metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Tetrakis[*µ*-2-(4-hydroxyphenyl)acetato]- $\kappa^{3}O.O':O:\kappa^{3}O:O.O'-bis{agua(4.4'-bi$ pyridine-*k*N)bis[2-(4-hydroxyphenyl)acetato- $\kappa^2 O, O$]neodymium(III)} monohydrate

lia-Lu Liu, lian-Feng Liu and Guo-Liang Zhao*

College of Chemistry and Life Sciences, Zhejiang Normal University and, Zhejiang Normal University Xingzhi College, Jinhua 321004, People's Republic of China Correspondence e-mail: sky53@zjnu.cn

Received 9 October 2010; accepted 22 October 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.004 Å; R factor = 0.021; wR factor = 0.053; data-to-parameter ratio = 12.8.

The title complex, $[Nd_2(C_8H_7O_3)_6(C_{10}H_8N_2)_2(H_2O)_2] \cdot H_2O$, contains two Nd atoms, six 4-hydroxyphenylacetate (hpaa) anions, two 4,4'-bipyridine molecules (bipy) and two water molecules; an additional water molecule of solvation is also present in the crystal structure. Each of the Nd^{III} ions is ninecoordinated by seven O atoms from four hpaa ligands, an N atom from a bipy ligand and an O atom from a water molecule in a distorted tricapped trigonal-prismatic geometry. The hpaa ligands are coordinated to the Nd^{III} ions in the bridging and bridging tridentate modes. Extensive O-H···O, O-H···N and C-H···O hydrogen bonding stabilizes the crystal structure.

Related literature

For related structures and background literature, see: Liu et al. (2010); Wang et al. (2010); Fang & Zhang (2006); Wang & Sevov (2008).

 $\beta = 71.926 \ (1)^{\circ}$ $\gamma = 70.814 (1)^{\circ}$

Z = 2

V = 3199.99 (6) Å³

Mo $K\alpha$ radiation

 $0.25 \times 0.24 \times 0.07 \text{ mm}$

41660 measured reflections

11220 independent reflections

9780 reflections with $I > 2\sigma(I)$

 $\mu = 1.69 \text{ mm}^{-1}$

T = 296 K

 $R_{\rm int} = 0.026$

Experimental

Crystal data

 $[Nd_2(C_8H_7O_3)_6(C_{10}H_8N_2)_2(H_2O)_2]$ -- H_2O $M_r = 1561.72$ Triclinic, $P\overline{1}$ a = 11.77540(1) Å b = 16.3732 (2) Å c = 18.4864 (2) Å $\alpha = 83.672 (1)^{\circ}$

Data collection

Bruker APEXII area-detector diffractometer

Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.668, T_{\max} = 0.883$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.021$	H atoms treated by a mixture of
$wR(F^2) = 0.053$	independent and constrained
S = 1.07	refinement
11220 reflections	$\Delta \rho_{\rm max} = 0.37 \text{ e } \text{\AA}^{-3}$
875 parameters	$\Delta \rho_{\rm min} = -0.51 \text{ e } \text{\AA}^{-3}$
9 restraints	

Table 1

Hydrogen-bond geometry (Å. °)

$D-H\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$O3 H3R O12^{i}$	0.82	1.0/	2 751 (3)	170
$O6 = H6B \cdots O3W^{ii}$	0.82	1.94	2.647(3)	160
$O9-H9A\cdots O17^{iii}$	0.82	1.86	2.676 (3)	173
$O12-H12A\cdots O11^{iv}$	0.82	1.94	2.746 (2)	167
$O15-H15C\cdots O6^{v}$	0.82	1.91	2.725 (3)	173
$O18-H18B\cdots O9^{ii}$	0.82	1.95	2.763 (3)	173
$O2W - H2WA \cdots O5$	0.82(2)	2.02 (2)	2.772 (2)	153 (3)
$O2W - H2WB \cdot \cdot \cdot N2^{ii}$	0.81(2)	2.04 (2)	2.840 (3)	170 (3)
O3W−H3WB···O3	0.82(2)	2.02 (2)	2.811 (3)	162 (3)
$O1W - H1WA \cdots O13$	0.81(2)	1.98 (2)	2.764 (2)	161 (3)
$O1W-H1WB\cdots N4^{i}$	0.82(2)	1.99 (2)	2.775 (3)	161 (3)
O3W−H3WA···O1 ^{vi}	0.82 (2)	1.95 (2)	2.770 (3)	175 (4)
$C6-H6A\cdots O2^{vii}$	0.93	2.49	3.283 (3)	144

Symmetry codes: (i) x, y + 1, z; (ii) x, y - 1, z; (iii) -x, -y + 1, -z; (iv) -x, -y, -z + 1; (v) x - 1, y + 1, z; (vi) -x + 1, -y + 1, -z + 1; (vii) -x, -y + 1, -z + 1.

Data collection: *APEX2* (Bruker, 2006); cell refinement: *SAINT* (Bruker, 2006); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

Any acknowledgements?

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2337).

References

Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Fang, R.-Q. & Zhang, X.-M. (2006). Inorg. Chem. 45, 4801–4810.

Liu, J.-L., Li, H.-Q. & Zhao, G.-L. (2010). Acta Cryst. E66, m9.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Wang, G.-H., Lei, Y.-Q. & Wang, N. (2010). Cryst. Growth Des. **10** 4060–4067. Wang, X.-X. & Sevov, S. (2008). Inorg. Chem. **47**, 1037–1043.

supporting information

Acta Cryst. (2010). E66, m1476-m1477 [https://doi.org/10.1107/S1600536810043023]

Tetrakis[μ -2-(4-hydroxyphenyl)acetato]- $\kappa^3 O$,O':O; $\kappa^3 O$:O,O'-bis{aqua(4,4'-bi-pyridine- κN)bis[2-(4-hydroxyphenyl)acetato- $\kappa^2 O$,O]neodymium(III)} monohydrate

Jia-Lu Liu, Jian-Feng Liu and Guo-Liang Zhao

S1. Comment

There has been an increasing interest in the design and synthesis of carboxylic metal-organic complexes owing to their potential practical applications, such as fluorescence, magnetism, etc. (Wang, *et al.*, 2010; Fang & Zhang, 2006; Wang & Sevov, 2008). In continuation to our research (Liu, *et al.*, 2010), we now report the preparation and crystal structure of a new neodymium^{III} complex with the ligand 4-hydroxyphenylacetic acid (hpaa).

The crystal structure of the title complex (Fig. 1) contains two Nd atoms, six (hpaa) molecules, two 4,4'-bipyridine molecules (bipy) and two water molecules; an additional water molecule of solvation is also present which is not involved in coordination. Each Nd atom is nine coordinated. The (hpaa) ligands are coordinated by two modes, bridging and bridging tridentate. The neodymium^{III} atom is in a distort capped pentagonal prism environment. The Nd—O bond lengths range from 2.4180 (15) to 2.6237 (16) Å. The Nd—N distances range from 2.6325 (19) to 2.6544 (18) Å. The Nd —O(water) bond lengths ranging from 2.4816 (16) to 2.4847 (16) Å, are slightly shorter than the other Nd—O bond distances. In addition, there are several hydrogen bonds in the crystal structure which strengthen the stability of the crystal structure (Table 1).

S2. Experimental

A solution of 4-hydroxyphenylacetic acid (hpaa) (30 ml) in distilled water (20 ml) was mixed with a solution of sodium hydroxide (30 mmol) in distilled water (20 ml) and the solution and diluted to 100 ml. To a 10 ml portion of this sodium salt solution a solution of $Nd(NO_3)_3$ (1 mmol) in distilled water (10 ml) was added in a dropwise fashion. After about an hour, 4,4'-bipyridine (1 mmol) in ethanol (5 ml) was slowly dripped into the solution, stirred for three hours and filtered. After allowing the filtrate to stand for a week, a mass of colorless crystals was obtained.

S3. Refinement

The H-atoms of the water molecules were located from difference maps and were included in the subsequent refinement using the restraints (O—H = 0.82 (1)Å, H···H = 1.39 (2)Å) with $U_{iso}(H) = 1.5U_{eq}(O)$. The remaining H atoms were positioned geometrically and refined using a riding model with O—H = 0.82 Å and C—H = 0.93 and 0.97 Å for aryl and methylene type H-atoms, respectively with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(O)$.

Figure 1

The molecular structure of the title complex, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Tetrakis[μ -2-(4-hydroxyphenyl)acetato]- $\kappa^3 O$, O': O; $\kappa^3 O$: O, O'- bis{aqua(4,4'-bipyridine- κN)bis[2-(4-hydroxyphenyl)acetato- $\kappa^2 O$, O]neodymium(III)} monohydrate

Crystal data

-	
$[Nd_{2}(C_{8}H_{7}O_{3})_{6}(C_{10}H_{8}N_{2})_{2}(H_{2}O)_{2}] \cdot H_{2}O$ $M_{r} = 1561.72$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 11.77540 (1) Å b = 16.3732 (2) Å c = 18.4864 (2) Å $a = 83.672 (1)^{\circ}$ $\beta = 71.926 (1)^{\circ}$ $\gamma = 70.814 (1)^{\circ}$ $V = 3199.99 (6) \text{ Å}^{3}$	Z = 2 F(000) = 1576 $D_x = 1.621 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9932 reflections $\theta = 1.7-25.0^{\circ}$ $\mu = 1.69 \text{ mm}^{-1}$ T = 296 K Block, colourless $0.25 \times 0.24 \times 0.07 \text{ mm}$
Data collection	
Bruker APEXII area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans	Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{min} = 0.668$, $T_{max} = 0.883$ 41660 measured reflections 11220 independent reflections

