## Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

## 1,2-Bis(4-methylphenoxy)ethane

Lu-lu Wang, ${ }^{\text {a }}$ Wen-ge Yang, ${ }^{\text {a* }}$ Jing Zhu, ${ }^{\text {a }}$ Kai Wang ${ }^{\text {a }}$ and Yong-hong Hu ${ }^{\text {b }}$

${ }^{\text {a State Key Laboratory of Materials-Oriented Chemical Engineering, School of }}$ Pharmaceutical Sciences, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China, and ${ }^{\mathbf{b}}$ State Key Laboratory of Materials-Oriented Chemical Engineering, College of Life Science and Pharmaceutical Engineering, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China
Correspondence e-mail: chemywg@126.com
Received 13 September 2010; accepted 20 October 2010

Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$; $R$ factor $=0.057 ; w R$ factor $=0.131$; data-to-parameter ratio $=15.6$.

In the title compound, $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{2}$, the two aromatic rings are almost orthogonal, making a dihedral angle of 89.41 (2). There is a $\mathrm{C}-\mathrm{H} \cdots \pi$ contact between the methylene group and the 4-methylphenyl ring. The molecule exhibits twofold symmetry..

## Related literature

For background to the uses of the title compound and further synthetic details, see: Xiao et al. (2007).


## Experimental

## Crystal data

$\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{2}$
$M_{r}=242.30$
Monoclinic, $C 2 / c$
$a=27.173$ (5) A
$b=5.5510$ (11) £
$c=9.2780$ (19) A
$\beta=93.55$ (3) ${ }^{\circ}$

## Data collection

Enraf-Nonius CAD-4 diffractometer
Absorption correction: $\psi$ scan (North et al., 1968) $T_{\text {min }}=0.978, T_{\text {max }}=0.996$
2542 measured reflections

## Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.057$
$w R\left(F^{2}\right)=0.131$
$S=1.00$
1276 reflections

1276 independent reflections 636 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.083$
3 standard reflections every 200 reflections
intensity decay: 1\%

82 parameters
H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.13 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.14 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ( $\AA,{ }^{\circ}$ ).
$C g 1$ is the centroid of the 4-methylphenyl ring (C1-C6).

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{C} 8-\mathrm{H} 8 A \cdots C g 1$ | 0.97 | 2.85 | $3.664(3)$ | 142 |

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009).

This research work was supported financially by the Department of Science and Technology of Jiangsu Province (BE200830457) and '863' project (2007 A A02Z211) of the Ministry of Science and Technology.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG5032).

## References

Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Xiao, X., Sun, J., Li, X., Li, H. \& Wang, Y. (2007). J. Mol. Catal. A, 267, 86-91.

## supporting information

Acta Cryst. (2010). E66, o3000 [https://doi.org/10.1107/S1600536810042613]

## 1,2-Bis(4-methylphenoxy)ethane

## Lu-lu Wang, Wen-ge Yang, Jing Zhu, Kai Wang and Yong-hong Hu

## S1. Experimental

$p$-Cresol ( $30.3 \mathrm{~g}, 0.28 \mathrm{~mol}$ ) was added to a stirred solution of sodium hydroxide $(16 \mathrm{~g}, 0.4 \mathrm{~mol})$ in 200 ml of ethanol at room temperature. After stirring for 1 h , ethylene dibromide ( $28.1 \mathrm{~g}, 0.15 \mathrm{~mol}$ ) was added. The reaction mixture was stirred and heated under refluxing for another 15 h and then poured into a $5 \%$ aqueous solution of $\mathrm{NaOH}(500 \mathrm{ml})$. The resulting mixture was cooled to room temperature and filtered. The remaining solid was washed with water $(2 x 50 \mathrm{ml})$ and ethanol $(2 \times 40 \mathrm{ml})$, and then dried in vacuo to give the products 13.6 g as white solids ( $40.1 \%$ ) (Xiao et al., 2007) Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution.

## S2. Refinement

H atoms were positioned geometrically with $\mathrm{C}-\mathrm{H}=0.93,0.98$ and $0.97 \AA$ for aromatic, methine and methylene H atoms, respectively, and constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=1.2$ (or 1.5 for methyl groups) times $U_{\text {eq }}(\mathrm{C})$.


Figure 1
The molecular structure of the title molecule, with the atom numbering scheme. Displacement ellipsoids are drawn at $30 \%$ probability levels.


Figure 2
A practical packing diagram of the title compound. There is no intramolecular or intermolecular hydrogen bonds in the crystal.

