Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

1,4-Bis(pyrimidin-2-ylsulfanyl)butane

Muhammad Akbar, ${ }^{\text {a }}$ Fahim Ashraf Quereshi, ${ }^{\text {a }}$ Waqar Nasir, ${ }^{\text {a }}$ Ahmad Adnan ${ }^{\text {a }}$ and Seik Weng $\mathbf{N g}^{\text {b }}$ *

${ }^{\text {a }}$ Department of Chemistry, Government College University, 54000 Lahore, Pakistan, and ${ }^{\text {b }}$ Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 7 October 2010; accepted 12 October 2010
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.036 ; w R$ factor $=0.115$; data-to-parameter ratio $=18.6$.

The $-\mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}$ - portion of the title compound, $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{~S}_{2}$, adopts an extended zigzag conformation. The angles at the tetrahedral carbon atoms are marginally increased [113.63 (12) ${ }^{\circ}$ and $111.38(17)^{\circ}$ for $\mathrm{S}-\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{C}-\mathrm{C}$ respectively] from the idealized tetrahedral angle. The molecule lies on an inversion center located at the midpoint of the butyl chain. In the crystal, there is a $\pi-\pi$ stacking interaction between inversion-related pyrimidine rings with mean interplanar spacing of 3.494 (2) \AA.

Related literature

For the structure of a silver perchlorate adduct of the title compound see: Wang \& Zheng (2007).

Experimental

Crystal data
$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{~S}_{2}$
$M_{r}=278.39$
Triclinic, $P \overline{1}$
$a=5.5025$ (1) \AA
$b=7.6617$ (1) \AA
$c=8.3598$ (2) \AA
$\alpha=86.915(1)^{\circ}$
$\beta=87.253(1)^{\circ}$

Data collection

Bruker Kappa APEXII diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.849, T_{\text {max }}=1.000$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036 \quad 82$ parameters
$w R\left(F^{2}\right)=0.115$
$S=1.05$
1524 reflections
$\gamma=75.853(1)^{\circ}$
$V=341.03(1) \AA^{3}$
$Z=1$
Mo $K \alpha$ radiation
$\mu=0.38 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
$0.35 \times 0.20 \times 0.10 \mathrm{~mm}$

5571 measured reflections 1524 independent reflections 1384 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.025$

H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.23 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.23$ e \AA^{-3}

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XSEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

We thank the Higher Education Commission of Pakistan, GC University and the University of Malaya for supporting this study.

[^0]
References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Wang, S.-L. \& Zheng, Y. (2007). Acta Cryst. E63, m2528.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2010). E66, o2849 [https://doi.org/10.1107/S1600536810041103]

1,4-Bis(pyrimidin-2-yIsulfanyl)butane

Muhammad Akbar, Fahim Ashraf Quereshi, Waqar Nasir, Ahmad Adnan and Seik Weng Ng

S1. Comment

The bis(arylthio)alkane ligands are excellent 'flexible' ligands for binding to silver(I) compounds. The title ligand (Scheme I) has been used in the synthesis of a silver perchlorate adduct; the ligand binds through its nitrogen donor sites (Wang \& Zheng, 2007). The ligand itself exists as a centrosymmetric compound (Fig. 1) with an inversion center located at the mid-point of the butyl chain. The $-\mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}$ - portion of the molecule of $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{~S}_{2}$ adopts an extended zigzag conformation, and the angles at the tetrahedral C atoms are marginally increased from the idealized 109.5°
(113.62 (12) $)^{\circ}$ and $111.38(17)^{\circ}$ for $\mathrm{S}-\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{C}-\mathrm{C}$ respectively).

S2. Experimental

To the ethanol mixture $(50 \mathrm{ml})$ of 2-mercaptopyrimidine $(2 \mathrm{~g}, 17.8 \mathrm{mmol})$ and sodium bicarbonate $(1.8 \mathrm{~g}, 21.4 \mathrm{mmol})$ was added 1,4-dichlorobutane ($1.13 \mathrm{~g}, 8.92 \mathrm{mmol}$). The mixture was heated for 6 h and the progress of the reaction was monitored by TLC (chloroform: ethyl acetate 9:1). The mixture was filtered and the solvent was allowed to evaporate. The colorless crystals that were isolated were collected and washed with hexane; yield 82%.

