addenda and errata

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Melaminium nitrate-melamine-water (1/1/1). Corrigendum

Farook Adam,^a Kei Lin Sek,^a Kasim Mohammed Hello,^b Madhukar Hemamalini^c and Hoong-Kun Fun^c*

^aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, ^bSchool of Chemistry, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia Correspondence e-mail: hkfun@usm.my

Received 12 November 2010; accepted 17 November 2010

The name of one of the authors in the paper by Adam *et al.* [*Acta Cryst.* (2010), E**66**, o3033–o3034] is corrected.

In the paper by Adam *et al.* (2010), the second author is incorrectly given as 'Sek Kei Lin'. The correct name should be 'Kei Lin Sek', as given above.

References

Adam, F., Lin, S. K., Hello, K. M., Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, 03033–03034.

 $\gamma = 99.828 \ (1)^{\circ}$

Z = 4

V = 1333.64 (3) Å³

Mo $K\alpha$ radiation

 $0.21 \times 0.14 \times 0.09 \text{ mm}$

22196 measured reflections

5160 independent reflections

3689 reflections with $I > 2\sigma(I)$

All H-atom parameters refined

 $\mu = 0.14 \text{ mm}^{-1}$

T = 296 K

 $R_{\rm int} = 0.042$

543 parameters

 $\Delta \rho_{\text{max}} = 0.21 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.45 \text{ e } \text{\AA}^{-3}$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Melaminium nitrate-melamine-water (1/1/1)

Farook Adam,^a‡ Sek Kei Lin,^a Kasim Mohammed Hello,^b Madhukar Hemamalini^c and Hoong-Kun Fun^c*§

^aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, ^bSchool of Chemistry, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia Correspondence e-mail: hkfun@usm.my

Received 22 October 2010; accepted 27 October 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (N–C) = 0.003 Å; disorder in main residue; R factor = 0.047; wR factor = 0.123; data-to-parameter ratio = 9.5.

In the crystal structure of the title salt, $C_3H_7N_6^+\cdot NO_3^-$.- $C_3H_6N_6\cdot H_2O$, the asymmetric unit consists of two neutral melamine (1,3,5-triazine-2,4,6-triamine) molecules, two melaminium cations, two nitrate anions and two solvent water molecules. One of the nitrate anions is disordered over two sets of positions, with a refined occupancy ratio of 0.909 (3): 0.091 (3). The cations and neutral molecules are approximately planar, with maximum deviations of 0.018 (2), 0.024 (2), 0.019 (2) and 0.007 (2) Å for each, respectively. In the crystal structure, melaminium cations and neutral melamine molecules self-assemble *via* $N-H\cdot\cdot\cdot N$ hydrogen bonds to form a supramolecular hexagonal-shaped motif. In addition, the nitrate anions and water molecules are connected by $N-H\cdot\cdot\cdot O$ hydrogen bonds to form a threedimensional network.

Related literature

For applications of melamine, see: Rima *et al.* (2008); Cook *et al.* (2005); Ramos Silva *et al.* (2008). For related structures, see: Debrus *et al.* (2007); Zhao & Shi (2010); Marchewka & Pietraszko (2003); Marchewka (2002). For applications of hydrogen bonding, see: Aghabozorg *et al.* (2008).

[‡] Additional correspondence author, e-mail: farook@usm.my, farook_dr@yahoo.com. § Thomson Reuters ResearcherID: A-3561-2009.

Experimental

Crystal data

 $C_{3}H_{7}N_{6}^{+}\cdot NO_{3}^{-}\cdot C_{3}H_{6}N_{6}\cdot H_{2}O$ $M_{r} = 333.31$ Triclinic, $P\overline{1}$ a = 7.7759 (1) Å b = 9.0035 (1) Å c = 19.4573 (3) Å $\alpha = 96.182 (1)^{\circ}$ $\beta = 90.854 (1)^{\circ}$

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2009) $T_{\rm min} = 0.972, T_{\rm max} = 0.987$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.047$ $wR(F^2) = 0.123$ S = 1.035160 reflections

