Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Poly[[μ_2 -1,2-bis(1*H*-imidazol-1-yl-methyl)benzene- $\kappa^2 N^3$: N^3'](μ_2 -tereph-thalato- $\kappa^2 O^1$: O^4)zinc(II)]

Shi-Shen Zhang* and Li-Jiang Chen

Department of Applied Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China Correspondence e-mail: zhangshishen@126.com

Received 19 October 2010; accepted 19 October 2010

Key indicators: single-crystal X-ray study; T = 291 K; mean σ (C–C) = 0.005 Å; R factor = 0.042; wR factor = 0.097; data-to-parameter ratio = 12.3.

In the title coordination polymer, $[Zn(C_8H_4O_4)(C_{14}H_{14}N_4)]_n$, the Zn^{II} atom is coordinated by two N atoms from two 1,2bis(imidazol-1-ylmethyl)benzene ligands as well as by the two O atoms from two terephthalate ligands, confering a tetrahedral coordination geometry. The bridging ligands generate a three-dimensional structure.

Related literature

For related structures, see: Fan et al. (2005, 2006); Liu et al. (2007, 2008a,b, 2009); Yang et al. (2008).

Experimental

Crystal data $[Zn(C_8H_4O_4)(C_{14}H_{14}N_4)]$

 $M_{\rm w} = 467.79$

Triclinic, $P\overline{1}$	
a = 10.132 (3) Å	
b = 10.179 (3) Å	
c = 11.169 (3) Å	
$\alpha = 99.073 \ (4)^{\circ}$	
$\beta = 102.748 \ (4)^{\circ}$	
$\gamma = 112.974 \ (4)^{\circ}$	

Data collection

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.042$	298 parameters
$wR(F^2) = 0.097$	H-atom parameters constrained
S = 1.05	$\Delta \rho_{\rm max} = 0.60 \text{ e } \text{\AA}^{-3}$
3674 reflections	$\Delta \rho_{\rm min} = -0.23 \text{ e } \text{\AA}^{-3}$

V = 995.5 (5) Å³ 7 - 2

Mo $K\alpha$ radiation

 $0.20 \times 0.16 \times 0.10 \text{ mm}$

7505 measured reflections 3674 independent reflections 3140 reflections with $I > 2\sigma(I)$

 $\mu = 1.27 \text{ mm}^{-1}$ T = 291 K

 $R_{\rm int} = 0.027$

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported by the Qianjiang Talents Project of the Technology Office of Zhejiang Province (grant No. 2009R10029), the National Natural Science Foundation of China (grant No. 20803067) and the Zhejiang Provincial Top Academic Discipline of Applied Chemistry and Eco-Dyeing & Finishing Engineering (grant No. ZYG2010019).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG5050).

References

- Bruker (1998). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Fan, J., Slebodnick, C., Angel, R. & Hanson, B. E. (2005). Inorg. Chem. 44, 552-558.
- Fan, J., Yee, G. T., Wang, G.-B. & Hanson, B. E. (2006). Inorg. Chem. 45, 599-608
- Liu, Y.-Y., Ma, J.-F., Yang, J., Ma, J.-C. & Su, Z.-M. (2008a). CrystEngComm, 10, 894-904.
- Liu, Y.-Y., Ma, J.-F., Yang, J. & Su, Z.-M. (2007). Inorg. Chem. 46, 3027-3037. Liu, G.-X., Zhu, L., Chen, H., Huang, R.-Y. & Ren, X.-M. (2008b).
- CrystEngComm, 10, 1527-1530. Liu, G.-X., Zhu, L., Chen, H., Huang, R.-Y., Xu, H. & Ren, X.-M. (2009).
- Inorg. Chim. Acta, 362, 1605-1610. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Yang, J., Ma, J.-F., Liu, Y.-Y., Ma, J.-C. & Batten, S. R. (2008). Cryst. Growth Des. 12, 4383-4393.

supporting information

Acta Cryst. (2010). E66, m1456 [https://doi.org/10.1107/S1600536810042406]