9780 reflections with $I > 2\sigma(I)$	$h = -14 \rightarrow 14$
$R_{\rm int} = 0.026$	$k = -19 \rightarrow 19$
$\theta_{\max} = 25.0^\circ, \theta_{\min} = 1.8^\circ$	$l = -21 \rightarrow 21$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.021$	Hydrogen site location: inferred from
$wR(F^2) = 0.053$	neighbouring sites
S = 1.07	H atoms treated by a mixture of independent
11220 reflections	and constrained refinement
875 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0242P)^2 + 0.9476P]$
9 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.002$
direct methods	$\Delta ho_{ m max} = 0.37 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.51 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Nd1	0.270706 (11)	0.364834 (7)	0.284566 (7)	0.02466 (4)	
Nd2	0.132489 (11)	0.205750 (7)	0.194233 (7)	0.02465 (4)	
N1	0.3145 (2)	0.51275 (12)	0.28312 (12)	0.0344 (5)	
N2	0.3992 (3)	0.92555 (16)	0.2132 (2)	0.0641 (8)	
N3	0.08245 (19)	0.06055 (12)	0.18750 (11)	0.0321 (5)	
N4	0.0249 (3)	-0.36120 (16)	0.2350 (2)	0.0665 (8)	
C1	0.2239 (2)	0.51251 (16)	0.51879 (13)	0.0336 (6)	
C2	0.3397 (3)	0.51654 (18)	0.47391 (15)	0.0447 (7)	
H2A	0.3955	0.4690	0.4448	0.054*	
C3	0.3749 (3)	0.58985 (19)	0.47123 (16)	0.0498 (7)	
H3A	0.4529	0.5917	0.4399	0.060*	
C4	0.2944 (3)	0.65967 (17)	0.51496 (16)	0.0431 (7)	
C5	0.1802 (3)	0.65599 (18)	0.56189 (16)	0.0467 (7)	
H5A	0.1267	0.7025	0.5930	0.056*	
C6	0.1446 (3)	0.58383 (17)	0.56302 (15)	0.0434 (7)	
H6A	0.0659	0.5828	0.5940	0.052*	
C7	0.1849 (3)	0.43233 (17)	0.52304 (14)	0.0400 (6)	
H7A	0.2317	0.3874	0.5511	0.048*	
H7B	0.0963	0.4455	0.5504	0.048*	
C8	0.2082 (2)	0.39955 (16)	0.44499 (14)	0.0339 (6)	
C9	0.6231 (2)	0.08712 (16)	0.30460 (15)	0.0368 (6)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C10	0.6052 (3)	0.05562 (17)	0.37775 (16)	0.0461 (7)
H10A	0.5935	0.0919	0.4165	0.055*
C11	0.6039 (3)	-0.02832(17)	0.39577 (15)	0.0466 (7)
H11A	0.5932	-0.0482	0.4458	0.056*
C12	0.6186 (2)	-0.08206(15)	0.33954 (14)	0.0369 (6)
C13	0.6359 (3)	-0.05165 (17)	0.26549 (14)	0.0422 (7)
H13A	0.6463	-0.0879	0.2270	0.051*
C14	0.6378 (3)	0.03113 (16)	0.24858 (15)	0.0408 (6)
H14A	0.6493	0.0506	0.1984	0.049*
C15	0.6270 (3)	0.17779 (16)	0.28492 (18)	0.0471 (7)
H15A	0.6946	0.1763	0.2384	0.057*
H15B	0.6472	0.1986	0.3250	0.057*
C16	0.5074(2)	0 24161 (15)	0.27414(14)	0.0330 (6)
C17	0.2717(3)	0 45494 (17)	0.27111(11) 0.01296(14)	0.0415(7)
C18	0.1461(3)	0.10191(17) 0.50163(19)	0.01290(11) 0.02788(14)	0.0482(7)
H18A	0.0863	0.4747	0.0534	0.058*
C19	0.0003	0.58758 (19)	0.00594 (15)	0.030
Ц10Л	0.0210	0.6179	0.00594 (15)	0.054*
C20	0.0210 0.1048(3)	0.0179 0.62755(17)	-0.03244(14)	0.034
C20	0.1948(3) 0.2200(3)	0.02735(17) 0.58215(17)	-0.03244(14)	0.0387(0)
	0.3209 (3)	0.38213(17)	-0.04733(13)	0.0419(0)
П21А С22	0.3809	0.0091 0.40601(17)	-0.0724	0.030°
	0.5381(5)	0.49091 (17)	-0.02502(15)	0.0423(7)
П22А	0.4434	0.4008	-0.0338	0.031°
C25	0.3127 (3)	0.36227 (18)	0.038/9 (15)	0.0576(9)
H23A	0.3977	0.3338	0.0079	0.069*
H23B	0.2583	0.3328	0.0310	0.069*
C24	0.3091 (2)	0.35461 (15)	0.12153 (13)	0.0327 (6)
C25	0.1422 (3)	0.11229 (16)	0.47574 (14)	0.0380 (6)
C26	0.0397 (3)	0.10565 (17)	0.53565 (14)	0.0422 (6)
H26A	-0.0291	0.1547	0.5516	0.051*
C27	0.0379 (3)	0.02725 (17)	0.57209 (14)	0.0413 (6)
H27A	-0.0311	0.0239	0.6125	0.050*
C28	0.1390 (2)	-0.04569 (16)	0.54792 (14)	0.0349 (6)
C29	0.2418 (3)	-0.04044 (18)	0.48871 (15)	0.0414 (6)
H29A	0.3102	-0.0896	0.4724	0.050*
C30	0.2424 (3)	0.03838 (18)	0.45375 (15)	0.0419 (6)
H30A	0.3125	0.0417	0.4142	0.050*
C31	0.1436 (3)	0.19656 (17)	0.43415 (14)	0.0458 (7)
H31A	0.2246	0.2043	0.4272	0.055*
H31B	0.0800	0.2434	0.4658	0.055*
C32	0.1205 (2)	0.20377 (15)	0.35757 (13)	0.0291 (5)
C33	-0.2574 (2)	0.48110 (15)	0.24444 (14)	0.0308 (5)
C34	-0.2146 (2)	0.51905 (16)	0.17483 (14)	0.0369 (6)
H34A	-0.1765	0.4848	0.1316	0.044*
C35	-0.2266 (3)	0.60524 (16)	0.16765 (14)	0.0400 (6)
H35A	-0.1973	0.6287	0.1200	0.048*
C36	-0.2821 (2)	0.65779 (16)	0.23092 (14)	0.0367 (6)
C37	-0.3248 (3)	0.62160 (16)	0.30103 (14)	0.0400 (6)

H37A	-0.3622	0.6560	0.3441	0.048*
C38	-0.3121 (2)	0.53431 (16)	0.30741 (14)	0.0373 (6)
H38A	-0.3408	0.5108	0.3551	0.045*
C39	-0.2452(2)	0.38659 (15)	0.25102 (15)	0.0375 (6)
H39A	-0.2904	0.3748	0.3026	0.045*
H39B	-0.2863	0.3744	0.2172	0.045*
C40	-0.1139(2)	0.32540 (15)	0.23301 (13)	0.0303(5)
C41	0.2356(3)	0.05071 (16)	-0.04968(13)	0.0381 (6)
C42	0.2550(3) 0.3543(3)	-0.00084(17)	-0.04648(14)	0.0301(0)
С42 Н42 А	0.4115	0.0256	-0.0433	0.048*
C42	0.2806 (2)	-0.0200	-0.04784(14)	0.0432 (6)
C43	0.3890 (3)	-0.08931(17)	-0.04784(14)	0.0433 (0)
П45А С44	0.4098	-0.1224	-0.0400	0.032°
C44	0.3055 (3)	-0.12956 (18)	-0.05194 (16)	0.0470(7)
C45	0.1880 (3)	-0.08015 (19)	-0.0564/(16)	0.0493 (7)
H45A	0.1317	-0.1069	-0.0603	0.059*
C46	0.1535 (3)	0.00887 (18)	-0.05533 (14)	0.0438 (7)
H46A	0.0739	0.0415	-0.0584	0.053*
C47	0.1944 (3)	0.14797 (17)	-0.04442 (14)	0.0449 (7)
H47A	0.1165	0.1723	-0.0578	0.054*
H47B	0.2576	0.1696	-0.0808	0.054*
C48	0.1751 (3)	0.17737 (15)	0.03463 (14)	0.0350 (6)
C49	0.2327 (2)	0.58181 (15)	0.32258 (14)	0.0364 (6)
H49A	0.1603	0.5758	0.3583	0.044*
C50	0.2504 (3)	0.66216 (15)	0.31305 (14)	0.0381 (6)
H50A	0.1908	0.7087	0.3420	0.046*
C51	0.3571 (2)	0.67304 (15)	0.26029 (15)	0.0356 (6)
C52	0.4435(2)	0.60051 (16)	0.22073 (16)	0.0430(7)
H52A	0.5176	0.6043	0.1854	0.052*
C53	0.4191(3)	0.52275(16)	0.23395 (16)	0.0415(6)
Н53А	0.4786	0.4747	0.2072	0.050*
C54	0.4700 (3)	0.4747 0.8642 (2)	0.2072 0.1607 (2)	0.0668 (10)
U54 A	0.4040	0.8042 (2)	0.1107 (2)	0.0008 (10)
П34А	0.4940	0.0770 0.79141 (19)	0.1122 0.17284 (10)	0.080°
	0.4411 (5)	0.78141 (18)	0.17504 (19)	0.0304 (8)
HSSA	0.4/8/	0.7410	0.1350	0.068*
C56	0.3/61(3)	0./593/(16)	0.2449/(1/)	0.0420(7)
C57	0.3254 (3)	0.82212 (18)	0.30020 (18)	0.0592 (9)
H57A	0.2826	0.8101	0.3495	0.071*
C58	0.3392 (4)	0.9033 (2)	0.2810 (2)	0.0715 (10)
H58A	0.3035	0.9449	0.3189	0.086*
C59	0.1674 (3)	-0.00571 (16)	0.14551 (14)	0.0382 (6)
H59A	0.2399	0.0029	0.1120	0.046*
C60	0.1531 (3)	-0.08665 (16)	0.14932 (15)	0.0407 (6)
H60A	0.2148	-0.1305	0.1181	0.049*
C61	0.0480 (2)	-0.10279 (15)	0.19916 (14)	0.0351 (6)
C62	-0.0423 (2)	-0.03258 (16)	0.24109 (15)	0.0396 (6)
H62A	-0.1164	-0.0391	0.2744	0.047*
C63	-0.0223 (2)	0.04660 (16)	0.23338 (15)	0.0370 (6)
H63A	-0.0848	0.0927	0.2615	0.044*

C64	0.1031 (4)	-0.33921 (19)	0.1736 (2)	0.0719 (11)
H64A	0.1558	-0.3822	0.1385	0.086*
C65	0.1115 (4)	-0.25666 (18)	0.15800 (17)	0.0617 (9)
H65A	0.1674	-0.2451	0.1132	0.074*
C66	0.0362 (3)	-0.19106 (16)	0.20950 (16)	0.0417 (7)
C67	-0.0466 (3)	-0.21345 (19)	0.2739 (2)	0.0596 (9)
H67A	-0.0998	-0.1721	0.3104	0.072*
C68	-0.0495 (3)	-0.2978 (2)	0.2833 (3)	0.0740 (11)
H68A	-0.1074	-0.3109	0.3263	0.089*
O1W	0.07774 (17)	0.46117 (11)	0.25536 (11)	0.0393 (4)
H1WA	0.034 (2)	0.4394 (16)	0.2422 (16)	0.059*
H1WB	0.045 (3)	0.5134 (10)	0.2533 (17)	0.059*
01	0.30329 (18)	0.33594 (11)	0.41748 (10)	0.0445 (5)
O2W	0.33238 (17)	0.10872 (11)	0.21403 (12)	0.0406 (4)
H2WA	0.379 (2)	0.1269 (16)	0.2276 (17)	0.061*
H2WB	0.360 (3)	0.0565 (11)	0.2138 (17)	0.061*
O2	0.13434 (16)	0.43730 (11)	0.40659 (9)	0.0384 (4)
03	0.3315 (2)	0.73205 (14)	0.51087 (13)	0.0660 (6)
H3B	0.2736	0.7706	0.5367	0.057 (10)*
O3W	0.5579 (2)	0.76681 (14)	0.49067 (13)	0.0566 (5)
H3WA	0.603 (3)	0.736 (2)	0.5157 (18)	0.085*
H3WB	0.502 (2)	0.746 (2)	0.495 (2)	0.085*
O4	0.49884 (16)	0.32022 (11)	0.26571 (11)	0.0469 (5)
05	0.41618 (16)	0.21614 (10)	0.27630 (10)	0.0398 (4)
O6	0.6197 (2)	-0.16628 (11)	0.35255 (11)	0.0572 (6)
H6B	0.5929	-0.1745	0.3984	0.086*
07	0.35297 (18)	0.40041 (12)	0.14693 (10)	0.0463 (5)
08	0.25908 (15)	0.30193 (10)	0.16424 (9)	0.0306 (4)
09	0.16217 (19)	0.71234 (12)	-0.05605 (12)	0.0557 (5)
H9A	0.0916	0.7266	-0.0613	0.084*
O10	0.14216 (15)	0.26635 (10)	0.31474 (9)	0.0294 (4)
011	0.08199 (16)	0.15084 (10)	0.33586 (9)	0.0370 (4)
O12	0.14175 (18)	-0.12543 (11)	0.58121 (10)	0.0462 (5)
H12A	0.0698	-0.1254	0.6038	0.069*
O13	-0.01952 (15)	0.35251 (10)	0.20624 (10)	0.0381 (4)
O14	-0.09706 (16)	0.24565 (10)	0.24352 (11)	0.0426 (4)
O15	-0.2924 (2)	0.74313 (11)	0.22082 (11)	0.0532 (5)
H15C	-0.3189	0.7666	0.2624	0.080*
O16	0.26326 (17)	0.15156 (11)	0.06384 (10)	0.0407 (4)
O17	0.06975 (18)	0.22670 (12)	0.07132 (10)	0.0480 (5)
O18	0.3439 (2)	-0.21795 (13)	-0.05134 (14)	0.0743 (7)
H18B	0.2876	-0.2349	-0.0548	0.111*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Nd1	0.02896 (8)	0.01707 (7)	0.03149 (7)	-0.00971 (5)	-0.01188 (6)	0.00237 (5)
Nd2	0.02733 (8)	0.01603 (7)	0.03255 (8)	-0.00763 (5)	-0.01066 (6)	0.00014 (5)