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N4A - H1A \cdots O2W^{i}$	0.92 (2)	2.05 (2)	2.965 (2)	174.2 (17)
$N4B - H1B \cdot \cdot \cdot N1D$	0.85 (2)	2.18 (2)	3.025 (2)	174.1 (18)
$N4D - H1D \cdots O3AA$	0.88(2)	2.27 (2)	3.077 (2)	153 (2)
$N1A - H1N \cdots O1W^{ii}$	0.91 (2)	1.89 (2)	2.771 (2)	165 (2)
$N4A - H2A \cdots O1B^{i}$	0.96 (3)	2.03 (3)	2.838 (2)	141 (2)
$N4B - H2B \cdot \cdot \cdot O3AA$	0.93 (3)	2.05 (2)	2.810 (2)	138.8 (18)
$N4C - H2C \cdot \cdot \cdot N2D^{iii}$	0.88 (3)	2.07 (3)	2.945 (2)	176 (2)
$N4D - H2D \cdot \cdot \cdot N2C^{iii}$	0.84(2)	2.23 (2)	3.069 (2)	172 (2)
$N1C - H2N \cdots O3B$	0.93 (2)	1.91 (2)	2.836 (2)	177 (2)
$O2W - H1W2 \cdots N1D$	0.86 (3)	2.04 (3)	2.899 (2)	174 (3)
$N5A - H3A \cdots N2B$	0.88 (3)	2.20 (3)	3.062 (2)	165 (2)
$N5B-H3B\cdots N2A$	0.82 (3)	2.30 (3)	3.119 (2)	175 (2)
$N5C-H3C\cdots O2AA^{iii}$	0.89 (2)	2.06 (2)	2.799 (2)	140 (2)
$N5D - H3D \cdots O3AA^{iv}$	0.86(2)	2.53 (2)	3.232 (3)	140 (2)
$N5A - H4A \cdots O1AA$	0.86(2)	2.11 (2)	2.963 (2)	171 (2)
$N5B - H4B \cdot \cdot \cdot O2B^{i}$	0.86(2)	2.20 (2)	3.045 (2)	167 (2)
$N5C - H4C \cdot \cdot \cdot N3D^{v}$	0.89 (3)	2.12 (3)	2.996 (2)	173 (2)
$N5D - H4D \cdots N3C^{v}$	0.81 (3)	2.30 (3)	3.105 (3)	173 (2)
$N6A - H5A \cdots N3B^{vi}$	0.80(2)	2.13 (2)	2.926 (2)	175.9 (19)
$N6B - H5B \cdot \cdot \cdot N3A^{vii}$	0.84(2)	2.18 (2)	3.020 (2)	177 (2)
$N6C - H5C \cdot \cdot \cdot O2W$	0.93 (3)	2.00 (3)	2.849 (2)	151 (2)
$N6D - H5D \cdots O2AA^{vii}$	0.93 (3)	2.22 (3)	3.126 (2)	167 (2)
$N6A - H6A \cdots O1W^{ii}$	0.90 (2)	2.55 (2)	3.262 (2)	137.2 (15)
$N6A - H6A \cdots O2B^{viii}$	0.90(2)	2.14 (2)	2.841 (2)	135.2 (17)
$N6B - H6B \cdot \cdot \cdot O1AA^{vii}$	0.89 (2)	2.17 (3)	2.806 (2)	128 (2)
$N6C - H6C \cdot \cdot \cdot O1B$	0.90 (2)	1.97 (2)	2.868 (2)	174.6 (18)
$N6D - H6D \cdots N1B$	0.91 (2)	2.18 (2)	3.088 (2)	172 (2)

Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) x + 1, y, z - 1; (iii) -x + 1, -y + 2, -z + 1; (iv) -x + 1, -y + 1, -z + 1; (v) -x, -y + 1, -z + 1; (vi) x + 1, y + 1, z; (vii) x - 1, y - 1, z; (viii) -x + 2, -y + 2, -z.

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL* and *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009).

The authors thank the Malaysian Government for a USM-RU-PRGS grant (No. 1001/PKIMIA/842020) and an RU grant

organic compounds

(No. 10001/PKIMIA/814019) which partly supported this work. HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for a Research University grant (No. 1001/PFIZIK/811160). MH also thanks Universiti Sains Malaysia for a postdoctoral research fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5157).

References

Aghabozorg, H., Daneshvar, S. & Nemati, A. (2008). Acta Cryst. E64, m1063–m1064.

- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cook, H. A., Klampfl, C. W. & Buchberger, W. (2005). *Electrophoresis*, **26**, 1576–1583.
- Debrus, S., Marchewka, M. K., Drozd, M. & Ratajczak, H. (2007). *Opt. Mater.* **29**, 1058–1062.
- Marchewka, M. K. (2002). Mater. Sci. Eng. B, 95, 214-221.
- Marchewka, M. K. & Pietraszko, A. (2003). J. Phys. Chem. Solids. 64, 2169–2181.
- Ramos Silva, M., Motyeian, E., Aghabozorg, H. & Ghadermazi, M. (2008). *Acta Cryst.* E64, m1173-m1174.
- Rima, J., Abourida, M., Xu, T., Cho, I. K. & Kyriacos, S. (2008). J. Food Compost. Anal. 22, 689–693.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Zhao, M. M. & Shi, P. P. (2010). Acta Cryst. E66, 01415.

Acta Cryst. (2010). E66, o3033-o3034 [https://doi.org/10.1107/S1600536810043941]

Melaminium nitrate-melamine-water (1/1/1)

Farook Adam, Sek Kei Lin, Kasim Mohammed Hello, Madhukar Hemamalini and Hoong-Kun Fun

S1. Comment

1,3,5-triazine-2,4,6-triamine is an organic base also known as melamine. Melamine is very widely used in several industries, such as the production of melamine foam in polymeric cleaning (Rima *et al.*, 2008) and also as a chemical intermediate in amino resin and plastics manufacturing (Cook *et al.*, 2005). Melamine can be a proton acceptor and will form 2,4,6-triamino-1,3,5-triazine-1-ium (Ramos Silva *et al.*, 2008). Recently many melaminium complexes in crystalline form has been reported, such as melaminium-bis(trichloroacetate) monohydrate (Debrus *et al.*, 2007), melaminium iodide monohydrate (Zhao & Shi, 2010) and melaminium citrate (Marchewka & Pietraszko, 2003). Melaminium salt crystals have shown interesting properties like nonlinear optical behaviour (Marchewka, 2002). In the formation of melaminium salt crystals, molecules are bound to each other via hydrogen bonds. Hydrogen bonding plays an important role in the catalytic, biochemical activities and also in supramolecular chemistry and crystal engineering (Aghabozorg *et al.*, 2008). Here, we report the crystal structure of a melaminium salt. This crystal was obtained as a by-product during our attempt to form crown complexes with melamine.

The asymmetric unit of the title compound consists of two crystallographically independent protonated melaminium cations (A & C), two nitrate anions (A & B), two neutral melamine molecules (B & D) and two water molecules (Fig. 1). One of the nitrate anion is disordered over two sets of position, with refined occupancy ratios of 0.909 (3):0.091 (3). The protonated and neutral melamine molecules are essentially planar, with a maximum deviation of 0.018 (2) Å for atom C2A (molecule A), 0.024 (2) Å for atom C2C (molecule C), 0.019 (2) Å for atom C2B (molecule B) and 0.007 (2) Å for atom C2D (molecule D).

