	0.0067 (15)	0.0198 (17)	-0.0002 (17)
N3	0.028 (2)	0.0250 (19)	0.059 (2)	0.0073 (16)	0.0192 (18)	-0.0025 (17)
N4	0.0188 (17)	0.034 (2)	0.042 (2)	0.0098 (15)	0.0134 (15)	0.0030 (16)
N5	0.0170 (16)	0.0258 (18)	0.0388 (19)	0.0093 (14)	0.0134 (14)	0.0022 (15)
C1	0.034 (2)	0.030(2)	0.030(2)	0.0114 (19)	0.0135 (18)	0.0013 (17)
C2	0.027 (2)	0.0187 (19)	0.036 (2)	0.0059 (16)	0.0125 (17)	-0.0015 (16)
C3	0.028 (2)	0.020 (2)	0.0280 (19)	0.0052 (16)	0.0116 (17)	-0.0030 (15)
C4	0.024 (2)	0.021 (2)	0.041 (2)	0.0066 (16)	0.0145 (18)	-0.0016 (17)
C5	0.031 (2)	0.030(2)	0.044 (2)	0.0102 (19)	0.019 (2)	-0.0103 (19)
C6	0.034 (2)	0.036 (2)	0.036 (2)	0.005 (2)	0.015 (2)	-0.0061 (19)
C7	0.025 (2)	0.024 (2)	0.039 (2)	0.0078 (17)	0.0091 (18)	0.0007 (17)
C8	0.031 (2)	0.020 (2)	0.048 (3)	0.0161 (18)	0.018 (2)	-0.0008 (18)
С9	0.041 (3)	0.034 (3)	0.084 (4)	-0.002(2)	0.035 (3)	-0.002 (3)
C10	0.042 (3)	0.023 (2)	0.088 (4)	0.002 (2)	0.031 (3)	0.003 (2)
C11	0.029 (2)	0.0151 (19)	0.034 (2)	0.0067 (16)	0.0089 (17)	-0.0003 (16)
C12	0.030 (2)	0.0144 (18)	0.033 (2)	0.0075 (16)	0.0107 (17)	0.0003 (15)
C13	0.036 (2)	0.027 (2)	0.045 (3)	0.0033 (19)	0.019 (2)	0.0031 (19)
C14	0.035 (2)	0.0154 (19)	0.042 (2)	0.0045 (17)	0.0125 (19)	0.0054 (17)

Geometric parameters (Å, °)

Br1—C3	1.901 (4)	N5—C12	1.325 (5)
Br2—C5	1.895 (4)	N5—C14	1.377 (5)
Br3—C7	1.911 (4)	N5—H5	0.882 (10)

supporting information

01 01	1.050 (5)	G1 G 2	1 5 4 1 (5)
OI-CI	1.259 (5)	C1—C2	1.541 (5)
O2—C1	1.248 (5)	C2—C7	1.386 (6)
O3—C8	1.250 (5)	C2—C3	1.386 (5)
Q4—C8	1.237 (5)	C3—C4	1,399 (5)
N1	1 378 (6)	C4-C5	1 388 (6)
N1 U11	1.370(0)	C_{1} C_{2}	1.500(0)
	0.877(10)	C_{4}	1.317 (0)
NI—HI2	0.879 (10)	05-06	1.403 (6)
N2—C11	1.327 (5)	С6—С7	1.396 (6)
N2—C9	1.369 (6)	C9—C10	1.364 (7)
N2—H2	0.880 (10)	С9—Н9	0.9300
N3—C11	1.330 (5)	C10—H10	0.9300
N3—C10	1.373 (6)	C11—C12	1.449 (6)
N3—H3	0 879 (10)	C13—C14	1 346 (6)
N4-C12	1 352 (5)	C13H13	0.9300
N4 C12	1.332(5) 1.272(6)		0.9300
	1.373(0)	С14—п14	0.9300
N4—H4	0.880 (10)		
C6 N1 H11	120 (4)	C_{6} C_{5} B_{r}^{2}	1185(3)
C6 N1 U12	120(4)	N1 C6 C7	110.5(3)
	110 (4)	NI	121.5 (4)
HII—NI—HI2	119 (6)	NI	122.5 (4)
C11—N2—C9	108.4 (4)	C/-C6-C5	116.1 (4)
C11—N2—H2	129 (4)	C2—C7—C6	123.0 (4)
C9—N2—H2	122 (4)	C2—C7—Br3	118.6 (3)
C11—N3—C10	108.3 (4)	C6—C7—Br3	118.4 (3)
C11—N3—H3	127 (4)	O4—C8—O3	127.7 (4)
C10—N3—H3	124 (4)	O4—C8—C4	114.7 (4)
C12—N4—C13	107.4 (4)	Q3—C8—C4	117.7 (4)
C12—N4—H4	132 (4)	C10-C9-N2	107.2(4)
C13 N4 H4	117(4)	C_{10} C_{9} H_{2}	126.4
C_{12} N5 C_{14}	1088(3)	$N_2 - C_9 - H_9$	126.4
C12 N5 U5	100.0(3)	C_{0} C_{10} N2	120.4
C12 - N5 - H5	124(3)	$C_{2} = C_{10} = N_{2}$	100.9 (4)
C14—N5—H5	127(3)	C9-C10-H10	126.6
0201	126.7 (4)	N3—C10—H10	126.6
O2—C1—C2	117.9 (4)	N2—C11—N3	109.2 (4)
01—C1—C2	115.4 (4)	N2—C11—C12	125.3 (4)
C7—C2—C3	118.2 (4)	N3—C11—C12	125.5 (4)
C7—C2—C1	119.9 (4)	N5-C12-N4	108.7 (3)
C3—C2—C1	121.8 (4)	N5-C12-C11	126.1 (4)
C2—C3—C4	121.7 (4)	N4	125.2 (4)
C2—C3—Br1	119.4 (3)	C14—C13—N4	108.2 (4)
C4—C3—Br1	118.9 (3)	C14—C13—H13	125.9
C5—C4—C3	117.6 (4)	N4—C13—H13	125.9
C5—C4—C8	121.0 (3)	C13—C14—N5	106.9 (4)
C3—C4—C8	121.3 (4)	C13—C14—H14	126.5
C4—C5—C6	123.2 (4)	N5—C14—H14	126.5
C4—C5—Br2	118.3 (3)	-	
O2—C1—C2—C7	-96.8 (5)	C5—C6—C7—C2	-4.4 (6)