supporting information

N1	0.0364 (13)	0.0231 (11)	0.0473 (13)	-0.0117 (10)	-0.0151 (10)	0.0010 (9)
N2	0.0659 (19)	0.0310 (14)	0.113 (2)	-0.0255 (14)	-0.0456 (18)	0.0175 (16)
N3	0.0381 (13)	0.0221 (10)	0.0388 (12)	-0.0111 (9)	-0.0133 (10)	0.0000 (9)
N4	0.084 (2)	0.0321 (15)	0.115 (3)	-0.0280 (15)	-0.069 (2)	0.0194 (16)
C1	0.0357 (15)	0.0368 (14)	0.0301 (13)	-0.0119 (12)	-0.0107 (11)	-0.0017 (11)
C2	0.0404 (17)	0.0411 (16)	0.0478 (16)	-0.0082(13)	-0.0062(13)	-0.0148 (13)
C3	0.0367 (16)	0.0538 (18)	0.0545 (18)	-0.0175 (14)	-0.0003 (14)	-0.0099 (14)
C4	0.0382 (16)	0.0398 (16)	0.0551 (17)	-0.0167 (13)	-0.0131 (14)	-0.0027 (13)
C5	0.0406 (17)	0.0355 (15)	0.0563 (18)	-0.0074 (13)	-0.0033 (14)	-0.0150 (13)
C6	0.0336 (15)	0.0449 (16)	0.0494 (16)	-0.0149 (13)	-0.0026 (13)	-0.0106 (13)
C7	0.0505 (17)	0.0384 (15)	0.0335 (14)	-0.0184 (13)	-0.0109 (12)	0.0001 (11)
C8	0.0436 (16)	0.0290 (14)	0.0335 (13)	-0.0201 (13)	-0.0088 (12)	0.0022 (11)
C9	0.0255 (14)	0.0283 (13)	0.0579 (17)	-0.0037 (11)	-0.0188 (12)	-0.0004 (12)
C10	0.0608 (19)	0.0304 (15)	0.0484 (17)	-0.0046 (13)	-0.0250 (15)	-0.0096 (12)
C11	0.066 (2)	0.0367 (16)	0.0339 (14)	-0.0104 (14)	-0.0165 (14)	-0.0007 (12)
C12	0.0429 (16)	0.0258 (13)	0.0423 (15)	-0.0101 (12)	-0.0140 (12)	0.0015 (11)
C13	0.0577 (19)	0.0342 (15)	0.0361 (14)	-0.0133 (13)	-0.0146 (13)	-0.0068 (11)
C14	0.0483 (17)	0.0340 (15)	0.0379 (15)	-0.0109 (13)	-0.0131 (13)	0.0040 (12)
C15	0.0371 (16)	0.0281 (14)	0.082 (2)	-0.0089 (12)	-0.0286 (15)	0.0059 (14)
C16	0.0327 (14)	0.0267 (13)	0.0400 (14)	-0.0078 (11)	-0.0122 (11)	-0.0021 (11)
C17	0.069 (2)	0.0403 (15)	0.0274 (13)	-0.0289 (15)	-0.0194 (13)	0.0045 (11)
C18	0.068 (2)	0.060 (2)	0.0315 (14)	-0.0443 (18)	-0.0107 (14)	0.0042 (13)
C19	0.0449 (17)	0.0550 (18)	0.0403 (15)	-0.0203 (15)	-0.0125 (13)	-0.0073 (13)
C20	0.0484 (17)	0.0359 (15)	0.0420 (15)	-0.0182 (13)	-0.0231 (13)	0.0027 (12)
C21	0.0488 (18)	0.0377 (15)	0.0485 (16)	-0.0251 (14)	-0.0182 (13)	0.0097 (12)
C22	0.0488 (17)	0.0375 (15)	0.0472 (16)	-0.0164 (14)	-0.0210 (14)	0.0058 (12)
C23	0.111 (3)	0.0376 (16)	0.0385 (16)	-0.0399 (18)	-0.0268 (17)	0.0067 (13)
C24	0.0428 (15)	0.0255 (13)	0.0308 (13)	-0.0129 (12)	-0.0104 (12)	0.0024 (10)
C25	0.0587 (18)	0.0351 (15)	0.0343 (14)	-0.0269 (14)	-0.0236 (13)	0.0098 (11)
C26	0.0539 (18)	0.0334 (14)	0.0403 (15)	-0.0115 (13)	-0.0182 (14)	0.0026 (12)
C27	0.0473 (17)	0.0431 (16)	0.0347 (14)	-0.0202 (14)	-0.0093 (13)	0.0060 (12)
C28	0.0434 (16)	0.0323 (14)	0.0364 (14)	-0.0189 (13)	-0.0170 (12)	0.0080 (11)
C29	0.0411 (16)	0.0428 (16)	0.0416 (15)	-0.0149 (13)	-0.0138 (13)	0.0053 (12)
C30	0.0469 (17)	0.0485 (17)	0.0367 (15)	-0.0269 (15)	-0.0117 (13)	0.0101 (12)
C31	0.075 (2)	0.0388 (16)	0.0403 (15)	-0.0341 (15)	-0.0263 (15)	0.0096 (12)
C32	0.0314 (14)	0.0226 (12)	0.0337 (13)	-0.0107 (11)	-0.0085 (11)	0.0025 (10)
C33	0.0236 (13)	0.0245 (12)	0.0432 (14)	-0.0033 (10)	-0.0118 (11)	-0.0026 (11)
C34	0.0395 (15)	0.0308 (14)	0.0366 (14)	-0.0051 (12)	-0.0091 (12)	-0.0086 (11)
C35	0.0500 (17)	0.0358 (15)	0.0316 (14)	-0.0139 (13)	-0.0089 (12)	0.0027 (11)
C36	0.0415 (16)	0.0270 (13)	0.0443 (15)	-0.0098 (12)	-0.0169 (13)	-0.0017 (11)
C37	0.0493 (17)	0.0309 (14)	0.0358 (14)	-0.0048 (13)	-0.0122 (13)	-0.0091 (11)
C38	0.0384 (15)	0.0326 (14)	0.0348 (14)	-0.0063 (12)	-0.0080 (12)	0.0010 (11)
C39	0.0292 (14)	0.0273 (13)	0.0533 (16)	-0.0059 (11)	-0.0107 (12)	-0.0024 (12)
C40	0.0320 (14)	0.0223 (13)	0.0393 (14)	-0.0078 (11)	-0.0141 (11)	-0.0027 (10)
C41	0.0501 (17)	0.0341 (14)	0.0290 (13)	-0.0130 (13)	-0.0092 (12)	-0.0036 (11)
C42	0.0450 (17)	0.0414 (16)	0.0382 (15)	-0.0220 (14)	-0.0086 (12)	-0.0016 (12)
C43	0.0438 (17)	0.0376 (16)	0.0446 (16)	-0.0101 (13)	-0.0108 (13)	0.0013 (12)
C44	0.056 (2)	0.0351 (16)	0.0508 (17)	-0.0201 (14)	-0.0102 (14)	-0.0015 (13)

C45	0.055(2)	0.0476 (18)	0.0532 (18)	-0.0263(16)	-0.0138(15)	-0.0044(14)
C46	0.0430 (17)	0.0467 (17)	0.0403 (15)	-0.0116(14)	-0.0102(13)	-0.0076(12)
C47	0.0617 (19)	0.0361 (15)	0.0345 (14)	-0.0120(14)	-0.0143 (14)	0.0001 (12)
C48	0.0498 (17)	0.0210 (13)	0.0355 (14)	-0.0146(12)	-0.0114 (13)	0.0019 (11)
C49	0.0390 (15)	0.0280 (14)	0.0419 (15)	-0.0118 (12)	-0.0104 (12)	0.0011 (11)
C50	0.0468 (17)	0.0218 (13)	0.0450 (15)	-0.0084(12)	-0.0142(13)	-0.0029 (11)
C51	0.0394 (15)	0.0223 (13)	0.0528 (16)	-0.0132 (12)	-0.0222 (13)	0.0057 (11)
C52	0.0292 (15)	0.0298 (14)	0.0679 (19)	-0.0121 (12)	-0.0095 (13)	0.0031 (13)
C53	0.0362 (16)	0.0236 (13)	0.0624 (18)	-0.0101 (12)	-0.0089 (14)	-0.0048 (12)
C54	0.052 (2)	0.0389 (19)	0.104 (3)	-0.0221 (16)	-0.0156 (19)	0.0216 (19)
C55	0.0459 (18)	0.0321 (16)	0.082 (2)	-0.0153 (14)	-0.0042 (16)	0.0023 (15)
C56	0.0418 (16)	0.0254 (14)	0.0667 (19)	-0.0128 (12)	-0.0265 (15)	0.0052 (13)
C57	0.093 (3)	0.0367 (17)	0.062 (2)	-0.0328 (17)	-0.0308 (19)	0.0038 (14)
C58	0.108 (3)	0.0358 (18)	0.093 (3)	-0.032 (2)	-0.049 (2)	-0.0025 (18)
C59	0.0447 (16)	0.0278 (14)	0.0405 (15)	-0.0140 (12)	-0.0083 (13)	0.0024 (11)
C60	0.0547 (18)	0.0236 (13)	0.0418 (15)	-0.0085 (13)	-0.0142 (13)	-0.0035 (11)
C61	0.0463 (16)	0.0247 (13)	0.0460 (15)	-0.0146 (12)	-0.0280 (13)	0.0060 (11)
C62	0.0365 (15)	0.0310 (14)	0.0545 (17)	-0.0160 (12)	-0.0136 (13)	0.0039 (12)
C63	0.0364 (15)	0.0247 (13)	0.0501 (16)	-0.0091 (12)	-0.0118 (13)	-0.0048 (11)
C64	0.136 (4)	0.0330 (17)	0.073 (2)	-0.028 (2)	-0.066 (3)	0.0020 (16)
C65	0.116 (3)	0.0343 (17)	0.0529 (18)	-0.0323 (18)	-0.0421 (19)	0.0052 (14)
C66	0.0543 (18)	0.0262 (14)	0.0615 (18)	-0.0180 (13)	-0.0373 (15)	0.0084 (13)
C67	0.0435 (18)	0.0326 (16)	0.103 (3)	-0.0135 (14)	-0.0239 (18)	0.0126 (16)
C68	0.050 (2)	0.0388 (19)	0.141 (4)	-0.0242 (17)	-0.038 (2)	0.027 (2)
O1W	0.0440 (12)	0.0192 (9)	0.0619 (12)	-0.0072 (8)	-0.0286 (10)	0.0002 (9)
01	0.0541 (13)	0.0363 (11)	0.0409 (10)	-0.0022 (9)	-0.0219 (9)	-0.0056 (8)
O2W	0.0381 (11)	0.0217 (9)	0.0681 (13)	-0.0072 (8)	-0.0264 (9)	0.0000 (9)
O2	0.0369 (10)	0.0406 (10)	0.0386 (10)	-0.0120 (9)	-0.0122 (8)	-0.0012 (8)
03	0.0504 (14)	0.0431 (12)	0.1041 (18)	-0.0248 (11)	-0.0063 (13)	-0.0148 (13)
O3W	0.0596 (15)	0.0539 (14)	0.0622 (14)	-0.0233 (12)	-0.0267 (12)	0.0194 (10)
O4	0.0361 (11)	0.0234 (10)	0.0840 (14)	-0.0116 (8)	-0.0223 (10)	0.0096 (9)
05	0.0338 (10)	0.0245 (9)	0.0676 (12)	-0.0076 (8)	-0.0240 (9)	-0.0043 (8)
O6	0.0937 (17)	0.0321 (11)	0.0460 (11)	-0.0266 (11)	-0.0135 (11)	0.0007 (9)
O7	0.0681 (13)	0.0516 (12)	0.0371 (10)	-0.0444 (11)	-0.0149 (9)	0.0063 (8)
08	0.0360 (10)	0.0230 (8)	0.0345 (9)	-0.0143 (8)	-0.0084 (8)	0.0035 (7)
09	0.0591 (14)	0.0370 (11)	0.0821 (15)	-0.0156 (10)	-0.0386 (12)	0.0092 (10)
O10	0.0338 (10)	0.0220 (8)	0.0348 (9)	-0.0132 (7)	-0.0099 (7)	0.0045 (7)
011	0.0513 (11)	0.0341 (10)	0.0368 (9)	-0.0265 (9)	-0.0169 (8)	0.0075 (8)
012	0.0506 (12)	0.0342 (10)	0.0549 (12)	-0.0208 (9)	-0.0137 (9)	0.0130 (9)
013	0.0274 (10)	0.0226 (9)	0.0656 (12)	-0.0073 (8)	-0.0146 (9)	-0.0041 (8)
014	0.0317 (10)	0.0221 (9)	0.0688 (13)	-0.0078 (8)	-0.0090 (9)	0.0015 (8)
015	0.0797 (15)	0.0260 (10)	0.0565 (12)	-0.0175 (10)	-0.0229 (11)	0.0009 (9)
016	0.0387 (11)	0.0405 (11)	0.0439 (10)	-0.0121 (9)	-0.0120 (9)	-0.0053 (8)
017	0.0501 (13)	0.0438 (11)	0.0433 (11)	0.0028 (10)	-0.0203 (10)	-0.0081 (9)
018	0.0785 (17)	0.0333 (12)	0.116 (2)	-0.0211 (12)	-0.0315 (15)	-0.0007 (12)