Poly[[μ_2 -1,2-bis(1*H*-imidazol-1-ylmethyl)benzene- $\kappa^2 N^3$: N^3'](μ_2 -terephthalato- $\kappa^2 O^1$: O^4)zinc(II)]

Shi-Shen Zhang and Li-Jiang Chen

S1. Comment

Imidazol and its derivatives have been achieving rapidly increasing attention not only for their potential application as functional materials, but also for their intriguing variety of architectures and topologies. 1,2-bis(imidazole-1-ylmethyl)-benzene, as one kind of those ligand, has usually been used to construct a great variety of structurally interesting entities, such as one-dimensional chain, square grid, 2-fold interpenetrated, 3-fold interpenetrated network.

The asymmetric unit of the title compound (I) is illustrated in Fig. 1. Single-crystal X-ray diffraction shows that the asymmetric unit contains one Zn crystallographically nonequivalent atom.the Zn^{II} atom is coordinated by two N atoms from two 1,2-bis(imidazole-1-ylmethyl)-benzene ligands, as well as by the two O atoms from two terephthalic acid ligands to confer a distorted tetrahedral coordination at the metal centre. The two Zn atoms coordinated by two N atoms to form a layer. The layer three-dimensional structure is stabilized by intermolecular π - π stacking interaction and hydrogen bond.

S2. Experimental

A mixture of $ZnSO_4$ (0.032 g, 0.2 nmol), 1,2-bis(imidazole-1-ylmethyl)-benzene(0.024 g, 0.1 nmol) and Terephthalic acid (0.016 g, 0.1 nmol) in mole ratio of 1:1:1 in water(6 ml) was sealed in 15 ml Teflon-lined reactor and heated to 180°C for 24 h and then cooled to room temperature at a rate of 5°C/h. the yellow block crystal was obtianed in the yield of 20%.

S3. Refinement

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å(aromatic) or 0.97 Å(aliphatic), and with $U_{iso}(H) = 1.2U_{eq}(C,N)$.

Figure 1

The asymmetric unit of the title compound showing 30% probability ellipsoids.

Poly[[μ_2 -1,2-bis(1*H*-imidazol-1-ylmethyl)benzene- $\kappa^2 N^3$: N^3 '](μ_2 -terephthalato- $\kappa^2 O^1$: O^4)zinc(II)]

Z = 2

F(000) = 480

 $\theta = 1.9 - 25.5^{\circ}$

 $\mu = 1.27 \text{ mm}^{-1}$

Block, yellow

 $0.20 \times 0.16 \times 0.10 \text{ mm}$

7505 measured reflections 3674 independent reflections 3140 reflections with $I > 2\sigma(I)$

 $\theta_{\text{max}} = 25.5^{\circ}, \ \theta_{\text{min}} = 1.9^{\circ}$

T = 291 K

 $R_{\rm int} = 0.027$

 $h = -12 \rightarrow 12$ $k = -12 \rightarrow 12$ $l = -13 \rightarrow 13$

 $D_{\rm x} = 1.561 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 1793 reflections

Crystal data

 $[Zn(C_8H_4O_4)(C_{14}H_{14}N_4)]$ $M_r = 467.79$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 10.132 (3) Å b = 10.179 (3) Å c = 11.169 (3) Å a = 99.073 (4)° $\beta = 102.748$ (4)° $\gamma = 112.974$ (4)° V = 995.5 (5) Å³