O1—C1—C2—C7	83.9 (5)	N1—C6—C7—Br3	-1.2 (6)
O2—C1—C2—C3	86.3 (5)	C5—C6—C7—Br3	176.5 (3)
O1—C1—C2—C3	-93.0 (5)	C5—C4—C8—O4	85.3 (5)
C7—C2—C3—C4	-1.5 (6)	C3—C4—C8—O4	-93.6 (5)
C1—C2—C3—C4	175.4 (4)	C5—C4—C8—O3	-93.5 (5)
C7—C2—C3—Br1	179.4 (3)	C3—C4—C8—O3	87.6 (5)
C1-C2-C3-Br1	-3.7 (5)	C11—N2—C9—C10	0.4 (6)
C2—C3—C4—C5	-2.0 (6)	N2-C9-C10-N3	0.0 (7)
Br1-C3-C4-C5	177.1 (3)	C11—N3—C10—C9	-0.4 (6)
C2—C3—C4—C8	176.9 (4)	C9—N2—C11—N3	-0.7 (5)
Br1-C3-C4-C8	-4.1 (5)	C9—N2—C11—C12	179.9 (4)
C3—C4—C5—C6	2.5 (6)	C10—N3—C11—N2	0.7 (5)
C8—C4—C5—C6	-176.4 (4)	C10—N3—C11—C12	-179.9 (4)
C3—C4—C5—Br2	-175.5 (3)	C14—N5—C12—N4	-0.2 (5)
C8—C4—C5—Br2	5.6 (6)	C14—N5—C12—C11	179.4 (4)
C4—C5—C6—N1	178.2 (5)	C13—N4—C12—N5	0.0 (5)
Br2—C5—C6—N1	-3.8 (6)	C13—N4—C12—C11	-179.7 (4)
C4—C5—C6—C7	0.6 (7)	N2-C11-C12-N5	-2.3 (7)
Br2—C5—C6—C7	178.6 (3)	N3—C11—C12—N5	178.4 (4)
C3—C2—C7—C6	4.9 (6)	N2-C11-C12-N4	177.3 (4)
C1—C2—C7—C6	-172.0 (4)	N3—C11—C12—N4	-2.0 (7)
C3—C2—C7—Br3	-176.0 (3)	C12—N4—C13—C14	0.2 (5)
C1—C2—C7—Br3	7.0 (5)	N4—C13—C14—N5	-0.4 (5)
N1—C6—C7—C2	177.9 (4)	C12—N5—C14—C13	0.4 (5)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —H	Н…А	D····A	D—H···A
N2—H2…O1	0.88 (1)	1.74 (2)	2.608 (4)	168 (6)
N3—H3…O3 ⁱ	0.88(1)	1.78 (2)	2.624 (5)	160 (5)
N4—H4····O4 ⁱ	0.88 (1)	1.74 (1)	2.614 (5)	175 (7)
N5—H5…O2	0.88 (1)	1.79 (2)	2.636 (4)	160 (4)

Symmetry code: (i) x+1, y-1, z.