

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

The cyclo-tetraphosphate $Cd_2P_4O_{12}$, a member of the isotypic series $M_2P_4O_{12}$ (M = Mg, Mn, Fe, Co, Ni, Cu)

Matthias Weil

Institute for Chemical Technologies and Analytics, Division of Structural Chemistry, Vienna University of Technology, Getreidemarkt 9/164-SC, A-1060 Vienna, Austria Correspondence e-mail: mweil@mail.zserv.tuwien.ac.at

Received 1 October 2010; accepted 7 October 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (P–O) = 0.001 Å; R factor = 0.023; wR factor = 0.054; data-to-parameter ratio = 35.3.

The title compound, $Cd_2P_4O_{12}$, dicadmium *cyclo*-tetraphosphate, crystallizes isotypically with the members of the series $M^{II}_2P_4O_{12}$, where M = Mg, Mn, Fe, Co, Ni or Cu. Two CdO₆ octahedra, one with 2 and one with $\overline{1}$ symmetry, share corners with the centrosymmetric $P_4O_{12}^{4-}$ ring anion that is built up from four corner-sharing PO₄ tetrahedra. The isolated ring anions are arranged in layers parallel to $(10\overline{1})$ with the CdO₆ octahedra situated between these layers. The main difference between the individual $M^{II}_2P_4O_{12}$ structures pertains to the different sizes of the MO_6 octahedra whereas the geometric parameters of all *cyclo*-P₄O₁₂⁴⁻ anions are very similar.

Related literature

For a previous powder X-ray study of $Cd_2P_4O_{12}$, see: Laügt *et al.* (1973). The structure of the low-temperature α -modification of the *catena*-polyphosphate $Cd(PO_3)_2$ was refined by Bagieu-Beucher *et al.* (1974). For isotypic $M^{II}_2P_4O_{12}$ structures, see: Nord & Lindberg (1975) for M = Mg; Glaum *et al.* (2002) for Mn; Nord *et al.* (1990) and Genkina *et al.* (1985) for Fe; Nord (1982) and Olbertz *et al.* (1998) for Co; Nord (1983) and Olbertz *et al.* (1998) for Ni; Laügt *et al.* (1972) for Cu. A review on the crystal chemistry of phosphates was published by Durif (1995). Ionic radii were compiled by Shannon (1976).

Experimental

Crystal data

$Cd_2P_4O_{12}$	
$M_r = 540.68$	
Monoclinic, C2/c	
a = 12.3342 (2) Å	
b = 8.6373 (2) Å	
c = 10.4037 (2) Å	
$\beta = 119.402 \ (1)^{\circ}$	

 $V = 965.59 (3) \text{ Å}^{3}$ Z = 4Mo K\alpha radiation $\mu = 5.13 \text{ mm}^{-1}$ T = 296 K $0.36 \times 0.24 \times 0.12 \text{ mm}$ 11480 measured reflections

 $R_{\rm int} = 0.036$

3001 independent reflections

2936 reflections with $I > 2\sigma(I)$

Data collection

Bruker APEXII CCD

diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2008) $T_{\rm min} = 0.260, T_{\rm max} = 0.578$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.023$	85 parameters
$wR(F^2) = 0.054$	$\Delta \rho_{\rm max} = 2.08 \text{ e } \text{\AA}^{-3}$
S = 1.23	$\Delta \rho_{\rm min} = -1.04 \ {\rm e} \ {\rm \AA}^{-3}$
3001 reflections	

Table 1

Selected bond lengths (Å).

Cd1-O1 ⁱ	2.1875 (12)	P1-O2	1.5052 (11)
Cd1-O6	2.3034 (10)	P1-O3 ^{iv}	1.5840 (12)
Cd1-O2 ⁱⁱ	2.3690 (11)	P1-O4	1.5983 (11)
Cd2-O5 ⁱⁱⁱ	2.2037 (12)	P2-O5	1.4604 (12)
Cd2-O6	2.2563 (11)	P2-O6	1.5011 (11)
Cd2-O2	2.2809 (11)	P2-O3	1.5848 (12)
P1-O1	1.4624 (12)	P2-O4	1.5918 (12)

Symmetry codes: (i) $x + \frac{1}{2}$, $y + \frac{1}{2}$, z; (ii) $-x + \frac{1}{2}$, $-y + \frac{1}{2}$, -z; (iii) $-x + \frac{1}{2}$, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (iv) -x, -y + 1, -z.

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ATOMS for Windows* (Dowty, 2006); software used to prepare material for publication: *SHELXL97*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: MG2104).