S3. Refinement

Carbon-bound H -atoms were placed in calculated positions ($\mathrm{C}-\mathrm{H} 0.93$ to $0.97 \AA$) and were included in the refinement in the riding model approximation, with $U(\mathrm{H})$ set to $1.2 U(\mathrm{C})$.

Figure 1
Thermal ellipsoid plot (Barbour, 2001) of $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{~S}_{2}$ at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. The molecule lies about a center-of-inversion.

1,4-Bis(pyrimidin-2-ylsulfanyl)butane

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{~S}_{2}$
$M_{r}=278.39$
Triclinic, $P \overline{1}$
Hall symbol: -P 1
$a=5.5025$ (1) Å
$b=7.6617$ (1) \AA
$c=8.3598(2) \AA$
$\alpha=86.915(1)^{\circ}$
$\beta=87.253(1)^{\circ}$
$\gamma=75.853(1)^{\circ}$
$V=341.03$ (1) \AA^{3}

Data collection

Bruker Kappa APEXII

diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
Detector resolution: 0 pixels mm^{-1}
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min }=0.849, T_{\text {max }}=1.000$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.115$
$S=1.05$
1524 reflections
82 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
$Z=1$
$F(000)=146$
$D_{\mathrm{x}}=1.356 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 3569 reflections
$\theta=2.4-28.3^{\circ}$
$\mu=0.38 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Prism, pale yellow
$0.35 \times 0.20 \times 0.10 \mathrm{~mm}$

5571 measured reflections
1524 independent reflections
1384 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.025$
$\theta_{\text {max }}=27.5^{\circ}, \theta_{\text {min }}=2.7^{\circ}$
$h=-7 \rightarrow 7$
$k=-9 \rightarrow 9$
$l=-10 \rightarrow 10$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0684 P)^{2}+0.0791 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.23 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.23 \mathrm{e}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
S1	$0.00757(8)$	$0.83807(5)$	$0.36197(5)$	$0.0497(2)$
N1	$0.2131(3)$	$0.68013(19)$	$0.09155(18)$	$0.0464(3)$
N2	$-0.2078(3)$	$0.8589(2)$	$0.09199(19)$	$0.0505(4)$
C1	$0.3698(3)$	$0.5370(2)$	$0.46719(19)$	$0.0437(4)$
H1A	0.3522	0.4713	0.3742	0.052^{*}
H1B	0.2444	0.5191	0.5479	0.052^{*}
C2	$0.3247(3)$	$0.7362(2)$	$0.4204(2)$	$0.0469(4)$
H2A	0.4395	0.7516	0.3321	0.056^{*}
H2B	0.3622	0.7989	0.5103	0.056^{*}
C3	$0.0099(3)$	$0.78350(19)$	$0.16033(19)$	$0.0396(3)$
C4	$0.1936(3)$	$0.6518(3)$	$-0.0632(2)$	$0.0533(4)$
H4	0.3305	0.5800	-0.1171	0.064^{*}

C5	$-0.0195(4)$	$0.7241(3)$	$-0.1458(2)$	$0.0541(4)$
H5	-0.0289	0.7042	-0.2539	0.065^{*}
C6	$-0.2187(3)$	$0.8274(3)$	$-0.0615(2)$	$0.0539(4)$
H6	-0.3667	0.8770	-0.1140	0.065^{*}

Atomic displacement parameters (\hat{A}^{2})