Data collection

Bruker SMART area-detector
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.785, \ T_{\max} = 0.883$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.042$	Hydrogen site location: inferred from
$wP(F^2) = 0.007$	neighbouring sites
S = 1.05 3674 reflections 298 parameters	H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0482P)^2 + 0.0138P]$ where $P = (F_o^2 + 2F_o^2)/3$
0 restraints	$(\Delta/\sigma)_{max} < 0.001$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 0.60 \text{ e } \text{Å}^{-3}$
direct methods	$\Delta\rho_{min} = -0.23 \text{ e } \text{Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Zn1	0.72744 (4)	0.03060 (3)	-0.12258 (3)	0.03123 (13)	
01	0.8199 (2)	-0.0226 (2)	-0.24812 (18)	0.0371 (5)	
O2	0.9037 (2)	0.2104 (2)	-0.2633 (2)	0.0458 (6)	

supporting information

03	0.5956 (2)	-0.1577 (2)	-0.0977 (2)	0.0459 (6)
04	0.8048 (3)	-0.1373 (2)	0.0314 (3)	0.0560 (6)
N1	0.5722 (3)	0.0954 (3)	-0.2066 (2)	0.0348 (6)
N2	0.8687 (3)	0.1981 (2)	0.0314 (2)	0.0337 (6)
N6	1.0855 (3)	0.3509 (3)	0.1741 (2)	0.0360 (6)
N9	0.4735 (3)	0.2181 (3)	-0.3094 (2)	0.0376 (6)
C1	0.9907 (4)	0.1328 (4)	-0.4772 (3)	0.0455 (8)
H1	0.9858	0.2230	-0.4625	0.073 (12)*
C4	0.8876 (3)	0.0814 (3)	-0.2957 (3)	0.0314 (6)
C6	0.9462 (3)	0.0392 (3)	-0.4010 (3)	0.0319(7)
C9	0.9965 (3)	0.2102 (3)	0.1035 (3)	0.0360 (7)
H9	1.0222	0.1322	0.1055	0.045 (9)*
C10	0.6685 (4)	-0.2048 (3)	-0.0265 (3)	0.0382 (7)
C11	0.8774 (4)	0.3382 (3)	0.0577 (3)	0.0446 (8)
H11	0.8025	0.3636	0.0203	0.052 (10)*
C13	1.2799 (3)	0.5047 (3)	0.3833 (3)	0.0356 (7)
C18	1.4214 (3)	0.6254 (3)	0.4431 (3)	0.0394 (7)
C20	0.5801 (3)	-0.3584 (3)	-0.0123 (3)	0.0382 (7)
C22	1.3428 (5)	0.6714 (4)	0.6276 (3)	0.0633 (11)
H22	1.3647	0.7271	0.7097	0.067 (11)*
C23	1.1735 (4)	0.4697 (3)	0.4470 (3)	0.0420 (8)
H23	1.0795	0.3895	0.4065	0.035 (8)*
C26	0.5945 (3)	0.1929 (3)	-0.2730(3)	0.0389 (7)
H26	0.6833	0.2390	-0.2922	0.030 (7)*
C27	0.4285(3)	0.0549(3)	-0.2007(3)	0.0407 (7)
H27	0.3809	-0.0136	-0.1596	0.047 (9)*
C28	0.6533 (4)	-0.4224(3)	0.0621 (3)	0.0443 (8)
H28	0.7563	-0.3708	0.1043	0.050 (10)*
C31	0.9565 (4)	-0.0932(3)	-0.4253(3)	0.0436 (8)
H31	0.9278	-0.1572	-0.3750	0.063 (11)*
C32	0.4269 (4)	-0.4382(3)	-0.0747 (3)	0.0442 (8)
H32	0.3775	-0.3967	-0.1252	0.058 (10)*
C33	1.2432 (3)	0.4081 (4)	0.2513 (3)	0.0441 (8)
H33A	1.2660	0.3252	0.2594	0.063 (11)*
H33B	1.3073	0.4652	0.2071	0.042 (9)*
C37	1.0093 (4)	0.4329 (3)	0.1455 (3)	0.0443 (8)
H37	1.0422	0.5339	0.1795	0.038 (8)*
C38	1.2048 (4)	0.5524 (4)	0.5688 (3)	0.0547 (9)
H38	1.1325	0.5272	0.6106	0.040 (9)*
C39	1.4495 (4)	0.7073 (4)	0.5666 (3)	0.0562 (10)
H39	1.5423	0.7885	0.6075	0.065 (11)*
C45	0.4583 (3)	0.3249 (4)	-0.3803(3)	0.0490 (9)
H45A	0.3600	0.2789	-0.4446	0.045 (9)*
H45B	0.4650	0.4104	-0.3222	0.045 (9)*
C46	0.3671 (4)	0.1301 (3)	-0.2636 (3)	0.0431 (8)
H46	0.2710	0.1233	-0.2735	0.052 (10)*