References

- Bagieu-Beucher, M., Guitel, J. C., Tordjman, I. & Durif, A. (1974). Bull. Soc. Fr. Minéral. Cristallogr. 97, 481–484.
- Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dowty, E. (2006). ATOMS for Windows. Shape Software, Kingsport, Tennessee, USA.
- Durif, A. (1995). Crystal Chemistry of Condensed Phosphates. New York and London: Plenum Press.
- Genkina, E. A., Maksimov, B. A. & Mel'nikov, O. K. (1985). *Kristallografiya*, **30**, 885–889.
- Glaum, R., Thauern, H., Schmidt, A. & Gerk, M. (2002). Z. Anorg. Allg. Chem. 628, 2800–2808.
- Laügt, M., Durif, A. & Averbouch-Pouchot, M.-T. (1973). Bull. Soc. Fr. Minéral. Cristallogr. 96, 383–385.
- Laügt, M., Guitel, J. C., Tordjman, I. & Bassi, G. (1972). Acta Cryst. B28, 201– 208.
- Nord, A. G. (1982). Cryst. Struct. Commun. 11, 1467-1474.
- Nord, A. G. (1983). Acta Chem. Scand. Ser. A, 37, 539-543.
- Nord, A. G., Ericsson, T. & Werner, P. E. (1990). Z. Kristallogr. 192, 83-90.
- Nord, A. G. & Lindberg, K. B. (1975). Acta Chem. Scand. Ser. A, 29, 1-6.
- Olbertz, A., Stachel, D., Svoboda, I. & Fuess, H. (1998). Z. Kristallogr. New Cryst. Struct. 213, 241–242.
- Shannon, R. D. (1976). Acta Cryst. A32, 751-767.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2010). E66, i75 [https://doi.org/10.1107/S1600536810040195]

The *cyclo*-tetraphosphate $Cd_2P_4O_{12}$, a member of the isotypic series $M_2P_4O_{12}$ (M = Mg, Mn, Fe, Co, Ni, Cu)

Matthias Weil

S1. Comment

 $M^{I_2}P_4O_{12}$ compounds containing the *cyclo*-tetraphosphate anion $P_4O_{12}^{4-}$ have been the subject of numerous crystallographic studies. Except for Cd₂P₄O₁₂ (X-ray powder data; Laügt *et al.*, 1973), detailed structure data are available for Mg₂P₄O₁₂ (Nord & Lindberg, 1975), Mn₂P₄O₁₂ (Glaum *et al.*, 2002), Fe₂P₄O₁₂ (Nord *et al.*, 1990; Genkina *et al.*, 1985), Co₂P₄O₁₂ (Nord, 1982; Olbertz *et al.*, 1998), Ni₂P₄O₁₂ (Nord, 1983; Olbertz *et al.*, 1998) and Cu₂P₄O₁₂ (Laügt *et al.*, 1972). During experiments intended for crystal growth of large single crystals of the low-temperature modification of cadmium *catena*-polyphosphate, α -Cd(PO₃)₂ (Bagieu-Beucher *et al.*, 1974), single crystals of the title compound were obtained instead.

The crystal structures of the isotypic $M^{II}_{2}P_{4}O_{12}$ family are built up from centrosymmetric $P_{4}O_{12}^{4-}$ ring anions. The isolated anions are arranged in layers parallel to (101). Two sets of slightly distorted MO_{6} octahedra, one with 1 symmetry and one with 2 symmetry, share edges and are situated in the interlayer space. The three-dimensional framework is accomplished by corner-sharing of the MO_{6} units and the $P_{4}O_{12}^{4-}$ anions. Figures 1 and 2 show the resulting arrangement for $Cd_{2}P_{4}O_{12}$.

The $P_4O_{12}^4$ ring anion of $Cd_2P_4O_{12}$ (Fig. 3) consists of four corner-sharing PO₄ tetrahedra and shows the typical features with respect to bond lengths and angles, *i.e.* shorter terminal P—O bonds and longer P—O bonds to the bridging O atoms. A review on structures containing the *cyclo*-tetraphosphate anion has been given by Durif (1995) where characteristic distances and angles are compiled. The individual bond lengths and angles of the $P_4O_{12}^4$ anions are very similar in all $M^{II}_2P_4O_{12}$ structures. The main difference between the structures is related to the varying ionic radii of the M^{II} cations. Correspondingly, the MO_6 octahedra show (slight) variations in the M—O bond lengths. In the $M^{II}_2P_4O_{12}$ family (M = Mg, Mn, Fe, Co, Ni, Cu, and Cd), Cd^{II} has the largest ionic radius (0.95 Å) for coordination number 6 (Shannon, 1976). This value seems to be the upper limit for the existence of the $M^{II}_2P_4O_{12}$ family of structures. For larger M^{II} cations like Hg^{II} or Pb^{II} (ionic radius 1.02 Å and 1.19 Å, respectively) solely long-chain *catena*-polyphosphate structures $M(PO_3)_2$ are realised.