In the crystal structure (Fig.2), the protonated melaminium cations and the neutral melamine molecules self-assemble via N—H···N hydrogen bonds to form a supramolecular hexagonal motif. Furthermore, the nitrate anions and water molecules are connected by N—H···O (Table 1) hydrogen bonds to form a three-dimensional network.

S2. Experimental

0.36 g (2.856 mmol) of melamine, 0.50 g (2.856 mmol) of 1,4-bis(chloromethyl)benzene and 1.0 ml triethylamine were added into 40 mL acetonitrile and refluxed for 72 hours at 348 K. The white precipitate was collected by simple filtration and dried at 373 K for 24 hours. About 0.5 g of the white precipitate was dissolved in 10 mL distilled water followed by 0.5 g (1.718 mmol) of cobalt(II) nitrate. The pH was adjusted to 7.0 by a few drops of 1.0 M sodium hydroxide. The mixture was stirred for 2 h and then filtered off. The resulting mixture was kept at room temperature for recrystallization. Recrystallization was carried out twice by using distilled water to get the pure crystal.

S3. Refinement

All the H atoms were located in a difference Fourier map and allowed to refine freely [N-H = 0.80 (2)-0.96 (2) Å and O -H = 0.85 (4)-0.96 (3) Å]. One of the nitrate anion is disordered over two sets of positions, with refined occupancy ratios of 0.909 (3):0.091 (3).

Figure 1

The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme. Open bonds represents disorder components.

Figure 2

The crystal packing of the title compound, showing the hydrogen-bonded (dashed lines) network.

2,4,6-triamino-1,3,5-triazin-1-ium nitrate-1,3,5-triazine-2,4,6-triamine- water (1/1/1)

Crystal data

$C_3H_7N_6^+ \cdot NO_3^- \cdot C_3H_6N_6 \cdot H_2O$	Z = 4
$M_r = 333.31$	F(000) = 696
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.660 {\rm ~Mg} {\rm ~m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 7.7759 (1) Å	Cell parameters from 3833 reflections
b = 9.0035 (1) Å	$\theta = 2.3 - 29.8^{\circ}$
c = 19.4573 (3) Å	$\mu = 0.14 \text{ mm}^{-1}$
$\alpha = 96.182 \ (1)^{\circ}$	T = 296 K
$\beta = 90.854 \ (1)^{\circ}$	Block, purple
$\gamma = 99.828 \ (1)^{\circ}$	$0.21 \times 0.14 \times 0.09 \text{ mm}$
$V = 1333.64 (3) Å^3$	
Data collection	
Bruker SMART APEXII CCD area-detector	22196 measured reflections
diffractometer	5160 independent reflections
Radiation source: fine-focus sealed tube	3689 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.042$
φ and ω scans	$\theta_{\rm max} = 26.0^{\circ}, \theta_{\rm min} = 2.1^{\circ}$
Absorption correction: multi-scan	$h = -8 \rightarrow 9$
(SADABS; Bruker, 2009)	$k = -11 \rightarrow 11$
$T_{\min} = 0.972, \ T_{\max} = 0.987$	$l = -23 \rightarrow 23$

Refinement

-	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.047$	Hydrogen site location: inferred from
$wR(F^2) = 0.123$	neighbouring sites
S = 1.03	All H-atom parameters refined
5160 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0625P)^2 + 0.2158P]$
543 parameters	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.21 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta ho_{ m min} = -0.45 \ m e \ m \AA^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
N1A	0.9356 (2)	0.62933 (18)	-0.08016 (9)	0.0142 (4)	
N2A	0.7288 (2)	0.48794 (18)	-0.01488 (8)	0.0149 (4)	
N3A	0.9137 (2)	0.71794 (18)	0.03718 (8)	0.0139 (4)	
N4A	0.7628 (2)	0.4097 (2)	-0.12989 (9)	0.0176 (4)	
N5A	0.7043 (2)	0.5825 (2)	0.09767 (9)	0.0172 (4)	
N6A	1.1157 (2)	0.8451 (2)	-0.03080 (10)	0.0165 (4)	
C1A	0.8069 (2)	0.5077 (2)	-0.07424 (10)	0.0139 (4)	
C2A	0.7836 (2)	0.5972 (2)	0.03848 (10)	0.0145 (4)	
C3A	0.9888 (2)	0.7321 (2)	-0.02329 (10)	0.0136 (4)	
N1B	0.2450 (2)	0.17275 (18)	0.20073 (8)	0.0157 (4)	
N2B	0.4686 (2)	0.29201 (18)	0.13081 (8)	0.0149 (4)	
N3B	0.2675 (2)	0.07228 (18)	0.08247 (8)	0.0152 (4)	
N4B	0.4452 (2)	0.3774 (2)	0.24538 (9)	0.0183 (4)	
N5B	0.4750 (2)	0.1976 (2)	0.01677 (9)	0.0160 (4)	
N6B	0.0627 (2)	-0.0409 (2)	0.15269 (10)	0.0196 (4)	
C1B	0.3839 (2)	0.2789 (2)	0.19097 (10)	0.0148 (4)	
C2B	0.4012 (2)	0.1864 (2)	0.07766 (10)	0.0129 (4)	
C3B	0.1951 (2)	0.0700 (2)	0.14507 (10)	0.0148 (4)	
N1C	0.4424 (2)	1.05878 (19)	0.34890 (9)	0.0170 (4)	
N2C	0.4197 (2)	1.15377 (18)	0.46499 (8)	0.0143 (4)	
N3C	0.2251 (2)	0.92779 (18)	0.41389 (8)	0.0158 (4)	
N4C	0.6243 (2)	1.2761 (2)	0.39577 (10)	0.0182 (4)	
N5C	0.2192 (2)	1.0143 (2)	0.52802 (9)	0.0155 (4)	
N6C	0.2541 (3)	0.8500 (2)	0.29859 (9)	0.0221 (4)	
C1C	0.4950 (2)	1.1634 (2)	0.40435 (10)	0.0149 (4)	