Geometric parameters (Å, °)

Nd1-04	2.4611 (17)	C28—O12	1.376 (3)
Nd105	2.4624 (16)	C28—C29	1.377 (4)
Nd1010	2.4666 (15)	C29—C30	1.379 (4)
Nd1—O1W	2.4820 (16)	C29—H29A	0.9300
Nd1—O2	2.4829 (17)	C30—H30A	0.9300
Nd1-07	2.5033 (17)	C31—C32	1.508 (3)
Nd101	2.5724 (16)	C31—H31A	0.9700
Nd108	2.6104 (15)	C31—H31B	0.9700
Nd1—N1	2.6326 (19)	C32—O11	1.251 (3)
Nd1-C16	2.816 (2)	C32—O10	1.269 (3)
Nd1—C8	2.899 (2)	C33—C38	1.385 (3)
Nd1—C24	2.921 (2)	C33—C34	1.387 (3)
Nd2—08	2.4179 (15)	C33—C39	1.501 (3)
Nd2—014	2.4506 (17)	C34—C35	1.367 (3)
Nd2	2.4640 (16)	C34—H34A	0.9300
Nd2—O2W	2.4793 (16)	C35—C36	1.383 (3)
Nd2016	2.4978 (17)	C35—H35A	0.9300
Nd2017	2.5552 (17)	C36—O15	1.359 (3)
Nd2010	2.5845 (15)	C36—C37	1.381 (4)
Nd2011	2.6236 (16)	C37—C38	1.383 (3)
Nd2—N3	2.6545 (18)	С37—Н37А	0.9300
Nd2C40	2.838 (2)	C38—H38A	0.9300
Nd2—C48	2.899 (2)	C39—C40	1.498 (3)
Nd2—C32	2.976 (2)	C39—H39A	0.9700
N1-C49	1.330 (3)	C39—H39B	0.9700
N1—C53	1.332 (3)	C40—O14	1.257 (3)
N2—C58	1.313 (4)	C40—O13	1.269 (3)
N2C54	1.329 (4)	C41—C46	1.388 (4)
N3—C59	1.330 (3)	C41—C42	1.391 (4)
N3—C63	1.337 (3)	C41—C47	1.509 (3)
N4—C64	1.322 (5)	C42—C43	1.373 (4)
N4—C68	1.328 (5)	C42—H42A	0.9300
C1—C2	1.378 (4)	C43—C44	1.379 (4)
C1—C6	1.387 (3)	C43—H43A	0.9300
C1—C7	1.513 (3)	C44—O18	1.367 (3)
C2—C3	1.384 (4)	C44—C45	1.377 (4)
C2—H2A	0.9300	C45—C46	1.379 (4)
C3—C4	1.369 (4)	C45—H45A	0.9300
С3—НЗА	0.9300	C46—H46A	0.9300
C4—C5	1.372 (4)	C47—C48	1.515 (3)
C4—O3	1.379 (3)	C47—H47A	0.9700
C5—C6	1.374 (4)	C47—H47B	0.9700
C5—H5A	0.9300	C48—O16	1.248 (3)
С6—Н6А	0.9300	C48—O17	1.262 (3)
C7—C8	1.508 (3)	C49—C50	1.383 (3)
C7—H7A	0.9700	C49—H49A	0.9300

С7—Н7В	0.9700	C50—C51	1.382 (4)
C8—O2	1.255 (3)	С50—Н50А	0.9300
C8—O1	1.262 (3)	C51—C52	1.384 (4)
C9—C10	1.371 (4)	C51—C56	1.486 (3)
C9—C14	1 392 (3)	C52 - C53	1376(3)
C_{0} C_{15}	1.592(3)	C52 U52A	0.0300
C_{2}	1.301(3)	C52_H52A	0.9300
	1.382 (4)	C55—H55A	0.9300
C10—H10A	0.9300	C54—C55	1.383 (4)
C11—C12	1.369 (3)	C54—H54A	0.9300
C11—H11A	0.9300	C55—C56	1.378 (4)
C12—O6	1.370 (3)	С55—Н55А	0.9300
C12—C13	1.381 (3)	C56—C57	1.380 (4)
C13—C14	1.363 (3)	C57—C58	1.386 (4)
C13—H13A	0.9300	С57—Н57А	0.9300
C14—H14A	0.9300	С58—Н58А	0.9300
C_{15}	1 509 (3)	C59-C60	1 381 (3)
C15 H15A	0.0700	C50 H50A	0.0300
C15_U15D	0.9700	C(0, C(1	1 280 (4)
СІЗ—НІЗВ	0.9700		1.380 (4)
04	1.254 (3)	C60—H60A	0.9300
C16—O5	1.262 (3)	C61—C62	1.391 (4)
C17—C18	1.377 (4)	C61—C66	1.483 (3)
C17—C22	1.382 (4)	C62—C63	1.377 (3)
C17—C23	1.505 (4)	С62—Н62А	0.9300
C18—C19	1.387 (4)	С63—Н63А	0.9300
C18—H18A	0.9300	C64—C65	1.380 (4)
C19—C20	1.380 (4)	С64—Н64А	0.9300
С19—Н19А	0.9300	C65—C66	1 386 (4)
C20-09	1 373 (3)	C65—H65A	0.9300
C_{20} C_{21}	1.378(4)	C66 C67	1 386 (4)
$C_{20} = C_{21}$	1.376(4) 1.276(2)	C67 - C68	1.380(4)
C21—C22	1.570 (5)	C(7) = C(8)	1.383 (4)
C21—H2IA	0.9300	C6/—H6/A	0.9300
C22—H22A	0.9300	С68—Н68А	0.9300
C23—C24	1.509 (3)	O1W—H1WA	0.81 (2)
C23—H23A	0.9700	O1W—H1WB	0.82 (2)
C23—H23B	0.9700	O2W—H2WA	0.82 (2)
C24—O7	1.238 (3)	O2W—H2WB	0.81 (2)
C24—O8	1.269 (3)	O3—H3B	0.8200
C25—C30	1.376 (4)	O3W—H3WA	0.82(2)
C25—C26	1.388 (4)	O3W—H3WB	0.82(2)
C25—C31	1 506 (3)	06—H6B	0.8200
C_{26} C_{27}	1 386 (3)		0.8200
$C_{26} = C_{27}$	0.0300	012 H12A	0.8200
C_{20} C_{20} C_{20}	1,277(4)	012—1112A	0.8200
$C_2/-C_2$	1.377 (4)		0.8200
UZ/-HZ/A	0.9300	018—Н18В	0.8200
O4—Nd1—O5	52.77 (5)	C19—C18—H18A	119.0
O4—Nd1—O10	125.18 (5)	C20—C19—C18	119.2 (3)
O5—Nd1—O10	72.80 (5)	С20—С19—Н19А	120.4

O4—Nd1—O1W	151.17 (6)	C18—C19—H19A	120.4
O5—Nd1—O1W	144.97 (5)	O9—C20—C21	117.9 (2)
O10—Nd1—O1W	79.96 (5)	O9—C20—C19	122.4 (3)
O4—Nd1—O2	116.30 (6)	C21—C20—C19	119.7 (2)
O5—Nd1—O2	123.58 (6)	C22—C21—C20	119.9 (3)
O10—Nd1—O2	86.53 (5)	C22—C21—H21A	120.0
O1W—Nd1—O2	75.10 (6)	C20—C21—H21A	120.0
O4—Nd1—O7	77.79 (6)	C21—C22—C17	121.6 (3)
O5—Nd1—O7	95.05 (6)	C21—C22—H22A	119.2
O10—Nd1—O7	116.73 (5)	C17—C22—H22A	119.2
O1W—Nd1—O7	77.80 (7)	C17—C23—C24	112.3 (2)
O2—Nd1—O7	140.21 (6)	С17—С23—Н23А	109.1
04—Nd1—O1	73.13 (6)	C24—C23—H23A	109.1
05—Nd1—O1	76.34 (6)	С17—С23—Н23В	109.1
010—Nd1—01	89.72 (5)	C24—C23—H23B	109.1
O1W—Nd1—O1	125.79 (6)	H23A—C23—H23B	107.9
Ω_{2} Nd1 Ω_{1}	51.08 (6)	07-C24-08	121.1 (2)
07—Nd1—01	148 77 (6)	07 - C24 - C23	1198(2)
04—Nd1—08	102.01 (6)	08 - C24 - C23	119.1 (2)
05—Nd1—08	75 76 (5)	07-C24-Nd1	58 32 (12)
010 Nd1 08	66 52 (5)	O8 - C24 - Nd1	63 32 (12)
01W Nd1 00	7340(5)	C^{23} C^{24} Nd1	171 22 (19)
Ω^2 —Nd1— Ω^8	141 38 (5)	C_{30} C_{25} C_{26} C_{26}	1178(2)
07—Nd1—08	50 48 (5)	C_{30} C_{25} C_{20} C_{31}	1205(3)
01—Nd1— 08	147.63(5)	C_{26} C_{25} C_{31}	120.3(3) 121.7(3)
04—Nd1—N1	76 87 (6)	$C_{20} = C_{20} = C_{20} = C_{20}$	121.7(3)
05—Nd1—N1	129 58 (6)	C_{27} C_{26} H_{26A}	119.4
010 Nd1 N1	155 81 (6)	C_{25} C_{26} H_{26A}	119.1
01W Nd1 N1	82 04 (6)	C_{28} C_{27} C_{26}	119.1 119.5(2)
Ω^2 —Nd1—N1	73 28 (6)	C_{28} C_{27} H_{27A}	120.3
07—Nd1—N1	74 58 (6)	$C_{26} - C_{27} - H_{27A}$	120.3
01—Nd1—N1	87.81 (6)	012-028-029	120.3 117.8(2)
08—Nd1—N1	122.92(5)	012 - C28 - C27	117.0(2) 122.0(2)
04—Nd1—C16	26 40 (6)	C_{29} C_{28} C_{27}	122.0(2) 120.2(2)
05—Nd1—C16	26.59 (6)	$C_{29} = C_{29} = C_{30}$	120.2(2) 1194(3)
010 Nd1 C16	98 80 (6)	C_{28} C_{29} H_{29A}	120.3
O1W—Nd1—C16	163 55 (7)	$C_{20} = C_{29} = H_{29A}$	120.3
Ω^2 -Nd1-C16	103.39(7) 121.30(6)	C_{25} C_{25} C_{29} C_{29}	120.9 121.9(3)
02 Nd1 $-C16$	88 36 (7)	$C_{25} - C_{30} - H_{30A}$	121.9 (3)
Ω_1 Nd1 C_16	70.42 (6)	C_{29} C_{30} H_{30A}	119.1
08 Nd1 $C16$	90.98 (6)	$C_{2}^{2} = C_{3}^{2} = C_{3}^{2}$	119.1 114.9(2)
N1 - Nd1 - C16	102 99 (7)	$C_{25} = C_{31} = C_{32}$	108 5
04-Nd1-C8	93 67 (7)	C_{23} C_{31} H_{31A}	108.5
05 Nd1 C8	101.18(7)	C25_C31_H31B	108.5
010_Nd1_C8	90.43 (6)	C_{32} C_{31} H_{31B}	108.5
01W Nd1 $C8$	100 61 (7)	H31A_C31_H31B	107.5
Ω_{-Nd1}	25 51 (6)	011 - 032 - 010	120 3 (2)
02 101 03	25.51 (0) 151 62 (6)	011 C32 C31	120.3(2) 122.4(2)
0/—INUI—CO	151.02 (0)	011-032-031	122.4(2)

