## organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

## 1,2-Bis(4-methylphenoxy)ethane

## Lu-lu Wang,<sup>a</sup> Wen-ge Yang,<sup>a</sup>\* Jing Zhu,<sup>a</sup> Kai Wang<sup>a</sup> and Yong-hong Hu<sup>b</sup>

<sup>a</sup>State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China, and <sup>b</sup>State Key Laboratory of Materials-Oriented Chemical Engineering, College of Life Science and Pharmaceutical Engineering, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China Correspondence e-mail: chemywg@126.com

Received 13 September 2010; accepted 20 October 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean  $\sigma$ (C–C) = 0.004 Å; R factor = 0.057; wR factor = 0.131; data-to-parameter ratio = 15.6.

In the title compound, C<sub>16</sub>H<sub>18</sub>O<sub>2</sub>, the two aromatic rings are almost orthogonal, making a dihedral angle of 89.41 (2)°. There is a  $C-H\cdots\pi$  contact between the methylene group and the 4-methylphenyl ring. The molecule exhibits twofold symmetry..

#### **Related literature**

For background to the uses of the title compound and further synthetic details, see: Xiao et al. (2007).



#### **Experimental**

Crystal data

C16H18O2  $M_r = 242.30$ Monoclinic, C2/ca = 27.173 (5) Å b = 5.5510 (11) Åc = 9.2780 (19) Å  $\beta = 93.55 \ (3)^{\circ}$ 

 $V = 1396.8 (5) \text{ Å}^3$ Z = 4Mo  $K\alpha$  radiation  $\mu = 0.08 \text{ mm}^{-1}$ T = 293 K $0.30 \times 0.30 \times 0.05 \text{ mm}$ 



#### Data collection

Enraf-Nonius CAD-4

| Enraf-Nonius CAD-4                   | 1276 independent reflections          |
|--------------------------------------|---------------------------------------|
| diffractometer                       | 636 reflections with $I > 2\sigma(I)$ |
| Absorption correction: $\psi$ scan   | $R_{\rm int} = 0.083$                 |
| (North et al., 1968)                 | 3 standard reflections every 200      |
| $T_{\min} = 0.978, T_{\max} = 0.996$ | reflections                           |
| 2542 measured reflections            | intensity decay: 1%                   |
|                                      | 5 5                                   |

### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.057$ 82 parameters  $wR(F^2) = 0.131$ H-atom parameters constrained S = 1.00 $\Delta \rho_{\rm max} = 0.13 \text{ e} \text{ Å}^ \Delta \rho_{\rm min} = -0.14 \text{ e } \text{\AA}^{-3}$ 1276 reflections

Table 1 Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the 4-methylphenyl ring (C1-C6).

| $D - H \cdots A$   | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - H \cdots A$ |
|--------------------|------|-------------------------|--------------|------------------|
| $C8-H8A\cdots Cg1$ | 0.97 | 2.85                    | 3.664 (3)    | 142              |

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009).

This research work was supported financially by the Department of Science and Technology of Jiangsu Province (BE200830457) and '863' project (2007 A A02Z211) of the Ministry of Science and Technology.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG5032).

#### References

Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands

Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Xiao, X., Sun, J., Li, X., Li, H. & Wang, Y. (2007). J. Mol. Catal. A, 267, 86-91.

# supporting information

Acta Cryst. (2010). E66, o3000 [https://doi.org/10.1107/S1600536810042613]

## 1,2-Bis(4-methylphenoxy)ethane

## Lu-lu Wang, Wen-ge Yang, Jing Zhu, Kai Wang and Yong-hong Hu

## S1. Experimental

*p*-Cresol (30.3 g,0.28 mol) was added to a stirred solution of sodium hydroxide(16 g,0.4 mol) in 200 ml of ethanol at room temperature. After stirring for 1 h, ethylene dibromide(28.1 g,0.15 mol) was added. The reaction mixture was stirred and heated under refluxing for another 15 h and then poured into a 5% aqueous solution of NaOH (500 ml). The resulting mixture was cooled to room temperature and filtered. The remaining solid was washed with water(2 x 50 ml) and ethanol(2 x 40 ml),and then dried *in vacuo* to give the products 13.6 g as white solids (40.1%) (Xiao *et al.*, 2007) Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution.

## S2. Refinement

H atoms were positioned geometrically with C—H = 0.93, 0.98 and 0.97 Å for aromatic, methine and methylene H atoms, respectively, and constrained to ride on their parent atoms, with  $U_{iso}(H) = 1.2$  (or 1.5 for methyl groups) times  $U_{eq}(C)$ .



## Figure 1

The molecular structure of the title molecule, with the atom numbering scheme. Displacement ellipsoids are drawn at 30% probability levels.



## Figure 2

A practical packing diagram of the title compound. There is no intramolecular or intermolecular hydrogen bonds in the crystal.