C2C	0.2901 (2)	1.0327 (2)	0.46781 (10)	0.0140 (4)	
C3C	0.3043 (3)	0.9436 (2)	0.35478 (10)	0.0162 (4)	
N1D	0.2208 (2)	0.40060 (18)	0.37041 (8)	0.0155 (4)	
N2D	0.2450 (2)	0.48189 (18)	0.49238 (8)	0.0149 (4)	
N3D	0.0365 (2)	0.26250 (18)	0.44780 (8)	0.0145 (4)	
N4D	0.4156 (2)	0.6117 (2)	0.41573 (10)	0.0180 (4)	
N5D	0.0681 (3)	0.3419 (2)	0.56411 (9)	0.0174 (4)	
N6D	0.0204 (2)	0.1911 (2)	0.32993 (9)	0.0180 (4)	
C1D	0.2918 (2)	0.4954 (2)	0.42667 (10)	0.0139 (4)	
C2D	0.1182 (2)	0.3630 (2)	0.49989 (10)	0.0142 (4)	
C3D	0.0951 (3)	0.2865(2)	0.38480 (10)	0.0137(4)	
N8A	0.7624(2)	0.76433(19)	0.28672 (9)	$0.0178(4)^{*}$	
OIAA	0.8234(2)	0 77664 (18)	0.22811(8)	0.0211(4)	0.909(3)
0244	0.3257(2) 0.7867(2)	0.87285(18)	0.322011(0) 0.33240(8)	0.0293(5)	0.909(3)
0344	0.7807(2) 0.6809(2)	0.63698(18)	0.30210(0)	0.0295(5)	0.909(3)
O1AR	0.887(2)	0.8747(18)	0.30001(0) 0.2933(8)	0.0305(3)	0.909(3)
O2AB	0.667(2)	0.3747(10) 0.7781(10)	0.2333(0)	0.021(4) 0.026(5)*	0.091(3)
O2AD	0.049(2) 0.721(2)	0.7781(19) 0.673(2)	0.3371(8) 0.2387(0)	0.020(5)	0.091(3)
NOD	0.721(2) 0.5025(2)	0.075(2)	0.2387(9) 0.17530(8)	$0.029(3)^{10}$	0.091 (3)
	0.3923(2)	0.90733(18)	0.1730(8) 0.18015(7)	0.0103(4)	
	0.40913(19)	0.80023(10)	0.18013(7) 0.11005(7)	0.0240(4)	
02D	0.00849(18)	1.06208(15)	0.11993(7)	0.0200(3)	
O3D O1W	0.04020(18) 0.1726(2)	1.00308(13)	0.22702(7)	0.0191(3)	
	0.1/30(2)	0.07007(17)	0.81044(8)	0.0188(3)	
02W	0.0/18(2)	0.54/90(1/)	0.26433 (8)	0.021/(4)	
HIN	0.997 (3)	0.639 (3)	-0.1192 (12)	0.028 (6)*	
H2N	0.504 (3)	1.061 (3)	0.3083 (12)	0.032 (7)*	
HIA	0.816 (3)	0.430 (2)	-0.1706 (12)	0.023 (6)*	
H2A	0.668 (3)	0.328 (3)	-0.1251 (13)	0.044 (8)*	
H3A	0.622 (3)	0.504 (3)	0.1019 (11)	0.022 (6)*	
H4A	0.739 (3)	0.648 (3)	0.1329 (11)	0.019 (6)*	
H5A	1.154 (3)	0.905 (3)	0.0016 (12)	0.020 (6)*	
H6A	1.157 (3)	0.853 (2)	-0.0732 (12)	0.020 (6)*	
H1B	0.382 (3)	0.377 (2)	0.2808 (11)	0.018 (6)*	
H2B	0.531 (3)	0.460 (3)	0.2400 (11)	0.030 (7)*	
H3B	0.543 (3)	0.276 (3)	0.0113 (11)	0.022 (6)*	
H4B	0.426 (3)	0.137 (3)	-0.0177 (12)	0.025 (6)*	
H5B	0.021 (3)	-0.106 (3)	0.1195 (12)	0.023 (6)*	
H6B	0.014 (3)	-0.044 (3)	0.1938 (12)	0.027 (7)*	
H1C	0.676 (3)	1.277 (3)	0.3554 (13)	0.030 (7)*	
H2C	0.668 (3)	1.346 (3)	0.4295 (13)	0.033 (7)*	
H3C	0.259 (3)	1.082 (3)	0.5641 (12)	0.025 (6)*	
H4C	0.138 (3)	0.934 (3)	0.5318 (12)	0.032 (7)*	
H5C	0.172 (4)	0.762 (3)	0.3000 (13)	0.047 (8)*	
H6C	0.318 (3)	0.858 (2)	0.2606 (11)	0.016 (6)*	
H1D	0.458 (3)	0.616 (2)	0.3741 (11)	0.014 (6)*	
H2D	0.459 (3)	0.669 (3)	0.4510 (12)	0.024 (6)*	
H3D	0.129 (3)	0.396 (3)	0.5980 (12)	0.030 (7)*	
H4D	-0.005 (3)	0.268 (3)	0.5669 (11)	0.026 (7)*	