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	$0.0475(3)$	$0.0499(3)$	$0.0434(3)$	$0.00536(19)$	$-0.00486(18)$	$-0.00421(18)$
N1	$0.0412(7)$	$0.0462(7)$	$0.0472(8)$	$-0.0017(6)$	$-0.0016(6)$	$-0.0023(6)$
N2	$0.0391(7)$	$0.0549(8)$	$0.0517(9)$	$0.0004(6)$	$-0.0063(6)$	$-0.0012(6)$
C1	$0.0419(8)$	$0.0443(8)$	$0.0420(8)$	$-0.0037(6)$	$-0.0078(7)$	$-0.0004(6)$
C2	$0.0467(8)$	$0.0440(8)$	$0.0470(9)$	$-0.0035(7)$	$-0.0116(7)$	$-0.0020(7)$
C3	$0.0384(7)$	$0.0352(7)$	$0.0428(8)$	$-0.0048(6)$	$-0.0032(6)$	$0.0013(6)$
C4	$0.0500(10)$	$0.0566(10)$	$0.0485(10)$	$-0.0038(8)$	$0.0045(7)$	$-0.0067(8)$
C5	$0.0603(11)$	$0.0596(10)$	$0.0419(9)$	$-0.0130(8)$	$-0.0047(8)$	$-0.0021(7)$
C6	$0.0474(9)$	$0.0605(10)$	$0.0514(10)$	$-0.0075(8)$	$-0.0134(8)$	$0.0033(8)$

Geometric parameters (A, ${ }^{\circ}$)

S1-C3	1.7571 (17)	C1-H1B	0.9700
S1-C2	1.8076 (16)	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9700
N1-C3	1.328 (2)	C2-H2B	0.9700
N1-C4	1.337 (2)	C4- 55	1.370 (3)
N2-C6	1.325 (2)	C4-H4	0.9300
N2-C3	1.337 (2)	C5-C6	1.374 (3)
C1-C2	1.517 (2)	C5-H5	0.9300
C1-C1 ${ }^{\text {i }}$	1.524 (3)	C6-H6	0.9300
C1-H1A	0.9700		
C3-S1-C2	103.41 (8)	H2A-C2-H2B	107.7
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 4$	115.09 (14)	$\mathrm{N} 1-\mathrm{C} 3-\mathrm{N} 2$	127.07 (15)
C6-N2-C3	115.78 (15)	N1-C3-S1	120.73 (12)
C2- $\mathrm{C} 1-\mathrm{Cl}^{\text {i }}$	111.38 (17)	N2-C3-S1	112.20 (12)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.4	N1-C4-C5	122.81 (16)
$\mathrm{C} 1{ }^{\text {i }} \mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.4	N1-C4-H4	118.6
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.4	C5-C4-H4	118.6
$\mathrm{C1}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.4	C4-C5-C6	116.83 (17)
H1A-C1-H1B	108.0	C4- $55-\mathrm{H} 5$	121.6
C1-C2-S1	113.63 (12)	C6-C5-H5	121.6
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	108.8	N2-C6-C5	122.41 (16)
S1-C2-H2A	108.8	N2-C6-H6	118.8
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	108.8	C5-C6-H6	118.8
S1-C2-H2B	108.8		
C1 ${ }^{\text {i }}$ - $\mathrm{C} 1-\mathrm{C} 2-\mathrm{S} 1$	-173.69 (15)	C2-S1-C3-N1	3.47 (15)
C3-S1-C2-C1	-82.52 (14)	C2-S1-C3-N2	-175.76 (12)
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 3-\mathrm{N} 2$	0.6 (3)	$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 5$	0.2 (3)

$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 3-\mathrm{S} 1$	$-178.46(12)$	$\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$-0.8(3)$
$\mathrm{C} 6-\mathrm{N} 2-\mathrm{C} 3-\mathrm{N} 1$	$-0.7(3)$	$\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 6-\mathrm{C} 5$	$-0.1(3)$
$\mathrm{C} 6-\mathrm{N} 2-\mathrm{C} 3-\mathrm{S} 1$	$178.47(13)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{N} 2$	$0.8(3)$

Symmetry code: (i) $-x+1,-y+1,-z+1$.

[^0]: Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2276).