1-methyl-4-[2-(4-methylphenoxy)ethoxy]benzene

## Crystal data

$$
\begin{aligned}
& \mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{2} \\
& M_{r}=242.30 \\
& \text { Monoclinic, } C 2 / c \\
& a=27.173(5) \AA \\
& b=5.5510(11) \AA \\
& c=9.2780(19) \AA \\
& \beta=93.55(3)^{\circ} \\
& V=1396.8(5) \AA^{3} \\
& Z=4
\end{aligned}
$$

$$
\begin{aligned}
& F(000)=520 \\
& D_{\mathrm{x}}=1.152 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 25 \text { reflections } \\
& \theta=9-12^{\circ} \\
& \mu=0.08 \mathrm{~mm}^{-1} \\
& T=293 \mathrm{~K} \\
& \text { Prism, colorless } \\
& 0.30 \times 0.30 \times 0.05 \mathrm{~mm}
\end{aligned}
$$

## Data collection

Enraf-Nonius CAD-4
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
$\omega / 2 \theta$ scans
Absorption correction: $\psi$ scan
(North et al., 1968)
$T_{\text {min }}=0.978, T_{\text {max }}=0.996$
2542 measured reflections

> 1276 independent reflections
> 636 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.083$
> $\theta_{\max }=25.3^{\circ}, \theta_{\min }=1.5^{\circ}$
> $h=-32 \rightarrow 32$
> $k=0 \rightarrow 6$
> $l=-11 \rightarrow 11$
> 3 standard reflections every 200 reflections
> intensity decay: $1 \%$

## Refinement

Refinement on $F^{2}$
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.057$
$w R\left(F^{2}\right)=0.131$
$S=1.00$
1276 reflections
82 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

```
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
\(w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.022 P)^{2}\right]\)
where \(P=\left(F_{0}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3\)
\((\Delta / \sigma)_{\max }<0.001\)
\(\Delta \rho_{\text {max }}=0.13\) e \(\AA^{-3}\)
\(\Delta \rho_{\text {min }}=-0.14 \mathrm{e}^{-3}\)
```


## Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of $F^{2}$ against ALL reflections. The weighted $R$-factor $w R$ and goodness of fit $S$ are based on $F^{2}$, conventional $R$-factors $R$ are based on $F$, with $F$ set to zero for negative $F^{2}$. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating $R$-factors $(\mathrm{gt})$ etc. and is not relevant to the choice of reflections for refinement. $R$-factors based on $F^{2}$ are statistically about twice as large as those based on $F$, and $R$ - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ( $\AA^{2}$ )

|  | $x$ | $y$ | $z$ | $U_{\text {iso }} * / U_{\mathrm{eq}}$ |
| :--- | :--- | :--- | :--- | :--- |
| O | $0.52863(6)$ | $0.2044(3)$ | $0.12559(15)$ | $0.0667(6)$ |
| C1 | $0.65274(9)$ | $0.1203(6)$ | $-0.0026(3)$ | $0.0768(9)$ |
| H1A | 0.6793 | 0.0147 | 0.0075 | $0.092^{*}$ |
| C2 | $0.61155(9)$ | $0.0757(5)$ | $0.0739(2)$ | $0.0660(7)$ |
| H2A | 0.6105 | -0.0578 | 0.1342 | $0.079^{*}$ |
| C3 | $0.57211(9)$ | $0.2313(5)$ | $0.0597(2)$ | $0.0543(6)$ |
| C4 | $0.57452(9)$ | $0.4268(5)$ | $-0.0305(2)$ | $0.0635(7)$ |
| H4A | 0.5479 | 0.5321 | -0.0411 | $0.076^{*}$ |
| C5 | $0.61569(10)$ | $0.4681(5)$ | $-0.1049(3)$ | $0.0704(8)$ |
| H5A | 0.6166 | 0.6022 | -0.1647 | $0.085^{*}$ |
| C6 | $0.65576(10)$ | $0.3158(6)$ | $-0.0932(3)$ | $0.0752(9)$ |
| C7 | $0.70126(10)$ | $0.3646(6)$ | $-0.1759(3)$ | $0.1183(13)$ |
| H7A | 0.7254 | 0.2418 | -0.1539 | $0.177^{*}$ |
| H7B | 0.7147 | 0.5190 | -0.1485 | $0.177^{*}$ |
| H7C | 0.6924 | 0.3637 | -0.2777 | $0.177^{*}$ |


| C8 | $0.52487(8)$ | $0.0048(5)$ | $0.2210(2)$ | $0.0663(8)$ |
| :--- | :--- | :--- | :--- | :--- |
| H8A | 0.5499 | 0.0169 | 0.2998 | $0.080^{*}$ |
| H8B | 0.5300 | -0.1444 | 0.1696 | $0.080^{*}$ |