H5D	-0.051 (3)	0.102 (3)	0.3382 (12)	0.034 (7)*	
H6D	0.082 (3)	0.194 (3)	0.2905 (12)	0.027 (6)*	
H1W1	0.203 (4)	0.765 (3)	0.7943 (14)	0.054 (9)*	
H2W1	0.270 (4)	0.673 (4)	0.8371 (17)	0.084 (12)*	
H1W2	0.116 (4)	0.499 (3)	0.2936 (15)	0.055 (9)*	
H2W2	-0.034 (4)	0.480 (3)	0.2477 (13)	0.042 (7)*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1A	0.0151 (9)	0.0154 (9)	0.0106 (9)	-0.0008 (7)	0.0026 (7)	0.0005 (7)
N2A	0.0170 (9)	0.0132 (9)	0.0134 (9)	0.0003 (7)	0.0005 (7)	0.0004 (7)
N3A	0.0148 (9)	0.0140 (9)	0.0118 (9)	-0.0006 (7)	0.0013 (7)	0.0015 (7)
N4A	0.0202 (10)	0.0178 (10)	0.0128 (9)	-0.0014 (8)	0.0022 (8)	-0.0009 (7)
N5A	0.0201 (10)	0.0155 (10)	0.0130 (9)	-0.0047 (8)	0.0032 (8)	-0.0005 (8)
N6A	0.0190 (10)	0.0168 (9)	0.0104 (10)	-0.0043 (7)	0.0027 (8)	-0.0021 (8)
C1A	0.0125 (10)	0.0135 (10)	0.0155 (11)	0.0017 (8)	-0.0004 (8)	0.0017 (8)
C2A	0.0137 (10)	0.0131 (10)	0.0171 (11)	0.0023 (8)	-0.0003 (8)	0.0038 (8)
C3A	0.0133 (10)	0.0128 (10)	0.0153 (10)	0.0038 (8)	-0.0014 (8)	0.0016 (8)
N1B	0.0150 (9)	0.0172 (9)	0.0137 (9)	-0.0002 (7)	0.0011 (7)	0.0006 (7)
N2B	0.0151 (9)	0.0156 (9)	0.0130 (9)	0.0005 (7)	0.0013 (7)	0.0007 (7)
N3B	0.0151 (9)	0.0157 (9)	0.0134 (9)	-0.0007 (7)	-0.0004 (7)	0.0010 (7)
N4B	0.0180 (9)	0.0215 (10)	0.0116 (9)	-0.0046 (8)	0.0049 (8)	-0.0027 (8)
N5B	0.0172 (9)	0.0156 (10)	0.0122 (9)	-0.0041 (8)	0.0016 (7)	-0.0003 (8)
N6B	0.0201 (10)	0.0228 (10)	0.0118 (10)	-0.0067 (8)	0.0027 (8)	-0.0011 (8)
C1B	0.0126 (10)	0.0156 (10)	0.0157 (11)	0.0005 (8)	0.0004 (8)	0.0030 (8)
C2B	0.0124 (10)	0.0135 (10)	0.0133 (10)	0.0031 (8)	-0.0012 (8)	0.0024 (8)
C3B	0.0131 (10)	0.0173 (11)	0.0139 (10)	0.0011 (8)	0.0001 (8)	0.0029 (8)
N1C	0.0196 (9)	0.0160 (9)	0.0131 (9)	-0.0026 (7)	0.0029 (7)	-0.0004 (7)
N2C	0.0149 (9)	0.0149 (9)	0.0127 (9)	0.0015 (7)	0.0021 (7)	0.0009 (7)
N3C	0.0189 (9)	0.0136 (9)	0.0134 (9)	-0.0011 (7)	0.0013 (7)	0.0012 (7)
N4C	0.0205 (10)	0.0179 (10)	0.0131 (10)	-0.0037 (8)	0.0036 (8)	-0.0008 (8)
N5C	0.0179 (9)	0.0137 (9)	0.0129 (9)	-0.0021 (8)	0.0019 (7)	-0.0008 (7)
N6C	0.0271 (11)	0.0206 (10)	0.0142 (10)	-0.0064 (8)	0.0055 (8)	-0.0020 (8)
C1C	0.0142 (10)	0.0145 (10)	0.0163 (11)	0.0037 (8)	-0.0006 (8)	0.0014 (8)
C2C	0.0144 (10)	0.0127 (10)	0.0152 (10)	0.0028 (8)	0.0001 (8)	0.0021 (8)
C3C	0.0169 (10)	0.0137 (10)	0.0172 (11)	0.0010 (8)	0.0011 (8)	0.0016 (8)
N1D	0.0168 (9)	0.0140 (9)	0.0139 (9)	-0.0012 (7)	0.0007 (7)	0.0001 (7)
N2D	0.0164 (9)	0.0150 (9)	0.0130 (9)	0.0019 (7)	0.0010 (7)	0.0015 (7)
N3D	0.0162 (9)	0.0142 (9)	0.0119 (9)	0.0000 (7)	0.0005 (7)	0.0004 (7)
N4D	0.0228 (10)	0.0174 (10)	0.0106 (10)	-0.0044 (8)	0.0022 (8)	-0.0007 (8)
N5D	0.0221 (10)	0.0152 (10)	0.0118 (9)	-0.0045 (8)	0.0014 (8)	-0.0005 (8)
N6D	0.0211 (10)	0.0182 (10)	0.0118 (9)	-0.0040 (8)	0.0023 (8)	-0.0003 (7)
C1D	0.0145 (10)	0.0132 (10)	0.0151 (10)	0.0059 (8)	0.0003 (8)	0.0009 (8)
C2D	0.0151 (10)	0.0147 (10)	0.0137 (10)	0.0037 (8)	0.0015 (8)	0.0037 (8)
C3D	0.0152 (10)	0.0143 (10)	0.0123 (10)	0.0040 (8)	0.0005 (8)	0.0029 (8)
O1AA	0.0246 (9)	0.0249 (10)	0.0128 (8)	0.0000 (7)	0.0057 (7)	0.0038 (7)
O2AA	0.0517 (13)	0.0175 (9)	0.0141 (9)	-0.0037 (8)	0.0020 (8)	-0.0033 (7)