O1—Nd1—C8	25.81 (6)	O10—C32—C31	117.2 (2)
O8—Nd1—C8	156.75 (6)	O11—C32—Nd2	61.64 (12)
N1—Nd1—C8	77.14 (6)	O10—C32—Nd2	59.91 (11)
C16—Nd1—C8	95.80 (7)	C31—C32—Nd2	168.17 (18)
O4—Nd1—C24	91.45 (7)	C38—C33—C34	117.0 (2)
O5—Nd1—C24	87.01 (6)	C38—C33—C39	121.6 (2)
O10—Nd1—C24	91.85 (6)	C34—C33—C39	121.4 (2)
O1W—Nd1—C24	72.08 (7)	C35—C34—C33	122.1 (2)
O2—Nd1—C24	146.91 (6)	С35—С34—Н34А	118.9
07—Nd1—C24	24.89 (6)	С33—С34—Н34А	118.9
01—Nd1—C24	162.01 (7)	C34—C35—C36	120.3 (2)
08—Nd1—C24	25.74 (6)	C34—C35—H35A	119.9
N1—Nd1—C24	97.85 (6)	C36—C35—H35A	119.9
C16 - Nd1 - C24	91.63 (7)	015-C36-C37	123.1 (2)
C8—Nd1—C24	171.81 (7)	015 - C36 - C35	118.1 (2)
08—Nd2—014	127.17(5)	C_{37} — C_{36} — C_{35}	118.8 (2)
08 - Nd2 - 013	74 96 (5)	$C_{36} - C_{37} - C_{38}$	120.2(2)
014 Nd2 013	52,73 (5)	C36—C37—H37A	119.9
08—Nd2— $02W$	78 76 (6)	C38—C37—H37A	119.9
014 Nd2 024	144 15 (6)	C_{37} C_{38} C_{33}	121 5 (2)
013—Nd2— $02W$	147.27 (5)	C37—C38—H38A	119.3
08-Nd2-016	81 88 (5)	C33—C38—H38A	119.3
014 Nd2 016	126.32 (6)	C40-C39-C33	116.0 (2)
013—Nd2—016	118.12 (6)	C40—C39—H39A	108.3
0.2W - Nd2 - 0.16	76.34 (6)	C33—C39—H39A	108.3
08—Nd2—017	97.95 (6)	C40—C39—H39B	108.3
014—Nd2—017	78.44 (6)	C33—C39—H39B	108.3
013—Nd2—017	76.46 (6)	H39A—C39—H39B	107.4
02W—Nd2—017	126.81 (6)	014-C40-013	119.5 (2)
O16—Nd2—O17	50.94 (6)	O14—C40—C39	119.3 (2)
O8—Nd2—O10	67.63 (5)	O13—C40—C39	121.2 (2)
O14—Nd2—O10	90.57 (5)	O14—C40—Nd2	59.44 (12)
O13—Nd2—O10	75.76 (5)	O13—C40—Nd2	60.09 (12)
O2W—Nd2—O10	76.42 (6)	C39—C40—Nd2	177.45 (16)
O16—Nd2—O10	142.31 (5)	C46—C41—C42	117.2 (2)
O17—Nd2—O10	151.23 (5)	C46—C41—C47	120.7 (3)
O8—Nd2—O11	114.99 (5)	C42—C41—C47	122.1 (2)
O14—Nd2—O11	73.64 (6)	C43—C42—C41	122.0 (2)
O13—Nd2—O11	101.41 (6)	C43—C42—H42A	119.0
O2W—Nd2—O11	72.54 (6)	C41—C42—H42A	119.0
O16—Nd2—O11	140.16 (6)	C42—C43—C44	119.6 (3)
O17—Nd2—O11	145.48 (6)	C42—C43—H43A	120.2
O10—Nd2—O11	49.63 (5)	C44—C43—H43A	120.2
08—Nd2—N3	155.81 (6)	018-C44-C45	122.9 (3)
O14—Nd2—N3	75.75 (6)	O18—C44—C43	117.5 (3)
O13—Nd2—N3	125.68 (6)	C45—C44—C43	119.6 (3)
O2W—Nd2—N3	84.93 (6)	C44—C45—C46	120.3 (3)
O16—Nd2—N3	76.96 (6)	C44—C45—H45A	119.8

0.4 m 3.7 m 3.7 m		a a	
O17—Nd2—N3	77.67 (6)	C46—C45—H45A	119.8
O10—Nd2—N3	125.60 (5)	C45—C46—C41	121.2 (3)
O11—Nd2—N3	76.11 (5)	C45—C46—H46A	119.4
O8—Nd2—C40	101.29 (6)	C41—C46—H46A	119.4
O14—Nd2—C40	26.21 (6)	C41—C47—C48	112.0 (2)
O13—Nd2—C40	26.52 (6)	C41—C47—H47A	109.2
O2W—Nd2—C40	157.53 (7)	C48—C47—H47A	109.2
O16—Nd2—C40	126.09 (6)	C41—C47—H47B	109.2
O17—Nd2—C40	75.62 (6)	C48—C47—H47B	109.2
010—Nd2—C40	82.81 (6)	H47A—C47—H47B	107.9
011 - Nd2 - C40	87 53 (6)	016-C48-017	120.0(2)
$N_3 N_d 2 C_4 0$	100 59 (6)	016 - C48 - C47	120.0(2) 119.8(2)
$O_8 Nd_2 C48$	92.04.(6)	017 C48 C47	119.0(2)
014 Nd2 $C48$	92.04(0)	017 - 016 - 018 - 017	120.2(2)
012 Nd2 $C48$	101.90(7)	017 C48 Nd2	53.03(13)
O13 - Nu2 - C48	99.02 (7)	017 - 048 - Nd2	01.72(12)
02 w-Nd2-C48	101.08 (7)	C47 - C48 - Nd2	1/0.41 (17)
016—Nd2—C48	25.36 (6)	N1—C49—C50	123.1 (2)
017—Nd2—C48	25.78 (6)	N1—C49—H49A	118.5
O10—Nd2—C48	159.65 (6)	С50—С49—Н49А	118.5
O11—Nd2—C48	149.50 (6)	C51—C50—C49	119.7 (2)
N3—Nd2—C48	73.60 (6)	С51—С50—Н50А	120.1
C40—Nd2—C48	101.38 (7)	C49—C50—H50A	120.1
O8—Nd2—C32	90.62 (6)	C50—C51—C52	117.0 (2)
O14—Nd2—C32	84.08 (6)	C50—C51—C56	121.4 (2)
O13—Nd2—C32	91.06 (6)	C52—C51—C56	121.5 (2)
O2W—Nd2—C32	69.93 (7)	C53—C52—C51	119.6 (2)
O16—Nd2—C32	146.25 (6)	С53—С52—Н52А	120.2
O17—Nd2—C32	162.35 (6)	С51—С52—Н52А	120.2
O10—Nd2—C32	25.13 (5)	N1—C53—C52	123.4 (2)
O11—Nd2—C32	24.82 (5)	N1—C53—H53A	118.3
N3—Nd2—C32	100.48 (6)	С52—С53—Н53А	118.3
C40 - Nd2 - C32	87.62 (6)	N2-C54-C55	123.9(3)
C_{48} Nd2 C_{32}	169.92 (7)	N2 - C54 - H54A	118.0
C49 - N1 - C53	117.1(2)	C_{55} C_{54} H_{54A}	118.0
C49 N1 Nd1	117.1(2) 124.12(16)	C56 C55 C54	110.0
C_{4} N1 Nd1	124.12(10) 118 25 (16)	$C_{50} = C_{55} = C_{54}$	119.4 (3)
C_{33} N2 C_{54}	116.55(10) 116.0(2)	C54 C55 H55A	120.3
$C_{50} N_{2} C_{51}$	110.0(3)	С54—С55—П55А	120.5
C59 - N3 - C63	116.8 (2)	$C_{55} = C_{56} = C_{57}$	117.0 (3)
C59—N3—Nd2	121.34 (16)	C55—C56—C51	121.2 (3)
C63—N3—Nd2	121.34 (15)	C57—C56—C51	121.7 (3)
C64—N4—C68	115.9 (3)	C56—C57—C58	119.0 (3)
C2—C1—C6	117.6 (2)	С56—С57—Н57А	120.5
C2—C1—C7	122.0 (2)	С58—С57—Н57А	120.5
C6—C1—C7	120.4 (2)	N2—C58—C57	124.6 (3)
C1—C2—C3	121.5 (3)	N2—C58—H58A	117.7
C1—C2—H2A	119.3	C57—C58—H58A	117.7
C3—C2—H2A	119.3	N3—C59—C60	123.2 (2)
C4—C3—C2	119.7 (3)	N3—C59—H59A	118.4