Atomic displacement parameters $\left(\hat{A}^{2}\right)$

|  | $U^{11}$ | $U^{22}$ | $U^{\beta 3}$ | $U^{12}$ | $U^{13}$ | $U^{23}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| O | $0.0811(12)$ | $0.0665(12)$ | $0.0532(9)$ | $0.0140(11)$ | $0.0085(9)$ | $0.0125(11)$ |
| C 1 | $0.0708(18)$ | $0.082(2)$ | $0.0774(18)$ | $0.0161(17)$ | $0.0044(15)$ | $-0.001(2)$ |
| C 2 | $0.0797(17)$ | $0.0638(18)$ | $0.0538(14)$ | $0.0115(17)$ | $-0.0030(13)$ | $0.0044(16)$ |
| C 3 | $0.0670(16)$ | $0.0574(16)$ | $0.0382(12)$ | $0.0066(15)$ | $-0.0003(12)$ | $-0.0046(13)$ |
| C 4 | $0.0806(18)$ | $0.0546(17)$ | $0.0548(13)$ | $0.0090(15)$ | $0.0012(13)$ | $0.0019(16)$ |
| C 5 | $0.0858(19)$ | $0.0658(19)$ | $0.0595(15)$ | $-0.0035(17)$ | $0.0023(15)$ | $0.0060(17)$ |
| C 6 | $0.0771(19)$ | $0.087(2)$ | $0.0617(16)$ | $-0.0028(19)$ | $0.0093(15)$ | $-0.006(2)$ |
| C 7 | $0.088(2)$ | $0.152(4)$ | $0.118(2)$ | $-0.005(2)$ | $0.0279(19)$ | $0.008(3)$ |
| C 8 | $0.0914(19)$ | $0.0611(16)$ | $0.0462(12)$ | $0.0077(15)$ | $0.0023(12)$ | $0.0064(14)$ |

Geometric parameters (A, ${ }^{\circ}$ )

| O-C3 | 1.372 (2) | C5-C6 | 1.377 (4) |
| :---: | :---: | :---: | :---: |
| O-C8 | 1.426 (3) | C5-H5A | 0.9300 |
| C1-C6 | 1.378 (4) | C6-C7 | 1.519 (3) |
| $\mathrm{C} 1-\mathrm{C} 2$ | 1.384 (3) | C7-H7A | 0.9600 |
| C1-H1A | 0.9300 | C7-H7B | 0.9600 |
| C2-C3 | 1.376 (3) | C7-H7C | 0.9600 |
| $\mathrm{C} 2 \ldots \mathrm{H} 2 \mathrm{~A}$ | 0.9300 | C8-C8 ${ }^{\text {i }}$ | 1.485 (4) |
| C3-C4 | 1.375 (3) | C8-H8A | 0.9700 |
| C4-C5 | 1.370 (3) | C8-H8B | 0.9700 |
| C4-H4A | 0.9300 |  |  |
| $\mathrm{C} 3-\mathrm{O}-\mathrm{C} 8$ | 117.25 (18) | C1-C6-C5 | 117.0 (3) |
| C6- $\mathrm{C} 1-\mathrm{C} 2$ | 122.3 (3) | C1-C6-C7 | 122.0 (3) |
| C6-C1-H1A | 118.9 | C5-C6-C7 | 121.0 (3) |
| C2-C1-H1A | 118.9 | C6-C7-H7A | 109.5 |
| $\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$ | 119.2 (3) | C6-C7-H7B | 109.5 |
| $\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$ | 120.4 | H7A-C7- 77 B | 109.5 |
| $\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$ | 120.4 | C6-C7- H 7 C | 109.5 |
| $\mathrm{O}-\mathrm{C} 3-\mathrm{C} 4$ | 115.6 (2) | H7A-C7- H 7 C | 109.5 |
| $\mathrm{O}-\mathrm{C} 3-\mathrm{C} 2$ | 125.2 (2) | H7B-C7-H7C | 109.5 |
| C4-C3-C2 | 119.2 (2) | $\mathrm{O}-\mathrm{C} 8-\mathrm{C} 8^{\text {i }}$ | 109.05 (18) |
| C5-C4-C3 | 120.7 (3) | $\mathrm{O}-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A}$ | 109.9 |
| C5-C4-H4A | 119.7 | C8- $\mathrm{C}^{\mathrm{i}}$ - H 8 A | 109.9 |
| C3-C4-H4A | 119.7 | $\mathrm{O}-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$ | 109.9 |
| C4-C5-C6 | 121.6 (3) | C8- $\mathrm{C}^{\mathrm{i}}$ - H 8 B | 109.9 |
| C4-C5-H5A | 119.2 | H8A-C8-H8B | 108.3 |
| C6-C5-H5A | 119.2 |  |  |
| C6- $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$ | -0.1 (4) | $\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$ | 0.5 (4) |


| $\mathrm{C} 8-\mathrm{O}-\mathrm{C} 3-\mathrm{C} 4$ | $-179.46(19)$ |
| :--- | :--- |
| $\mathrm{C} 8-\mathrm{O}-\mathrm{C} 3-\mathrm{C} 2$ | $2.8(3)$ |
| $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{O}$ | $177.9(2)$ |
| $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$ | $0.2(3)$ |
| $\mathrm{O}-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$ | $-178.3(2)$ |
| $\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$ | $-0.4(3)$ |


| $\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$ | $0.1(4)$ |
| :--- | :--- |
| $\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 7$ | $179.5(2)$ |
| $\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$ | $-0.3(4)$ |
| $\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$ | $-179.7(3)$ |
| $\mathrm{C} 3-\mathrm{O}-\mathrm{C} 8-\mathrm{C}^{\mathrm{i}}$ | $-179.03(19)$ |

Symmetry code: (i) $-x+1, y,-z+1 / 2$.

Hydrogen-bond geometry ( $A,{ }^{\circ}$ )

| $D — \mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{C} 8 — \mathrm{H} 8 A \cdots C g 1$ | 0.97 | 2.85 | $3.664(3)$ | 142 |