supporting information

Atomic displacement parameters $(Å^2)$

	U^{11}	<i>U</i> ²²	U^{33}	U^{12}	U^{13}	U ²³
Znl	0.0359 (2)	0.0264 (2)	0.0302 (2)	0.01204 (16)	0.01047 (15)	0.00882 (14)
01	0.0418 (12)	0.0331 (11)	0.0389 (12)	0.0145 (10)	0.0196 (10)	0.0115 (9)
O2	0.0562 (14)	0.0343 (12)	0.0543 (14)	0.0227 (11)	0.0270 (12)	0.0103 (10)
O3	0.0583 (15)	0.0309 (12)	0.0426 (13)	0.0103 (11)	0.0167 (11)	0.0174 (10)
O4	0.0445 (14)	0.0400 (14)	0.0877 (18)	0.0156 (11)	0.0265 (13)	0.0285 (13)
N1	0.0354 (14)	0.0328 (14)	0.0356 (14)	0.0136 (11)	0.0101 (11)	0.0127 (11)
N2	0.0378 (14)	0.0285 (13)	0.0316 (13)	0.0149 (11)	0.0062 (11)	0.0050 (11)
N6	0.0413 (15)	0.0303 (14)	0.0310 (13)	0.0149 (12)	0.0072 (12)	0.0021 (11)
N9	0.0292 (13)	0.0356 (14)	0.0442 (15)	0.0129 (11)	0.0050 (12)	0.0132 (12)
C1	0.065 (2)	0.0356 (18)	0.055 (2)	0.0290 (17)	0.0345 (18)	0.0205 (16)
C4	0.0277 (15)	0.0310 (16)	0.0322 (16)	0.0114 (13)	0.0076 (13)	0.0064 (13)
C6	0.0295 (15)	0.0303 (16)	0.0355 (16)	0.0108 (13)	0.0131 (13)	0.0099 (13)
C9	0.0442 (18)	0.0294 (16)	0.0335 (16)	0.0177 (14)	0.0108 (14)	0.0041 (13)
C10	0.047 (2)	0.0300 (17)	0.0406 (18)	0.0159 (15)	0.0230 (16)	0.0068 (14)
C11	0.054 (2)	0.0357 (18)	0.0436 (19)	0.0276 (17)	0.0028 (16)	0.0059 (15)
C13	0.0429 (18)	0.0308 (16)	0.0307 (16)	0.0170 (14)	0.0045 (14)	0.0095 (13)
C18	0.0387 (17)	0.0311 (16)	0.0396 (18)	0.0133 (14)	-0.0029 (14)	0.0138 (14)
C20	0.0467 (19)	0.0323 (16)	0.0418 (18)	0.0176 (15)	0.0227 (15)	0.0130 (14)
C22	0.090 (3)	0.050 (2)	0.0291 (19)	0.023 (2)	0.002 (2)	0.0006 (17)
C23	0.0468 (19)	0.0297 (17)	0.0389 (18)	0.0094 (15)	0.0094 (15)	0.0065 (14)
C26	0.0306 (17)	0.0350 (17)	0.052 (2)	0.0131 (14)	0.0115 (15)	0.0189 (15)
C27	0.0395 (18)	0.0410 (18)	0.0437 (18)	0.0156 (15)	0.0193 (15)	0.0142 (15)
C28	0.043 (2)	0.0381 (18)	0.053 (2)	0.0153 (16)	0.0167 (17)	0.0197 (16)
C31	0.059 (2)	0.0366 (18)	0.051 (2)	0.0241 (16)	0.0316 (17)	0.0223 (16)
C32	0.047 (2)	0.0376 (18)	0.053 (2)	0.0205 (16)	0.0159 (17)	0.0215 (16)
C33	0.0415 (19)	0.0430 (19)	0.0423 (19)	0.0166 (16)	0.0126 (16)	0.0033 (15)
C37	0.057 (2)	0.0293 (18)	0.0427 (18)	0.0209 (16)	0.0070 (17)	0.0055 (14)
C38	0.077 (3)	0.053 (2)	0.0397 (19)	0.030 (2)	0.023 (2)	0.0154 (17)
C39	0.059 (2)	0.040 (2)	0.040 (2)	0.0102 (18)	-0.0127 (18)	0.0063 (16)
C45	0.0325 (18)	0.040 (2)	0.064 (2)	0.0126 (15)	-0.0018 (17)	0.0198 (18)
C46	0.0337 (18)	0.0428 (19)	0.053 (2)	0.0159 (15)	0.0153 (15)	0.0129 (16)