In the review on condensed phosphates given by Durif it was stated that cyclo-Cd₂P₄O₁₂ transforms irreversibly into the low-temperature α -modification of the long-chain polyphosphate Cd(PO₃)₂ by prolonged heating at 573 K (Durif, 1995, and references therein), indicating that this transformation process is kinetically controlled. This assumption is confirmed by DSC (differential scanning calorimetry) measurements of the current sample (N₂ atmosphere, heating rate 10 K min⁻¹). Whereas no phase transition has been observed for this compound up to 873 K under these conditions, heating the sample at 873 K in a laboratory furnace under atmospheric conditions for 20 h resulted in a complete transformation into α -Cd(PO₃)₂.

S2. Experimental

Single crystals suitable for X-ray structure analysis were grown using the phosphate flux method. CdO (0.7 g) was placed in a glassy carbon crucible and was covered carefully with $70\%_{wt}$ H₃PO₄ (5.4 g). The crucible was subjected to the following temperature programme: RT \rightarrow 693 K [3 h] \rightarrow 693 K [5 h] \rightarrow 573 K [48 h]. Then the crucible was removed from the furnace. Prismatic colourless crystals with maximum edge lengths of 1.5 mm were obtained by leaching the phosphate flux with warm water.

S3. Refinement

The highest peak in the final Fourier map is located 0.62 Å from Cd2 and the deepest hole is 0.96 Å from the same atom.

Figure 1

The crystal structure of $Cd_2P_4O_{12}$ in a projection along $[00\overline{1}]$. PO₄ tetrahedra are red, CdO_6 octahedra are blue and O atoms are displayed as white spheres.

Figure 3

The P_4O_{12} ring anion with displacement ellipsoids drawn at the 99% level. Non-labelled atoms are generated by inversion symmetry. [Symmetry code: (viii) -*x*, -*y* + 1, -*z*.]

dicadmium cyclo-tetraphosphate

Crystal data

Cd₂P₄O12 $M_r = 540.68$ Monoclinic, C2/c Hall symbol: -C 2yc a = 12.3342 (2) Å b = 8.6373 (2) Å c = 10.4037 (2) Å $\beta = 119.402$ (1)° V = 965.59 (3) Å³ Z = 4

Data collection

Bruker APEXII CCD	11480 m
diffractometer	3001 ind
Radiation source: fine-focus sealed tube	2936 ref
Graphite monochromator	$R_{\rm int}=0.0$
ω and φ scans	$\theta_{\rm max} = 40$
Absorption correction: multi-scan	h = -22 -
(SADABS; Bruker, 2008)	k = -13 - 13 - 13 - 13 - 13 - 13 - 13 - 1
$T_{\min} = 0.260, \ T_{\max} = 0.578$	l = -18 - 18 - 18 - 18 - 18 - 18 - 18 - 1

Refinement

Refinement on F^2 Secondary atom siteLeast-squares matrix: fullmap $R[F^2 > 2\sigma(F^2)] = 0.023$ $w = 1/[\sigma^2(F_o^2) + (0.000)]$ $wR(F^2) = 0.054$ $where P = (F_o^2 + F_o^2) + (0.000)]$ S = 1.23 $(\Delta/\sigma)_{max} = 0.001$ 3001 reflections $\Delta\rho_{max} = 2.08$ e Å⁻³85 parameters $\Delta\rho_{min} = -1.04$ e Å⁻³0 restraintsExtinction correctionPrimary atom site location: structure-invariant2008), Fc*=kFc[1]direct methodsExtinction coefficient

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cd1	0.5000	0.463931 (16)	0.2500	0.01089 (4)	
Cd2	0.2500	0.2500	0.0000	0.00995 (4)	
P1	-0.01063 (3)	0.27016 (4)	0.02086 (4)	0.00915 (6)	
P2	0.18879 (3)	0.50069 (4)	0.19159 (3)	0.00957 (6)	

F(000) = 1008 $D_x = 3.719 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9733 reflections $\theta = 3.0-40.1^{\circ}$ $\mu = 5.13 \text{ mm}^{-1}$ T = 296 KFragment, colourless $0.36 \times 0.24 \times 0.12 \text{ mm}$