O3AA N8B O1B O2B	0.0362 (11) 0.0170 (9) 0.0221 (8) 0.0226 (8)	0.0232 (10) 0.0162 (9) 0.0201 (8) 0.0227 (8)	0.0240 (10) 0.0150 (9) 0.0247 (8) 0.0130 (7)	-0.0163 (8) 0.0011 (7) -0.0096 (6) -0.0007 (6)	0.0075 (8) 0.0005 (7) 0.0060 (7) 0.0058 (6)	0.0003 (7) 0.0020 (7) -0.0002 (6) 0.0013 (6)
O3B O1W	0.0232 (8)	0.0179 (8)	0.0132 (7)	-0.0020(6) -0.0011(6)	0.0019 (6)	-0.0028(6) 0.0031(6)
O2W	0.0239 (9)	0.0194 (8)	0.0204 (8)	-0.0015(7)	-0.0047 (7)	0.0048 (7)

Geometric parameters (Å, °)

N1A—C1A	1.368 (2)	N4C—C1C	1.327 (3)
N1A—C3A	1.374 (2)	N4C—H1C	0.89 (2)
N1A—H1N	0.91 (2)	N4C—H2C	0.88 (2)
N2A—C1A	1.328 (2)	N5C—C2C	1.317 (2)
N2A—C2A	1.361 (2)	N5C—H3C	0.90 (2)
N3A—C3A	1.330 (2)	N5C—H4C	0.89 (3)
N3A—C2A	1.355 (2)	N6C—C3C	1.317 (3)
N4A—C1A	1.322 (2)	N6C—H5C	0.93 (3)
N4A—H1A	0.92 (2)	N6C—H6C	0.90 (2)
N4A—H2A	0.96 (3)	N1D—C3D	1.348 (2)
N5A—C2A	1.323 (3)	N1D—C1D	1.361 (2)
N5A—H3A	0.88 (2)	N2D—C1D	1.347 (2)
N5A—H4A	0.86 (2)	N2D—C2D	1.348 (2)
N6A—C3A	1.313 (2)	N3D—C3D	1.341 (2)
N6A—H5A	0.80 (2)	N3D—C2D	1.356 (2)
N6A—H6A	0.89 (2)	N4D—C1D	1.333 (3)
N1B—C1B	1.345 (2)	N4D—H1D	0.88 (2)
N1B—C3B	1.352 (2)	N4D—H2D	0.84 (2)
N2B—C1B	1.358 (2)	N5D—C2D	1.338 (3)
N2B—C2B	1.360 (2)	N5D—H3D	0.86 (2)
N3B—C2B	1.343 (2)	N5D—H4D	0.81 (2)
N3B—C3B	1.350 (2)	N6D—C3D	1.352 (2)
N4B—C1B	1.332 (2)	N6D—H5D	0.93 (2)
N4B—H1B	0.85 (2)	N6D—H6D	0.91 (2)
N4B—H2B	0.93 (2)	N8A—O3AB	1.180 (17)
N5B—C2B	1.330 (2)	N8A—O2AA	1.235 (2)
N5B—H3B	0.82 (2)	N8A—O1AA	1.250 (2)
N5B—H4B	0.86 (2)	N8A—O1AB	1.257 (16)
N6B—C3B	1.328 (3)	N8A—O3AA	1.266 (2)
N6B—H5B	0.85 (2)	N8A—O2AB	1.340 (16)
N6B—H6B	0.89 (2)	N8B—O2B	1.243 (2)
N1C—C1C	1.362 (2)	N8B—O1B	1.253 (2)
N1C—C3C	1.375 (3)	N8B—O3B	1.267 (2)
N1C—H2N	0.93 (2)	O1W—H1W1	0.94 (3)
N2C—C1C	1.330 (2)	O1W—H2W1	0.85 (4)
N2C—C2C	1.359 (2)	O2W—H1W2	0.86 (3)
N3C—C3C	1.322 (2)	O2W—H2W2	0.96 (3)
N3C—C2C	1.362 (2)		