C4 C2 1124	100.1		110.4
C4 - C3 - H3A	120.1	С60—С59—Н59А	118.4
C2—C3—H3A	120.1	C61 - C60 - C59	120.4 (2)
C3—C4—C5	119.8 (3)	C61—C60—H60A	119.8
C3—C4—O3	118.5 (3)	С59—С60—Н60А	119.8
C5—C4—O3	121.7 (3)	C60—C61—C62	116.1 (2)
C4—C5—C6	120.2 (3)	C60—C61—C66	121.3 (2)
C4—C5—H5A	119.9	C62—C61—C66	122.5 (2)
С6—С5—Н5А	119.9	C63—C62—C61	120.1 (2)
C5—C6—C1	121.2 (3)	C63—C62—H62A	119.9
С5—С6—Н6А	119.4	C61—C62—H62A	119.9
С1—С6—Н6А	119.4	N3—C63—C62	123.3 (2)
C8—C7—C1	111.7 (2)	N3—C63—H63A	118.4
С8—С7—Н7А	109.3	С62—С63—Н63А	118.4
C1—C7—H7A	109.3	N4—C64—C65	124.3 (3)
С8—С7—Н7В	109.3	N4—C64—H64A	117.9
C1—C7—H7B	109.3	С65—С64—Н64А	117.9
H7A—C7—H7B	107.9	C64—C65—C66	119.7 (3)
02	120.1 (2)	С64—С65—Н65А	120.2
02 - C8 - C7	1196(2)	C66—C65—H65A	120.2
01 - C8 - C7	120.3(2)	C67 - C66 - C65	1164(3)
$\Omega^2 - C^8 - Nd1$	58 40 (12)	C67 - C66 - C61	1213(3)
01 - C8 - Nd1	62 51 (12)	C65 - C66 - C61	121.3(3) 122.3(3)
C7 - C8 - Nd1	168 90 (16)	C68 - C67 - C66	122.3(3) 119.4(3)
$C_1 = C_2 = C_1 A$	117.0(2)	C68 C67 H67A	119.4 (5)
$C_{10} = C_{9} = C_{14}$	117.0(2) 122.1(2)	C66 C67 H67A	120.3
$C_{10} - C_{9} - C_{13}$	122.1(2) 120.0(2)	C00 - C0/ - H0/A	120.3
C14 - C9 - C13	120.9 (2)	N4 - C68 - C67	124.3 (4)
	122.2 (2)	N4—C68—H68A	117.9
C9—C10—HI0A	118.9	C6/—C68—H68A	117.9
C11—C10—H10A	118.9	NdI—OIW—HIWA	118.6 (19)
C12—C11—C10	119.6 (2)	Nd1—O1W—H1WB	135.0 (19)
C12—C11—H11A	120.2	H1WA—O1W—H1WB	106 (2)
C10—C11—H11A	120.2	C8—O1—Nd1	91.69 (14)
C11—C12—O6	123.2 (2)	Nd2—O2W—H2WA	122.1 (19)
C11—C12—C13	119.3 (2)	Nd2—O2W—H2WB	130 (2)
O6—C12—C13	117.5 (2)	H2WA—O2W—H2WB	108 (2)
C14—C13—C12	120.3 (2)	C8—O2—Nd1	96.09 (15)
C14—C13—H13A	119.8	C4—O3—H3B	109.5
C12—C13—H13A	119.8	H3WA—O3W—H3WB	106 (2)
C13—C14—C9	121.5 (2)	C16—O4—Nd1	92.81 (14)
C13—C14—H14A	119.2	C16—O5—Nd1	92.54 (14)
C9—C14—H14A	119.2	С12—О6—Н6В	109.5
C9—C15—C16	115.3 (2)	C24—O7—Nd1	96.79 (14)
С9—С15—Н15А	108.4	C24—O8—Nd2	153.48 (15)
C16—C15—H15A	108.4	C24—O8—Nd1	90.94 (13)
C9—C15—H15B	108.4	Nd2—08—Nd1	113.30 (6)
C16—C15—H15B	108.4	С20—О9—Н9А	109.5
H15A—C15—H15B	107.5	C32—O10—Nd1	143.18 (14)
04-016-05	120.9 (2)	C_{32} O_{10} N_{d2}	94 95 (13)
	120.7 (2)	032 -010-1102	JH.JJ (13)

O4—C16—C15	118.9 (2)	Nd1-010-Nd2	112.55 (6)
O5—C16—C15	120.1 (2)	C32—O11—Nd2	93.55 (13)
O4—C16—Nd1	60.79 (13)	C28—O12—H12A	109.5
O5—C16—Nd1	60.87 (12)	C40—O13—Nd2	93.39 (13)
C15—C16—Nd1	168.94 (19)	C40—O14—Nd2	94.34 (14)
C18—C17—C22	117.5 (3)	C36—O15—H15C	109.5
C18 - C17 - C23	121.0(3)	C48—O16—Nd2	95.59 (15)
C^{22} — C^{17} — C^{23}	1214(3)	C48—O17—Nd2	92.50 (14)
C17 - C18 - C19	121.9(3)	C44-018-H18B	109 5
C17—C18—H18A	119.0		10,10
	117.0		
O4—Nd1—N1—C49	-148.29 (19)	O14—Nd2—C48—O16	-165.18 (13)
O5—Nd1—N1—C49	-145.32 (17)	O13—Nd2—C48—O16	141.20 (14)
O10—Nd1—N1—C49	9.3 (3)	O2W—Nd2—C48—O16	-12.84 (15)
O1W—Nd1—N1—C49	51.50 (18)	O17—Nd2—C48—O16	170.3 (2)
O2—Nd1—N1—C49	-25.26 (18)	O10—Nd2—C48—O16	67.9 (2)
O7—Nd1—N1—C49	130.97 (19)	O11—Nd2—C48—O16	-87.18 (19)
O1—Nd1—N1—C49	-75.10 (19)	N3—Nd2—C48—O16	-94.13 (14)
O8—Nd1—N1—C49	115.77 (18)	C40—Nd2—C48—O16	168.05 (14)
C16—Nd1—N1—C49	-144.43 (18)	C32—Nd2—C48—O16	-39.1 (4)
C8—Nd1—N1—C49	-51.35 (19)	O8—Nd2—C48—O17	-104.16 (15)
C24—Nd1—N1—C49	122.06 (19)	O14—Nd2—C48—O17	24.56 (15)
O4—Nd1—N1—C53	39.24 (18)	O13—Nd2—C48—O17	-29.06 (15)
O5—Nd1—N1—C53	42.2 (2)	O2W—Nd2—C48—O17	176.90 (14)
O10—Nd1—N1—C53	-163.16 (16)	O16—Nd2—C48—O17	-170.3(2)
O1W—Nd1—N1—C53	-120.97 (19)	O10—Nd2—C48—O17	-102.3(2)
O2—Nd1—N1—C53	162.27 (19)	O11—Nd2—C48—O17	102.57 (17)
O7—Nd1—N1—C53	-41.51 (18)	N3—Nd2—C48—O17	95.61 (15)
O1—Nd1—N1—C53	112.43 (18)	C40—Nd2—C48—O17	-2.21(16)
O8—Nd1—N1—C53	-56.71 (19)	C32—Nd2—C48—O17	150.7 (3)
C16—Nd1—N1—C53	43.09 (19)	O8—Nd2—C48—C47	151.8 (12)
C8—Nd1—N1—C53	136.17 (19)	O14—Nd2—C48—C47	-79.5 (12)
C24—Nd1—N1—C53	-50.42 (18)	O13—Nd2—C48—C47	-133.1 (12)
O8—Nd2—N3—C59	0.7 (3)	O2W—Nd2—C48—C47	72.9 (12)
O14—Nd2—N3—C59	163.59 (19)	O16—Nd2—C48—C47	85.7 (12)
O13—Nd2—N3—C59	145.70 (17)	O17—Nd2—C48—C47	-104.0 (12)
O2W—Nd2—N3—C59	-46.85 (18)	O10-Nd2-C48-C47	153.7 (11)
O16—Nd2—N3—C59	30.27 (17)	O11—Nd2—C48—C47	-1.4 (13)
O17—Nd2—N3—C59	82.57 (18)	N3—Nd2—C48—C47	-8.4 (12)
O10—Nd2—N3—C59	-116.15 (17)	C40—Nd2—C48—C47	-106.2 (12)
O11—Nd2—N3—C59	-120.09 (18)	C32—Nd2—C48—C47	46.6 (14)
C40—Nd2—N3—C59	155.15 (18)	C53—N1—C49—C50	1.8 (4)
C48—Nd2—N3—C59	56.28 (18)	Nd1—N1—C49—C50	-170.76 (18)
C32—Nd2—N3—C59	-115.33 (18)	N1-C49-C50-C51	0.2 (4)
O8—Nd2—N3—C63	171.95 (15)	C49—C50—C51—C52	-1.8 (4)
O14—Nd2—N3—C63	-25.13 (17)	C49—C50—C51—C56	176.3 (2)
O13—Nd2—N3—C63	-43.03 (19)	C50—C51—C52—C53	1.4 (4)
O2W—Nd2—N3—C63	124.42 (18)	C56—C51—C52—C53	-176.6 (2)

O16—Nd2—N3—C63	-158.45 (18)	C49—N1—C53—C52	-2.2 (4)
O17—Nd2—N3—C63	-106.15 (18)	Nd1—N1—C53—C52	170.8 (2)
O10—Nd2—N3—C63	55.12 (19)	C51—C52—C53—N1	0.6 (4)
O11—Nd2—N3—C63	51.18 (17)	C58—N2—C54—C55	0.9 (5)
C40—Nd2—N3—C63	-33.58 (18)	N2-C54-C55-C56	0.2 (5)
C48—Nd2—N3—C63	-132.45 (19)	C54—C55—C56—C57	-1.5(4)
C32—Nd2—N3—C63	55.94 (18)	C54—C55—C56—C51	176.0 (3)
C6—C1—C2—C3	-1.7 (4)	C50—C51—C56—C55	-148.1(3)
C7—C1—C2—C3	-179.1 (2)	C52—C51—C56—C55	29.8 (4)
C1 - C2 - C3 - C4	1.2 (4)	C50—C51—C56—C57	29.3 (4)
$C_{2}-C_{3}-C_{4}-C_{5}$	0.9(4)	C52 - C51 - C56 - C57	-152.7(3)
$C_2 - C_3 - C_4 - O_3$	-179.6(3)	$C_{55} - C_{56} - C_{57} - C_{58}$	18(4)
C_{2}^{-} C_{3}^{-} C_{4}^{-} C_{5}^{-} C_{6}^{-}	-24(4)	C_{51} C_{56} C_{57} C_{58}	-1757(3)
$C_{3} = C_{4} = C_{5} = C_{6}$	2.+ (+) 178.2 (3)	$C_{54} = N_2 = C_{58} = C_{57}$	-0.6(5)
$C_{4} = C_{5} = C_{6} = C_{1}$	178.2(3)	$C_{54} = N_2 = C_{56} = C_{57}$	-0.8(5)
$C_4 = C_5 = C_6 = C_1$	1.0(4)	$C_{30} = C_{37} = C_{30} = N_2$	-0.8(3)
$C_2 - C_1 - C_0 - C_3$	0.2(4)	$12 \text{ N}^2 \text{ C}^2 \text{ C}^2 \text{ C}^2$	-2.0(4)
C/-CI-Cb-CS	1//./(2)	Nd2 - N3 - C39 - C60	169.66 (18)
C2-C1-C7-C8	-49.4 (3)	N3-C59-C60-C61	-1.0 (4)
C6-C1-C/-C8	133.2 (3)	C59—C60—C61—C62	3.0 (4)
C1—C7—C8—O2	-77.0 (3)	C59—C60—C61—C66	-174.1 (2)
C1—C7—C8—O1	101.1 (3)	C60—C61—C62—C63	-2.0(4)
C1—C7—C8—Nd1	-0.3 (11)	C66—C61—C62—C63	175.0 (2)
O4—Nd1—C8—O2	153.70 (14)	C59—N3—C63—C62	3.0 (4)
O5—Nd1—C8—O2	-153.55 (13)	Nd2—N3—C63—C62	-168.67 (18)
O10—Nd1—C8—O2	-81.01 (14)	C61—C62—C63—N3	-1.0 (4)
O1W—Nd1—C8—O2	-1.15 (14)	C68—N4—C64—C65	0.5 (5)
O7—Nd1—C8—O2	82.8 (2)	N4—C64—C65—C66	1.3 (5)
O1—Nd1—C8—O2	-169.5 (2)	C64—C65—C66—C67	-1.6 (4)
O8—Nd1—C8—O2	-73.7 (2)	C64—C65—C66—C61	175.0 (3)
N1—Nd1—C8—O2	78.06 (14)	C60—C61—C66—C67	159.8 (3)
C16—Nd1—C8—O2	-179.90 (14)	C62—C61—C66—C67	-17.1 (4)
C24—Nd1—C8—O2	25.1 (5)	C60—C61—C66—C65	-16.6(4)
04—Nd1—C8—O1	-36.83(14)	C62—C61—C66—C65	166.5 (3)
05—Nd1—C8—01	15.93 (15)	C65—C66—C67—C68	03(4)
010 Nd1 $C8$ 01	88 47 (14)	C_{61} C_{66} C_{67} C_{68}	-1763(3)
01W - Nd1 - C8 - 01	168 33 (14)	C64 - N4 - C68 - C67	-1.9(5)
02 - Nd1 - C8 - 01	160.55(1+)	C_{66} C_{67} C_{68} N_4	1.5(5)
02 Nd1 C8 O1	-107.74(18)	0^{2} 0^{8} 0^{1} 0^{1} 0^{1}	1.0(3)
07 - 101 - 03 - 01	107.74(10) 95.8(2)	$C_2 = C_3 = O_1 = Nd_1$	-167.7(2)
$N_1 N_4 C_8 O_1$	-112.46(15)	C/-Co-OI-Null	107.7(2)
NI - NuI - Co - OI	-112.40(13)	04 Nd1 -01 $C8$	141.32(13)
C10 NII $C0$ OI	-10.42(15)	05-NdI- 01 - $C8$	-163.92(15)
\mathcal{L}_{4} Null \mathcal{L}_{6} \mathcal{L}_{7}	-105.4(4)		-91.56 (14)
04—Nd1—C8—C7	/0.6 (10)	UIW—NdI—OI—C8	-14.19 (17)
U5—Nd1—C8—C7	123.3 (10)	02—Nd1—01—C8	-5.80 (13)
010—Nd1—C8—C7	-164.1 (10)	07—Nd1—01—C8	119.17 (16)
O1W—Nd1—C8—C7	-84.3 (10)	O8—Nd1—O1—C8	-132.82 (14)
O2—Nd1—C8—C7	-83.1 (10)	N1—Nd1—O1—C8	64.37 (14)
O7—Nd1—C8—C7	-0.3(11)	C16—Nd1—O1—C8	168.99 (16)