11480 measured reflections 3001 independent reflections 2936 reflections with $I > 2\sigma(I)$ $R_{int} = 0.036$ $\theta_{max} = 40.1^{\circ}, \ \theta_{min} = 3.0^{\circ}$ $h = -22 \rightarrow 22$ $k = -13 \rightarrow 15$ $l = -18 \rightarrow 18$

Secondary atom site location: difference Fourier map $w = 1/[\sigma^2(F_o^2) + (0.0182P)^2 + 0.873P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 2.08 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -1.04 \text{ e } \text{Å}^{-3}$ Extinction correction: *SHELXL97* (Sheldrick, 2008), Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.0306 (6)

01	0.04056 (10)	0 12011 (15)	0.07757(1.4)	0.0102 (2)
01	-0.04856 (12)	0.13811 (15)	0.07757(14)	0.0192 (2)
O2	0.04150 (11)	0.24122 (13)	-0.08092 (13)	0.01274 (17)
O3	0.12504 (11)	0.61475 (16)	0.05498 (13)	0.0208 (2)
O4	0.08602 (11)	0.37174 (16)	0.15789 (13)	0.0188 (2)
05	0.21814 (13)	0.57449 (17)	0.33127 (13)	0.0203 (2)
O6	0.29305 (9)	0.42682 (14)	0.17838 (12)	0.01323 (16)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cd1	0.01110 (6)	0.00998 (7)	0.01157 (6)	0.000	0.00555 (4)	0.000
Cd2	0.01135 (6)	0.01049 (7)	0.00858 (6)	0.00011 (3)	0.00534 (4)	0.00030 (3)
P1	0.01011 (12)	0.00779 (13)	0.01007 (12)	0.00002 (9)	0.00536 (9)	0.00080 (9)
P2	0.00955 (12)	0.00927 (14)	0.00907 (11)	0.00068 (10)	0.00393 (9)	-0.00214 (9)
O1	0.0242 (5)	0.0138 (5)	0.0198 (4)	-0.0032 (4)	0.0111 (4)	0.0051 (4)
O2	0.0118 (4)	0.0150 (5)	0.0129 (4)	-0.0001 (3)	0.0072 (3)	-0.0029 (3)
O3	0.0209 (5)	0.0247 (6)	0.0205 (5)	0.0139 (4)	0.0132 (4)	0.0109 (4)
O4	0.0198 (4)	0.0225 (5)	0.0176 (4)	-0.0106 (4)	0.0120 (4)	-0.0095 (4)
O5	0.0245 (5)	0.0202 (6)	0.0146 (4)	-0.0011 (4)	0.0084 (4)	-0.0098 (4)
O6	0.0102 (3)	0.0129 (4)	0.0156 (4)	0.0016 (3)	0.0056 (3)	-0.0030 (3)

Geometric parameters (Å, °)

Cd1—O1 ⁱ	2.1875 (12)	Cd2—Cd1 ^{iv}	3.4370
Cd1—O1 ⁱⁱ	2.1875 (12)	P1—O1	1.4624 (12)
Cd1—O6 ⁱⁱⁱ	2.3034 (10)	P1—O2	1.5052 (11)
Cd106	2.3034 (10)	P1—O3 ^{viii}	1.5840 (12)
Cd1-O2 ^{iv}	2.3690 (11)	P1—O4	1.5983 (11)
Cd1—O2 ^v	2.3690 (11)	P2—O5	1.4604 (12)
Cd1—Cd2	3.4370	P2—O6	1.5011 (11)
Cd1-Cd2 ⁱⁱⁱ	3.4370	P2—O3	1.5848 (12)
Cd2—O5 ^{vi}	2.2037 (12)	P2—O4	1.5918 (12)
Cd2—O5 ^{vii}	2.2037 (12)	O1—Cd1 ^{ix}	2.1875 (12)
Cd2—O6 ^{iv}	2.2563 (11)	O2—Cd1 ^{iv}	2.3690 (11)
Cd2—O6	2.2563 (11)	O3—P1 ^{viii}	1.5840 (12)
Cd2—O2 ^{iv}	2.2809 (11)	O5—Cd2 ⁱ	2.2037 (12)
Cd2—O2	2.2809 (11)		
	03 10 (7)		90.06 (5)
O1 - Cd1 - Of	93.10 (7)	$O_{5}^{\text{iv}} = C_{42}^{\text{iv}} = O_{2}^{\text{iv}}$	90.00 (3) 84.63 (4)
01 - Cu - 00	90.95 (4) 100.06 (4)	06 - Cd2 - 02	95.37(4)
01 - C d1 - 06	100.00(4)	O_{1}^{iv} Cd2 O_{2}^{iv}	180.00 (6)
01 - Cu = 00	100.00(4)	$O_2 = Cu_2 = O_2$	130.00(0)
O(iii C + 1) O(i	90.95 (4)	O1 - P1 - O2	119.06 (8)
	164.00 (6)	$01 - P1 - 03^{\text{min}}$	107.89 (8)
$O1^{i}$ —Cd1— $O2^{iv}$	174.69 (4)	$O2$ —P1— $O3^{vin}$	109.73 (6)
$O1^{ii}$ —Cd1— $O2^{iv}$	91.90 (5)	O1—P1—O4	108.33 (7)
$O6^{iii}$ —Cd1— $O2^{iv}$	86.40 (4)	O2—P1—O4	109.24 (6)
O6—Cd1—O2 ^{iv}	81.64 (4)	O3 ^{viii} —P1—O4	101.05 (8)