Geometric parameters (Å, °)

Zn1—O3	1.967 (2)	C13—C33	1.515 (4)	
Zn1—O1	1.9680 (19)	C18—C39	1.399 (5)	
Zn1—N2	1.999 (2)	C18—C45 ⁱⁱ	1.497 (4)	
Zn1—N1	2.036 (2)	C20—C32	1.384 (4)	
O1—C4	1.283 (3)	C20—C28	1.393 (4)	
O2—C4	1.240 (3)	C22—C39	1.364 (5)	
O3—C10	1.244 (4)	C22—C38	1.369 (5)	
O4—C10	1.234 (4)	C22—H22	0.9271	
N1-C26	1.310 (3)	C23—C38	1.378 (4)	
N1—C27	1.370 (4)	С23—Н23	0.9299	
N2—C9	1.313 (4)	C26—H26	0.9298	

N2—C11	1.373 (4)	C27—C46	1.347 (4)
N6—C9	1.344 (3)	С27—Н27	0.9297
N6—C37	1.369 (4)	C28—C32 ⁱⁱⁱ	1.381 (4)
N6—C33	1.464 (4)	C28—H28	0.9299
N9—C26	1.339 (4)	C31—C1 ⁱ	1.386 (4)
N9—C46	1.364 (4)	C31—H31	0.9294
N9—C45	1.478 (4)	C32—C28 ⁱⁱⁱ	1.381 (4)
C1-C31 ⁱ	1.386 (4)	С32—Н32	0.9283
C1—C6	1.387 (4)	С33—Н33А	0.9696
C1—H1	0.9289	С33—Н33В	0.9695
C4—C6	1.506 (4)	С37—Н37	0.9299
C6-C31	1 383 (4)	C38—H38	0.9292
C9—H9	0.9291	C39—H39	0.9280
C10-C20	1 522 (4)	$C45-C18^{ii}$	1 497 (4)
$C_{11} - C_{37}$	1.322(1) 1 340(4)	C45—H45A	0.9699
C11—H11	0.9294	C45—H45B	0.9696
C13 - C23	1 383 (4)	C_{46} H46	0.9090
$C_{13} = C_{23}$	1.305 (4)	C+0-11+0	0.7204
015-018	1.396 (4)		
03 - 7n1 - 01	105 82 (9)	C_{28} C_{20} C_{10}	120 3 (3)
O_3 Z_{n1} N_2	105.02(0) 118 54(9)	$C_{20} = C_{20} = C_{10}$	120.3(3) 120.2(3)
$O_1 = Z_{n1} = N_2$	115.54(0)	C_{39} C_{22} C_{30} C_{22} H_{22}	110.6
$O_1 = Z_{111} = N_2$ $O_3 = Z_{111} = N_1$	115.05(9) 100.79(10)	$C_{39} = C_{22} = H_{22}$	120.1
$O_1 = Z_{n1} = N_1$	100.79(10) 100.17(0)	$C_{38} = C_{22} = C_{122}$	120.1 120.0(3)
$N_2 = Z_{n1} = N_1$	109.17(9) 105.62(10)	$C_{20} = C_{20} = C_{10}$	120.9 (3)
$1 \times 2 \longrightarrow 1 \times 2 \longrightarrow 1$	105.02(10) 115.41(19)	$C_{30} - C_{23} - H_{23}$	119.0
$C_{4} = 01 = 2111$	113.41(10) 111.8(2)	N1 C26 N0	119.2