1-methyl-4-[2-(4-methylphenoxy)ethoxy]benzene

Crystal data

C<sub>16</sub>H<sub>18</sub>O<sub>2</sub>  $M_r = 242.30$ Monoclinic, C2/c a = 27.173 (5) Å b = 5.5510 (11) Å c = 9.2780 (19) Å  $\beta = 93.55$  (3)° V = 1396.8 (5) Å<sup>3</sup> Z = 4 F(000) = 520  $D_x = 1.152 \text{ Mg m}^{-3}$ Mo K\alpha radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 25 reflections  $\theta = 9-12^{\circ}$   $\mu = 0.08 \text{ mm}^{-1}$  T = 293 KPrism, colorless  $0.30 \times 0.30 \times 0.05 \text{ mm}$  Data collection

| Enraf–Nonius CAD-4<br>diffractometer       | 1276 independent reflections<br>636 reflections with $I > 2\sigma(I)$ |
|--------------------------------------------|-----------------------------------------------------------------------|
| Radiation source: fine-focus sealed tube   | $R_{\rm int} = 0.083$                                                 |
| Graphite monochromator                     | $\theta_{\rm max} = 25.3^\circ, \ \theta_{\rm min} = 1.5^\circ$       |
| $\omega/2\theta$ scans                     | $h = -32 \rightarrow 32$                                              |
| Absorption correction: $\psi$ scan         | $k = 0 \rightarrow 6$                                                 |
| (North et al., 1968)                       | $l = -11 \rightarrow 11$                                              |
| $T_{\rm min} = 0.978, T_{\rm max} = 0.996$ | 3 standard reflections every 200 reflections                          |
| 2542 measured reflections                  | intensity decay: 1%                                                   |
| Refinement                                 |                                                                       |
| Refinement on $F^2$                        | Secondary atom site location: difference Fourier                      |
| Least-squares matrix: full                 | man                                                                   |

| Least-squares matrix: full                      |
|-------------------------------------------------|
| $R[F^2 > 2\sigma(F^2)] = 0.057$                 |
| $wR(F^2) = 0.131$                               |
| S = 1.00                                        |
| 1276 reflections                                |
| 82 parameters                                   |
| 0 restraints                                    |
| Primary atom site location: structure-invariant |
| direct methods                                  |

Secondary atom site location: difference Fourmap Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained  $w = 1/[\sigma^2(F_o^2) + (0.022P)^2]$ where  $P = (F_o^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{max} < 0.001$  $\Delta\rho_{max} = 0.13$  e Å<sup>-3</sup>  $\Delta\rho_{min} = -0.14$  e Å<sup>-3</sup>

### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|     | x            | У          | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|-----|--------------|------------|--------------|-----------------------------|--|
| 0   | 0.52863 (6)  | 0.2044 (3) | 0.12559 (15) | 0.0667 (6)                  |  |
| C1  | 0.65274 (9)  | 0.1203 (6) | -0.0026 (3)  | 0.0768 (9)                  |  |
| H1A | 0.6793       | 0.0147     | 0.0075       | 0.092*                      |  |
| C2  | 0.61155 (9)  | 0.0757 (5) | 0.0739 (2)   | 0.0660 (7)                  |  |
| H2A | 0.6105       | -0.0578    | 0.1342       | 0.079*                      |  |
| C3  | 0.57211 (9)  | 0.2313 (5) | 0.0597 (2)   | 0.0543 (6)                  |  |
| C4  | 0.57452 (9)  | 0.4268 (5) | -0.0305 (2)  | 0.0635 (7)                  |  |
| H4A | 0.5479       | 0.5321     | -0.0411      | 0.076*                      |  |
| C5  | 0.61569 (10) | 0.4681 (5) | -0.1049 (3)  | 0.0704 (8)                  |  |
| H5A | 0.6166       | 0.6022     | -0.1647      | 0.085*                      |  |
| C6  | 0.65576 (10) | 0.3158 (6) | -0.0932 (3)  | 0.0752 (9)                  |  |
| C7  | 0.70126 (10) | 0.3646 (6) | -0.1759 (3)  | 0.1183 (13)                 |  |
| H7A | 0.7254       | 0.2418     | -0.1539      | 0.177*                      |  |
| H7B | 0.7147       | 0.5190     | -0.1485      | 0.177*                      |  |
| H7C | 0.6924       | 0.3637     | -0.2777      | 0.177*                      |  |
|     |              |            |              |                             |  |

# supporting information

| C8  | 0.52487 (8) | 0.0048 (5) | 0.2210 (2) | 0.0663 (8) |
|-----|-------------|------------|------------|------------|
| H8A | 0.5499      | 0.0169     | 0.2998     | 0.080*     |
| H8B | 0.5300      | -0.1444    | 0.1696     | 0.080*     |