C1A—N1A—C3A	119.68 (17)	H3C—N5C—H4C	123 (2)
C1A—N1A—H1N	122.0 (14)	C3C—N6C—H5C	121.6 (16)
C3A—N1A—H1N	117.9 (14)	C3C—N6C—H6C	119.1 (13)
C1A—N2A—C2A	115.58 (16)	H5C—N6C—H6C	118 (2)
C3A—N3A—C2A	115.82 (16)	N4C—C1C—N2C	120.93 (18)
C1A—N4A—H1A	118.4 (13)	N4C—C1C—N1C	117.64 (18)
C1A—N4A—H2A	116.2 (15)	N2C—C1C—N1C	121.43 (18)
H1A—N4A—H2A	125 (2)	N5C—C2C—N2C	117.48 (17)
C2A—N5A—H3A	120.6 (14)	N5C—C2C—N3C	116.36 (18)
C2A—N5A—H4A	118.9 (14)	N2C—C2C—N3C	126.15 (17)
H3A—N5A—H4A	120 (2)	N6C—C3C—N3C	121.51 (18)
C3A—N6A—H5A	120.8 (16)	N6C—C3C—N1C	116.79 (18)
C3A—N6A—H6A	117.5 (14)	N3C—C3C—N1C	121.70 (17)
H5A—N6A—H6A	122 (2)	C3D—N1D—C1D	114.55 (16)
N4A—C1A—N2A	120.93 (18)	C1D—N2D—C2D	114.67 (16)
N4A—C1A—N1A	117.61 (18)	C3D—N3D—C2D	114.38 (16)
N2A—C1A—N1A	121.47 (17)	C1D—N4D—H1D	119.3 (13)
N5A—C2A—N3A	116.94 (17)	C1D—N4D—H2D	116.6 (15)
N5A—C2A—N2A	116.77 (18)	H1D—N4D—H2D	123 (2)
N3A—C2A—N2A	126.28 (18)	C2D—N5D—H3D	117.8 (15)
N6A—C3A—N3A	121.21 (18)	C2D—N5D—H4D	115.0 (16)
N6A—C3A—N1A	117.70 (18)	H3D—N5D—H4D	126 (2)
N3A—C3A—N1A	121.08 (17)	C3D—N6D—H5D	118.3 (14)
C1B—N1B—C3B	114.54 (16)	C3D—N6D—H6D	115.0 (14)
C1B—N2B—C2B	114.46 (16)	H5D—N6D—H6D	120 (2)
C2B—N3B—C3B	115.23 (16)	N4D—C1D—N2D	117.56 (18)
C1B—N4B—H1B	116.4 (14)	N4D—C1D—N1D	117.41 (18)
C1B—N4B—H2B	120.1 (14)	N2D—C1D—N1D	125.02 (18)
H1B—N4B—H2B	121 (2)	N5D—C2D—N2D	117.53 (18)
C2B—N5B—H3B	118.4 (15)	N5D—C2D—N3D	116.89 (18)
C2B—N5B—H4B	117.1 (15)	N2D—C2D—N3D	125.58 (17)
H3B—N5B—H4B	122 (2)	N3D—C3D—N1D	125.78 (17)
C3B—N6B—H5B	122.0 (15)	N3D—C3D—N6D	118.13 (18)
C3B—N6B—H6B	118.3 (14)	N1D—C3D—N6D	116.07 (17)
H5B—N6B—H6B	120 (2)	O3AB—N8A—O2AA	169.5 (9)
N4B—C1B—N1B	117.02 (18)	O3AB—N8A—O1AA	57.0 (9)
N4B—C1B—N2B	117.46 (17)	O2AA—N8A—O1AA	120.86 (17)
N1B—C1B—N2B	125.51 (17)	O3AB—N8A—O1AB	129.1 (12)
N5B—C2B—N3B	118.21 (17)	O2AA—N8A—O1AB	52.2 (7)
N5B-C2B-N2B	116.93 (17)	O1AA—N8A—O1AB	73.0 (8)
N3B—C2B—N2B	124.86 (17)	O3AB—N8A—O3AA	63.9 (9)
N6B—C3B—N3B	117.65 (18)	O2AA—N8A—O3AA	119.80 (17)
N6B—C3B—N1B	117.06 (18)	O1AA—N8A—O3AA	119.28 (16)
N3B—C3B—N1B	125.28 (17)	O1AB—N8A—O3AA	154.5 (8)
C1C—N1C—C3C	119.51 (17)	O3AB—N8A—O2AB	118.6 (12)
C1C—N1C—H2N	120.2 (15)	O2AA—N8A—O2AB	58.6 (7)
C3C—N1C—H2N	120.2 (14)	O1AA—N8A—O2AB	156.4 (7)