O1—Nd1—C8—C7	107.4 (10)	C24—Nd1—O1—C8	173.32 (19)
O8—Nd1—C8—C7	-156.8 (9)	O1—C8—O2—Nd1	-10.8 (2)
N1—Nd1—C8—C7	-5.0 (10)	C7—C8—O2—Nd1	167.29 (19)
C16—Nd1—C8—C7	97.0 (10)	O4—Nd1—O2—C8	-29.55 (15)
C24—Nd1—C8—C7	-58.0 (12)	O5—Nd1—O2—C8	31.64 (16)
C14—C9—C10—C11	1.2 (4)	O10—Nd1—O2—C8	98.31 (14)
C15—C9—C10—C11	-178.8(3)	O1W—Nd1— $O2$ — $C8$	178.83 (15)
C9-C10-C11-C12	-1.2 (4)	07—Nd1—O2—C8	-132.55 (14)
C10-C11-C12-O6	179.3 (3)	O1-Nd1-O2-C8	5.87 (13)
C10-C11-C12-C13	0.7 (4)	08 - Nd1 - 02 - C8	142.62 (13)
$C_{11} - C_{12} - C_{13} - C_{14}$	-0.3(4)	N1-Nd1-O2-C8	-95.16(14)
06-C12-C13-C14	-1790(3)	C_{16} Nd1 O_{2} C_{8}	0.12 (16)
C12 - C13 - C14 - C9	03(4)	C_{24} Nd1 O_{2} C_{8}	-17364(14)
C10-C9-C14-C13	-0.7(4)	05-C16-04-Nd1	102(2)
C_{15} C_{9} C_{14} C_{13}	179 2 (3)	$C_{15} = C_{16} = O_{4} = N_{d1}$	-167.3(2)
C10-C9-C15-C16	-1004(3)	05-Nd1-04-C16	-5.61(14)
$C_{14} - C_{9} - C_{15} - C_{16}$	79.7 (3)	010 Nd1 04 010	253(17)
$C_{14}^{0} = C_{15}^{15} = C_{16}^{16} = C_{16}^{16}$	172 A (2)	O1W Nd1 $O4$ $C16$	-14441(15)
$C_{15}^{0} - C_{15}^{15} - C_{16}^{16} - O_{5}^{5}$	-51(4)	0^{2} Nd1 -0^{4} C16	107.93(15)
$C_{1}^{0} = C_{1}^{0} = C_{1$	5.1 (4) 86 0 (0)	O_2 Nd1 O_4 C16	-11171(15)
05 Nd1 C16 O4	1700(2)	$O_1 = Nd_1 = O_4 = C_{10}$	79.82 (15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-177.91(14)	O_{1} Nd1 O_{4} C16	-67.08(15)
01W - Nd1 - C16 - O4	97 8 (3)	N1 - Nd1 - O4 - C16	171 52 (16)
O_2 Nd1 C16 O4	-86.63(16)	C_8 Nd1 O_4 C_{16}	171.52(10) 95.65(15)
02 Nd1 C16 O4	65.20(15)	C_{24} Nd1 O_4 C_{16}	-90.75(15)
01 Nd1 - C16 O4	-01.37(15)	C_{24} Nd1 C_{16} C_{5} Nd1	-10.2(2)
01 - Na1 - C16 - 04	91.57 (15) 115 71 (15)	$C_{15} = C_{16} = O_{5} = Nd_{1}$	10.2(2)
$N_{1} N_{1} C_{16} O_{4}$	-8.47(16)	04 Nd1 05 C16	107.3(2) 5 57 (14)
C_{2} Nd1 C16 O4	-96.57(15)	04 Nd1 05 C16	-167 47 (15)
C_{24} Nd1 C_{16} O_{4}	-80.37(13)	010 Nd1 05 C16	-107.47(13)
C_24 Nd1 C_16 O_5	170.0 (2)	O1 w $-Nd1 - O5 - C16$	131.90(14)
04 Nd1 -05	-1/0.0(2)	02—Nd1— 05 — 016	-95.85(13)
010 - Nd1 - C16 - 05	12.10(15)	0/-Nd1-05-C16	70.08(14)
O1 w $-Nd1$ $-C16$ $-O5$	-72.2(3)	OI - NdI - O5 - C16	-73.40(14)
02—Nd1—C16—O5	103.39 (14)	08—Nd1— 05 — $C16$	123.12(15)
0/-Nd1-C16-05	-104.70(14)	NI - NdI - O5 - C16	1.95(17)
Ol - Ndl - Cl6 - OS	98.04 (15) 54.28 (14)	C_{24} Nd1 $-O_{5}$ C1(-80.52(15)
08-Nd1-C16-05	-34.28(14)	C_{24} Nd1 $- O_{2}$ Nd1	99.07 (15)
NI - NdI - CI6 - O5	-1/8.46(14)	08 - 024 - 07 - Nd1	-8.9(3)
C_8 —Nd1—C16—O5	103.44 (14)	C23-C24-07-Nd1	170.0 (2)
C24—Nd1—C16—O5	-80.02(14)	04—Nd1—07—C24	121.84 (16)
04—Nd1—C16—C15	91.7 (9)	05—Nd1—07—C24	/1.6/(16)
05—Nd1—C16—C15	-98.3 (9)	010—Nd1—07—C24	-1.60 (17)
010—Nd1—C16—C15	-86.2 (9)	OIW—NdI—O/—C24	-/3.62 (16)
01w—Nd1—C16—C15	-170.5(8)	U_2 —Nd1— U_7 — C_24	-121.51 (15)
02—Nd1—C16—C15	5.1 (9)	01 - Nd1 - 07 - C24	143.50 (15)
U/	157.0 (9)	U8—Nd1—U/—C24	4.81 (14)
01—Nd1—C16—C15	0.3 (9)	N1 - Nd1 - O' - C24	-158.61 (17)
U8—Nd1—C16—C15	-152.6(9)	C16—Nd1—O7—C24	97.43 (16)

N1—Nd1—C16—C15	83.2 (9)	C8—Nd1—O7—C24	-163.38 (16)
C8—Nd1—C16—C15	5.1 (9)	O7—C24—O8—Nd2	165.3 (2)
C24—Nd1—C16—C15	-178.3 (9)	C23—C24—O8—Nd2	-13.7 (5)
C22—C17—C18—C19	0.1 (4)	Nd1—C24—O8—Nd2	156.8 (4)
C23—C17—C18—C19	178.7 (2)	O7—C24—O8—Nd1	8.5 (2)
C17—C18—C19—C20	0.5 (4)	C23—C24—O8—Nd1	-170.5 (2)
C18—C19—C20—O9	179.8 (2)	O14—Nd2—O8—C24	-82.1 (4)
C18—C19—C20—C21	-1.0 (4)	O13—Nd2—O8—C24	-74.2 (4)
O9—C20—C21—C22	-179.7 (2)	O2W—Nd2—O8—C24	125.5 (4)
C19—C20—C21—C22	1.1 (4)	O16—Nd2—O8—C24	47.9 (4)
C20—C21—C22—C17	-0.5 (4)	O17—Nd2—O8—C24	-0.6 (4)
C18—C17—C22—C21	0.0 (4)	O10—Nd2—O8—C24	-154.7 (4)
C23—C17—C22—C21	-178.6 (2)	O11—Nd2—O8—C24	-170.0(3)
C18—C17—C23—C24	-80.7 (3)	N3—Nd2—O8—C24	77.0 (4)
C22—C17—C23—C24	97.9 (3)	C40—Nd2—O8—C24	-77.4 (4)
C17—C23—C24—O7	-45.7 (4)	C48—Nd2—O8—C24	24.6 (4)
C17—C23—C24—O8	133.3 (3)	C32—Nd2—O8—C24	-165.1 (4)
C17—C23—C24—Nd1	29.4 (14)	O14—Nd2—O8—Nd1	72.48 (9)
O4—Nd1—C24—O7	-56.16 (16)	O13—Nd2—O8—Nd1	80.37 (7)
O5—Nd1—C24—O7	-108.76 (16)	O2W—Nd2—O8—Nd1	-79.94 (7)
O10—Nd1—C24—O7	178.57 (16)	O16—Nd2—O8—Nd1	-157.53 (7)
O1W—Nd1—C24—O7	99.75 (16)	O17—Nd2—O8—Nd1	153.97 (6)
O2—Nd1—C24—O7	92.10 (19)	O10—Nd2—O8—Nd1	-0.14 (5)
O1—Nd1—C24—O7	-86.7 (3)	O11—Nd2—O8—Nd1	-15.42 (8)
O8—Nd1—C24—O7	-171.4 (2)	N3—Nd2—O8—Nd1	-128.46 (12)
N1—Nd1—C24—O7	20.79 (16)	C40—Nd2—O8—Nd1	77.14 (7)
C16—Nd1—C24—O7	-82.57 (16)	C48—Nd2—O8—Nd1	179.17 (7)
C8—Nd1—C24—O7	72.5 (5)	C32—Nd2—O8—Nd1	-10.56 (7)
O4—Nd1—C24—O8	115.28 (14)	O4—Nd1—O8—C24	-67.55 (14)
O5—Nd1—C24—O8	62.67 (14)	O5—Nd1—O8—C24	-113.75 (15)
O10—Nd1—C24—O8	-9.99 (14)	O10—Nd1—O8—C24	169.10 (15)
O1W—Nd1—C24—O8	-88.82 (14)	O1W—Nd1—O8—C24	83.05 (14)
O2—Nd1—C24—O8	-96.46 (16)	O2—Nd1—O8—C24	119.62 (15)
O7—Nd1—C24—O8	171.4 (2)	O7—Nd1—O8—C24	-4.66 (14)
O1—Nd1—C24—O8	84.8 (3)	O1—Nd1—O8—C24	-144.94 (15)
N1—Nd1—C24—O8	-167.78 (13)	N1—Nd1—O8—C24	14.47 (16)
C16—Nd1—C24—O8	88.87 (14)	C16—Nd1—O8—C24	-91.73 (15)
C8—Nd1—C24—O8	-116.0 (4)	C8—Nd1—O8—C24	161.08 (17)
O4—Nd1—C24—C23	-136.4 (12)	O4—Nd1—O8—Nd2	123.50 (7)
O5—Nd1—C24—C23	171.0 (12)	O5—Nd1—O8—Nd2	77.30 (7)
O10—Nd1—C24—C23	98.4 (12)	O10—Nd1—O8—Nd2	0.15 (5)
O1W—Nd1—C24—C23	19.5 (12)	O1W—Nd1—O8—Nd2	-85.90(7)
O2—Nd1—C24—C23	11.9 (13)	O2—Nd1—O8—Nd2	-49.33 (11)
O7—Nd1—C24—C23	-80.2 (12)	O7—Nd1—O8—Nd2	-173.61 (10)
O1—Nd1—C24—C23	-166.9 (11)	O1—Nd1—O8—Nd2	46.11 (13)
O8—Nd1—C24—C23	108.4 (12)	N1—Nd1—O8—Nd2	-154.48 (7)
N1—Nd1—C24—C23	-59.4 (12)	C16—Nd1—O8—Nd2	99.32 (7)
C16—Nd1—C24—C23	-162.8 (12)	C8—Nd1—O8—Nd2	-7.87 (19)