Atomic displacement parameters  $(Å^2)$ 

|    | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|----|-------------|-------------|-------------|--------------|--------------|--------------|
| 0  | 0.0811 (12) | 0.0665 (12) | 0.0532 (9)  | 0.0140 (11)  | 0.0085 (9)   | 0.0125 (11)  |
| C1 | 0.0708 (18) | 0.082 (2)   | 0.0774 (18) | 0.0161 (17)  | 0.0044 (15)  | -0.001 (2)   |
| C2 | 0.0797 (17) | 0.0638 (18) | 0.0538 (14) | 0.0115 (17)  | -0.0030 (13) | 0.0044 (16)  |
| C3 | 0.0670 (16) | 0.0574 (16) | 0.0382 (12) | 0.0066 (15)  | -0.0003 (12) | -0.0046 (13) |
| C4 | 0.0806 (18) | 0.0546 (17) | 0.0548 (13) | 0.0090 (15)  | 0.0012 (13)  | 0.0019 (16)  |
| C5 | 0.0858 (19) | 0.0658 (19) | 0.0595 (15) | -0.0035 (17) | 0.0023 (15)  | 0.0060 (17)  |
| C6 | 0.0771 (19) | 0.087 (2)   | 0.0617 (16) | -0.0028 (19) | 0.0093 (15)  | -0.006(2)    |
| C7 | 0.088 (2)   | 0.152 (4)   | 0.118 (2)   | -0.005(2)    | 0.0279 (19)  | 0.008 (3)    |
| C8 | 0.0914 (19) | 0.0611 (16) | 0.0462 (12) | 0.0077 (15)  | 0.0023 (12)  | 0.0064 (14)  |

Geometric parameters (Å, °)

| 0—C3        | 1.372 (2)   | C5—C6                   | 1.377 (4)   |
|-------------|-------------|-------------------------|-------------|
| O—C8        | 1.426 (3)   | C5—H5A                  | 0.9300      |
| C1—C6       | 1.378 (4)   | C6—C7                   | 1.519 (3)   |
| C1—C2       | 1.384 (3)   | C7—H7A                  | 0.9600      |
| C1—H1A      | 0.9300      | С7—Н7В                  | 0.9600      |
| C2—C3       | 1.376 (3)   | C7—H7C                  | 0.9600      |
| C2—H2A      | 0.9300      | C8—C8 <sup>i</sup>      | 1.485 (4)   |
| C3—C4       | 1.375 (3)   | C8—H8A                  | 0.9700      |
| C4—C5       | 1.370 (3)   | C8—H8B                  | 0.9700      |
| C4—H4A      | 0.9300      |                         |             |
|             |             |                         |             |
| C3—O—C8     | 117.25 (18) | C1—C6—C5                | 117.0 (3)   |
| C6—C1—C2    | 122.3 (3)   | C1—C6—C7                | 122.0 (3)   |
| C6—C1—H1A   | 118.9       | C5—C6—C7                | 121.0 (3)   |
| C2—C1—H1A   | 118.9       | С6—С7—Н7А               | 109.5       |
| C3—C2—C1    | 119.2 (3)   | С6—С7—Н7В               | 109.5       |
| C3—C2—H2A   | 120.4       | H7A—C7—H7B              | 109.5       |
| C1—C2—H2A   | 120.4       | С6—С7—Н7С               | 109.5       |
| O—C3—C4     | 115.6 (2)   | H7A—C7—H7C              | 109.5       |
| O—C3—C2     | 125.2 (2)   | H7B—C7—H7C              | 109.5       |
| C4—C3—C2    | 119.2 (2)   | OC8C8 <sup>i</sup>      | 109.05 (18) |
| C5—C4—C3    | 120.7 (3)   | OC8H8A                  | 109.9       |
| C5—C4—H4A   | 119.7       | C8 <sup>i</sup> —C8—H8A | 109.9       |
| C3—C4—H4A   | 119.7       | OC8H8B                  | 109.9       |
| C4—C5—C6    | 121.6 (3)   | C8 <sup>i</sup> —C8—H8B | 109.9       |
| C4—C5—H5A   | 119.2       | H8A—C8—H8B              | 108.3       |
| С6—С5—Н5А   | 119.2       |                         |             |
|             |             |                         |             |
| C6—C1—C2—C3 | -0.1 (4)    | C3—C4—C5—C6             | 0.5 (4)     |

## supporting information

| C8—O—C3—C4  | -179.46 (19) | C2—C1—C6—C5             | 0.1 (4)      |
|-------------|--------------|-------------------------|--------------|
| C8—O—C3—C2  | 2.8 (3)      | C2—C1—C6—C7             | 179.5 (2)    |
| C1—C2—C3—O  | 177.9 (2)    | C4—C5—C6—C1             | -0.3 (4)     |
| C1—C2—C3—C4 | 0.2 (3)      | C4—C5—C6—C7             | -179.7 (3)   |
| O—C3—C4—C5  | -178.3 (2)   | C3—O—C8—C8 <sup>i</sup> | -179.03 (19) |
| C2—C3—C4—C5 | -0.4 (3)     |                         |              |

Symmetry code: (i) -x+1, *y*, -z+1/2.

Hydrogen-bond geometry (Å, °)

| D—H···A    | D—H  | H···A | D····A    | <i>D</i> —H··· <i>A</i> |
|------------|------|-------|-----------|-------------------------|
| C8—H8A…Cg1 | 0.97 | 2.85  | 3.664 (3) | 142                     |