C1C—N2C—C2C	115.68 (16)	O1AB—N8A—O2AB	110.8 (11)
C3C—N3C—C2C	115.38 (17)	O3AA—N8A—O2AB	67.8 (7)
C1C—N4C—H1C	118.9 (15)	O2B—N8B—O1B	120.62 (16)
C1C—N4C—H2C	122.7 (15)	O2B—N8B—O3B	120.05 (16)
H1C—N4C—H2C	118 (2)	O1B—N8B—O3B	119.34 (16)
C2C—N5C—H3C	117.8 (14)	H1W1—O1W—H2W1	102 (3)
C2C—N5C—H4C	119.4 (15)	H1W2—O2W—H2W2	104 (2)
C2A_N2A_C1A_N4A	-179 15 (18)	C2C—N2C—C1C—N4C	-179 32 (18)
$C_2A = N_2A = C_1A = N_1A$	0.9(3)	$C_{2}C_{N_{2}}$	0.9(3)
C_{3A} N1A C_{1A} N4A	-17841(18)	$C_{3}C_{N1}C_{C1}C_{N4}C$	-177 41 (18)
C3A - N1A - C1A - N2A	15(3)	C3C - N1C - C1C - N2C	2.4 (3)
C3A - N3A - C2A - N5A	-178.58(18)	C1C - N2C - C2C - N5C	176.16 (18)
C3A—N3A—C2A—N2A	2.8 (3)	C1C - N2C - C2C - N3C	-4.2 (3)
C1A—N2A—C2A—N5A	178.11 (18)	C3C—N3C—C2C—N5C	-176.55 (18)
C1A—N2A—C2A—N3A	-3.2 (3)	C3C—N3C—C2C—N2C	3.8 (3)
C2A—N3A—C3A—N6A	179.66 (19)	C2C—N3C—C3C—N6C	-179.85 (19)
C2A—N3A—C3A—N1A	0.0 (3)	C2C—N3C—C3C—N1C	-0.1 (3)
C1A—N1A—C3A—N6A	178.31 (18)	C1C—N1C—C3C—N6C	176.93 (18)
C1A—N1A—C3A—N3A	-2.0 (3)	C1C—N1C—C3C—N3C	-2.8 (3)
C3B—N1B—C1B—N4B	-176.03 (18)	C2D—N2D—C1D—N4D	179.39 (17)
C3B—N1B—C1B—N2B	2.6 (3)	C2D—N2D—C1D—N1D	0.3 (3)
C2B—N2B—C1B—N4B	178.92 (18)	C3D—N1D—C1D—N4D	-179.25 (17)
C2B—N2B—C1B—N1B	0.3 (3)	C3D—N1D—C1D—N2D	-0.2 (3)
C3B—N3B—C2B—N5B	-178.07 (17)	C1D—N2D—C2D—N5D	178.84 (17)
C3B—N3B—C2B—N2B	2.4 (3)	C1D—N2D—C2D—N3D	-1.2 (3)
C1B—N2B—C2B—N5B	177.45 (17)	C3D—N3D—C2D—N5D	-178.23 (17)
C1B—N2B—C2B—N3B	-3.0 (3)	C3D—N3D—C2D—N2D	1.8 (3)
C2B—N3B—C3B—N6B	-179.74 (18)	C2D—N3D—C3D—N1D	-1.7 (3)
C2B—N3B—C3B—N1B	1.0 (3)	C2D—N3D—C3D—N6D	179.96 (17)
C1B—N1B—C3B—N6B	177.44 (18)	C1D—N1D—C3D—N3D	0.9 (3)
C1B—N1B—C3B—N3B	-3.3 (3)	C1D—N1D—C3D—N6D	179.31 (17)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A
$\overline{\text{N4}A-\text{H1}A\cdots\text{O2}W^{1}}$	0.92 (2)	2.05 (2)	2.965 (2)	174.2 (17)
N4 <i>B</i> —H1 <i>B</i> ···N1 <i>D</i>	0.85 (2)	2.18 (2)	3.025 (2)	174.1 (18)
N4D—H1D····O3AA	0.88 (2)	2.27 (2)	3.077 (2)	153 (2)
N1A— $H1N$ ···O1 W ⁱⁱ	0.91 (2)	1.89 (2)	2.771 (2)	165 (2)
N4 A —H2 A ···O1 B^{i}	0.96 (3)	2.03 (3)	2.838 (2)	141 (2)
N4 <i>B</i> —H2 <i>B</i> ···O3 <i>AA</i>	0.93 (3)	2.05 (2)	2.810 (2)	138.8 (18)
N4C— $H2C$ ··· $N2D$ ⁱⁱⁱ	0.88 (3)	2.07 (3)	2.945 (2)	176 (2)
N4D—H2D····N2C ⁱⁱⁱ	0.84 (2)	2.23 (2)	3.069 (2)	172 (2)
N1 <i>C</i> —H2 <i>N</i> ···O3 <i>B</i>	0.93 (2)	1.91 (2)	2.836 (2)	177 (2)
O2 <i>W</i> —H1 <i>W</i> 2···N1 <i>D</i>	0.86 (3)	2.04 (3)	2.899 (2)	174 (3)
N5 <i>A</i> —H3 <i>A</i> …N2 <i>B</i>	0.88 (3)	2.20 (3)	3.062 (2)	165 (2)
N5 <i>B</i> —H3 <i>B</i> …N2 <i>A</i>	0.82 (3)	2.30 (3)	3.119 (2)	175 (2)

N5C—H3C···O2AA ⁱⁱⁱ	0.89 (2)	2.06 (2)	2.799 (2)	140 (2)
N5D—H3D····O3AA ^{iv}	0.86 (2)	2.53 (2)	3.232 (3)	140 (2)
N5 <i>A</i> —H4 <i>A</i> …O1 <i>AA</i>	0.86 (2)	2.11 (2)	2.963 (2)	171 (2)
N5 B —H4 B ····O2 B^{i}	0.86 (2)	2.20 (2)	3.045 (2)	167 (2)
$N5C$ — $H4C$ ··· $N3D^{v}$	0.89 (3)	2.12 (3)	2.996 (2)	173 (2)
$N5D$ — $H4D$ ··· $N3C^{v}$	0.81 (3)	2.30 (3)	3.105 (3)	173 (2)
$N6A - H5A \cdot \cdot \cdot N3B^{vi}$	0.80(2)	2.13 (2)	2.926 (2)	175.9 (19)
N6B—H5B····N3A ^{vii}	0.84 (2)	2.18 (2)	3.020 (2)	177 (2)
N6C—H5C…O2W	0.93 (3)	2.00 (3)	2.849 (2)	151 (2)
N6D—H5D····O2AA ^{vii}	0.93 (3)	2.22 (3)	3.126 (2)	167 (2)
$N6A - H6A - O1W^{ii}$	0.90(2)	2.55 (2)	3.262 (2)	137.2 (15)
$N6A - H6A - O2B^{viii}$	0.90 (2)	2.14 (2)	2.841 (2)	135.2 (17)
N6B—H6B····O1AA ^{vii}	0.89 (2)	2.17 (3)	2.806 (2)	128 (2)
N6C—H6C…O1B	0.90 (2)	1.97 (2)	2.868 (2)	174.6 (18)
N6 <i>D</i> —H6 <i>D</i> …N1 <i>B</i>	0.91 (2)	2.18 (2)	3.088 (2)	172 (2)

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*; (ii) *x*+1, *y*, *z*-1; (iii) -*x*+1, -*y*+2, -*z*+1; (iv) -*x*+1, -*y*+1, -*z*+1; (v) -*x*, -*y*+1, -*z*+1; (vi) *x*+1, *y*+1, *z*; (vii) *x*-1, *y*-1, *z*; (viii) -*x*+2, -*y*+2, -*z*.