C10-03-2111	111.0(2) 105.7(2)	N1 = C26 = H26	111.0(3)
$C_{20} = N_1 = C_{27}$	105.7(2)	$N1 - C_{20} - H_{20}$	124.5
C_{20} N1 Z_{11}	125.8 (2)	$N9 - C_{26} - H_{26}$	124.2
$C_2/-N_1$	128.4 (2)	C46 - C27 - N1	109.2 (3)
C9—N2—C11	105.6 (2)	C40 - C2/ - H2/	125.4
C9 - N2 - Zn1	125.44 (19)	NI = C27 = H27	125.3
C11 - N2 - Zn1	126.0 (2)	$C_{32} = C_{28} = C_{20}$	120.3 (3)
C9 - N6 - C37	107.5 (3)	C_{32} — C_{28} — H28	119.8
C9—N6—C33	125.4 (3)	C20—C28—H28	120.0
C37—N6—C33	126.5 (3)	$C6-C31-C1^{+}$	121.5 (3)
C26—N9—C46	106.8 (3)	С6—С31—Н31	119.3
C26—N9—C45	127.3 (3)	C1 ¹ —C31—H31	119.2
C46—N9—C45	125.9 (3)	C28 ^m —C32—C20	121.0 (3)
C31 ¹ —C1—C6	120.5 (3)	C28 ^m —C32—H32	119.7
C31 ¹ —C1—H1	119.6	С20—С32—Н32	119.3
C6—C1—H1	119.9	N6—C33—C13	113.4 (3)
O2—C4—O1	124.7 (3)	N6—C33—H33A	108.9
O2—C4—C6	119.0 (2)	C13—C33—H33A	108.9
O1—C4—C6	116.3 (2)	N6—C33—H33B	108.8
C31—C6—C1	118.0 (3)	С13—С33—Н33В	109.0
C31—C6—C4	121.4 (3)	H33A—C33—H33B	107.7
C1—C6—C4	120.6 (3)	C11—C37—N6	105.9 (3)

N2—C9—N6	110.9 (3)	С11—С37—Н37	126.8
N2—C9—H9	124.7	N6—C37—H37	127.2
N6—C9—H9	124.5	C22—C38—C23	119.7 (4)
O4—C10—O3	124.9 (3)	С22—С38—Н38	120.3
O4—C10—C20	118.8 (3)	С23—С38—Н38	120.0
O3—C10—C20	116.2 (3)	C22—C39—C18	121.5 (3)
C37—C11—N2	110.1 (3)	С22—С39—Н39	119.3
C37—C11—H11	124.9	С18—С39—Н39	119.3
N2-C11-H11	125.0	N9—C45—C18 ⁱⁱ	111.3 (3)
C23—C13—C18	119.7 (3)	N9—C45—H45A	109.3
C23—C13—C33	119.4 (3)	C18 ⁱⁱ —C45—H45A	109.5
C18—C13—C33	120.9 (3)	N9—C45—H45B	109.4
C13—C18—C39	118.0 (3)	C18 ⁱⁱ —C45—H45B	109.4
C13—C18—C45 ⁱⁱ	123.6 (3)	H45A—C45—H45B	108.0
C39—C18—C45 ⁱⁱ	118.4 (3)	C27—C46—N9	106.7 (3)
C32—C20—C28	118.8 (3)	C27—C46—H46	126.5
C32—C20—C10	120.9 (3)	N9—C46—H46	126.8

Symmetry codes: (i) -*x*+2, -*y*, -*z*-1; (ii) -*x*+2, -*y*+1, -*z*; (iii) -*x*+1, -*y*-1, -*z*.