$O1^{i}$ — $Cd1$ — $O2^{v}$	91.90 (5)	O5—P2—O6	118.14 (7)
$O1^{ii}$ —Cd1— $O2^{v}$	174.69 (4)	O5—P2—O3	113.12 (8)
$O6^{iii}$ —Cd1—O2 ^v	81.64 (4)	O6—P2—O3	104.61 (6)
O6—Cd1—O2 ^v	86.40 (4)	O5—P2—O4	107.83 (7)
$O2^{iv}$ —Cd1— $O2^{v}$	83.17 (6)	O6—P2—O4	107.92 (7)
O5 ^{vi} —Cd2—O5 ^{vii}	180.0	O3—P2—O4	104.28 (8)
$O5^{vi}$ — $Cd2$ — $O6^{iv}$	93.87 (5)	P1—O1—Cd1 ^{ix}	148.67 (8)
O5 ^{vii} —Cd2—O6 ^{iv}	86.13 (5)	P1	121.90 (7)
O5 ^{vi} —Cd2—O6	86.13 (5)	P1—O2—Cd1 ^{iv}	129.45 (7)
O5 ^{vii} —Cd2—O6	93.87 (5)	Cd2—O2—Cd1 ^{iv}	95.30 (4)
O6 ^{iv} —Cd2—O6	180.00 (5)	P1 ^{viii} —O3—P2	139.93 (8)
$O5^{vi}$ — $Cd2$ — $O2^{iv}$	90.06 (5)	P2	138.17 (8)
O5 ^{vii} —Cd2—O2 ^{iv}	89.94 (5)	P2—O5—Cd2 ⁱ	162.37 (10)
$O6^{iv}$ —Cd2— $O2^{iv}$	95.37 (4)	P2	119.78 (6)
O6—Cd2—O2 ^{iv}	84.63 (4)	P2O6Cd1	140.75 (7)
$O5^{vi}$ —Cd2—O2	89.94 (5)	Cd2—O6—Cd1	97.83 (4)

Symmetry codes: (i) -*x*+1/2, *y*+1/2, -*z*+1/2; (ii) *x*+1/2, *y*+1/2, *z*; (iii) -*x*+1, *y*, -*z*+1/2; (iv) -*x*+1/2, -*y*+1/2, -*z*; (v) *x*+1/2, -*y*+1/2, *z*+1/2; (vi) -*x*+1/2, *y*+1/2, *z*+1/2; (vi) -*x*+1/2, -*y*+1/2, -*z*; (v) *x*+1/2, -*y*+1/2, *z*+1/2; (vi) -*x*+1/2, -*y*+1/2, *z*+1/2; (vi) -*x*+1/2, -*y*+1/2, -*z*; (v) *x*+1/2, -*y*+1/2, *z*+1/2; (vi) -*x*+1/2, -*y*+1/2, -*z*; (v) *x*+1/2, -*y*+1/2, -*z*; (v) *x*+1/2, -*y*+1/2, -*z*; (v) *x*+1/2, -*y*+1/2, -*z*; (v) -*x*+1/2, -*y*+1/2, -*z*+1/2; (v) -*x*+1/2, -*y*+1/2, -*z*; (v) -*x*+1/2, -*y*+1/2, -*z*+1/2; (v) -*x*+1/2, -*y*+1/2, -*z*+1/2; (v) -*x*+1/2, -*y*+1/2, -*z*+1/2; (v) -*x*+1/2, -*y*+1