C8—Nd1—C24—C23	-7.7 (15)	C24—Nd1—O8—Nd2	-168.95 (17)
C30—C25—C26—C27	-0.2 (4)	O11—C32—O10—Nd1	-152.18 (18)
C31—C25—C26—C27	178.1 (2)	C31—C32—O10—Nd1	27.6 (4)
C25—C26—C27—C28	-0.7 (4)	Nd2—C32—O10—Nd1	-139.3 (2)
C26—C27—C28—O12	-179.1 (2)	O11—C32—O10—Nd2	-12.9 (2)
C26—C27—C28—C29	0.9 (4)	C31—C32—O10—Nd2	166.9 (2)
O12—C28—C29—C30	179.8 (2)	O4—Nd1—O10—C32	46.8 (3)
C27—C28—C29—C30	-0.1 (4)	O5—Nd1—O10—C32	53.6 (2)
C26—C25—C30—C29	1.0 (4)	O1W-Nd1-010-C32	-148.7 (3)
C31—C25—C30—C29	-177.3 (2)	O2—Nd1—O10—C32	-73.2 (2)
C28—C29—C30—C25	-0.8 (4)	O7—Nd1—O10—C32	140.5 (2)
C30—C25—C31—C32	75.4 (3)	O1—Nd1—O10—C32	-22.2(3)
C26—C25—C31—C32	-102.8 (3)	O8—Nd1—O10—C32	135.2 (3)
C25—C31—C32—O11	11.7 (4)	N1—Nd1—O10—C32	-106.2(3)
C25—C31—C32—O10	-168.1 (2)	C16—Nd1—O10—C32	47.9 (3)
C25—C31—C32—Nd2	-95.1 (8)	C8—Nd1—O10—C32	-48.0 (3)
O8—Nd2—C32—O11	-169.46 (14)	C24—Nd1—O10—C32	139.9 (2)
O14—Nd2—C32—O11	63.22 (14)	O4—Nd1—O10—Nd2	-88.51 (8)
O13—Nd2—C32—O11	115.57 (14)	O5—Nd1—O10—Nd2	-81.73 (7)
O2W—Nd2—C32—O11	-91.67 (14)	O1W—Nd1—O10—Nd2	76.00 (7)
O16—Nd2—C32—O11	-93.24 (16)	O2—Nd1—O10—Nd2	151.48 (7)
O17—Nd2—C32—O11	71.2 (3)	O7—Nd1—O10—Nd2	5.24 (9)
O10—Nd2—C32—O11	167.4 (2)	O1—Nd1—O10—Nd2	-157.50(7)
N3—Nd2—C32—O11	-11.06 (15)	O8—Nd1—O10—Nd2	-0.14 (5)
C40—Nd2—C32—O11	89.27 (14)	N1—Nd1—O10—Nd2	118.49 (13)
C48—Nd2—C32—O11	-64.2 (4)	C16—Nd1—O10—Nd2	-87.37(7)
O8—Nd2—C32—O10	23.18 (14)	C8—Nd1—O10—Nd2	176.70 (7)
O14—Nd2—C32—O10	-104.15 (13)	C24—Nd1—O10—Nd2	4.57 (7)
O13—Nd2—C32—O10	-51.80 (13)	O8—Nd2—O10—C32	-154.81 (15)
O2W-Nd2-C32-O10	100.96 (14)	O14—Nd2—O10—C32	74.70 (14)
O16—Nd2—C32—O10	99.40 (15)	O13—Nd2—O10—C32	125.85 (14)
O17—Nd2—C32—O10	-96.2 (2)	O2W-Nd2-O10-C32	-71.56 (14)
O11—Nd2—C32—O10	-167.4 (2)	O16—Nd2—O10—C32	-116.31 (14)
N3—Nd2—C32—O10	-178.43 (13)	O17—Nd2—O10—C32	141.23 (15)
C40—Nd2—C32—O10	-78.10 (14)	O11—Nd2—O10—C32	6.92 (13)
C48—Nd2—C32—O10	128.5 (4)	N3—Nd2—O10—C32	1.90 (15)
O8—Nd2—C32—C31	-56.1 (8)	C40—Nd2—O10—C32	99.80 (14)
O14—Nd2—C32—C31	176.6 (8)	C48—Nd2—O10—C32	-156.80 (19)
O13—Nd2—C32—C31	-131.1 (8)	O8—Nd2—O10—Nd1	0.15 (5)
O2W—Nd2—C32—C31	21.7 (8)	O14—Nd2—O10—Nd1	-130.34 (6)
O16—Nd2—C32—C31	20.1 (8)	O13—Nd2—O10—Nd1	-79.19 (7)
O17—Nd2—C32—C31	-175.5 (7)	O2W—Nd2—O10—Nd1	83.41 (7)
O10—Nd2—C32—C31	-79.3 (8)	O16—Nd2—O10—Nd1	38.65 (11)
O11—Nd2—C32—C31	113.4 (8)	O17—Nd2—O10—Nd1	-63.81 (14)
N3—Nd2—C32—C31	102.3 (8)	O11—Nd2—O10—Nd1	161.89 (10)
C40—Nd2—C32—C31	-157.4 (8)	N3—Nd2—O10—Nd1	156.86 (6)
C48—Nd2—C32—C31	49.2 (10)	C40—Nd2—O10—Nd1	-105.23 (7)
C38—C33—C34—C35	-0.8 (4)	C48—Nd2—O10—Nd1	-1.8 (2)

C39—C33—C34—C35	179.0 (2)	C32—Nd2—O10—Nd1	154.96 (16)
C33—C34—C35—C36	0.4 (4)	O10-C32-O11-Nd2	12.7 (2)
C34—C35—C36—O15	-179.7 (2)	C31—C32—O11—Nd2	-167.1 (2)
C34—C35—C36—C37	0.0 (4)	O8—Nd2—O11—C32	11.64 (15)
O15—C36—C37—C38	179.6 (2)	O14—Nd2—O11—C32	-112.26 (15)
C35—C36—C37—C38	-0.1 (4)	O13—Nd2—O11—C32	-66.94 (14)
C36—C37—C38—C33	-0.3 (4)	O2W-Nd2-O11-C32	79.80 (14)
C34—C33—C38—C37	0.8 (4)	O16—Nd2—O11—C32	120.02 (14)
C39—C33—C38—C37	-179.1 (2)	O17—Nd2—O11—C32	-149.58 (14)
C38—C33—C39—C40	-114.6 (3)	O10—Nd2—O11—C32	-7.00 (13)
C34—C33—C39—C40	65.6 (3)	N3—Nd2—O11—C32	168.79 (15)
C33—C39—C40—O14	174.1 (2)	C40—Nd2—O11—C32	-89.67 (14)
C33—C39—C40—O13	-7.1 (3)	C48—Nd2—O11—C32	161.92 (16)
C33—C39—C40—Nd2	-127 (4)	O14—C40—O13—Nd2	1.4 (2)
O8—Nd2—C40—O14	-171.57 (13)	C39—C40—O13—Nd2	-177.45 (19)
O13—Nd2—C40—O14	-178.6 (2)	O8—Nd2—O13—C40	-172.89 (14)
O2W-Nd2-C40-O14	-83.7 (2)	O14—Nd2—O13—C40	-0.79 (13)
O16—Nd2—C40—O14	100.30 (15)	O2W-Nd2-O13-C40	-135.21 (15)
O17—Nd2—C40—O14	93.01 (14)	O16—Nd2—O13—C40	115.13 (14)
O10—Nd2—C40—O14	-106.18 (14)	O17—Nd2—O13—C40	84.87 (14)
O11—Nd2—C40—O14	-56.58 (14)	O10—Nd2—O13—C40	-102.68 (14)
N3—Nd2—C40—O14	18.80 (15)	O11—Nd2—O13—C40	-59.81 (14)
C48—Nd2—C40—O14	94.00 (14)	N3—Nd2—O13—C40	21.18 (16)
C32—Nd2—C40—O14	-81.42 (14)	C48—Nd2—O13—C40	97.42 (14)
O8—Nd2—C40—O13	7.00 (14)	C32—Nd2—O13—C40	-82.53 (14)
O14—Nd2—C40—O13	178.6 (2)	O13—C40—O14—Nd2	-1.4 (2)
O2W-Nd2-C40-O13	94.9 (2)	C39—C40—O14—Nd2	177.46 (19)
O16—Nd2—C40—O13	-81.12 (15)	O8—Nd2—O14—C40	10.39 (17)
O17—Nd2—C40—O13	-88.42 (14)	O13—Nd2—O14—C40	0.80 (13)
O10—Nd2—C40—O13	72.39 (13)	O2W-Nd2-O14-C40	139.55 (14)
O11—Nd2—C40—O13	122.00 (14)	O16—Nd2—O14—C40	-99.32 (14)
N3—Nd2—C40—O13	-162.63 (13)	O17—Nd2—O14—C40	-80.88 (14)
C48—Nd2—C40—O13	-87.43 (14)	O10—Nd2—O14—C40	72.34 (14)
C32—Nd2—C40—O13	97.16 (14)	O11—Nd2—O14—C40	119.65 (14)
O8—Nd2—C40—C39	128 (4)	N3—Nd2—O14—C40	-160.92 (15)
O14—Nd2—C40—C39	-60 (4)	C48—Nd2—O14—C40	-91.51 (14)
O13—Nd2—C40—C39	121 (4)	C32—Nd2—O14—C40	96.66 (14)
O2W-Nd2-C40-C39	-144 (4)	O17—C48—O16—Nd2	9.9 (2)
O16—Nd2—C40—C39	40 (4)	C47—C48—O16—Nd2	-168.96 (19)
O17—Nd2—C40—C39	33 (4)	O8—Nd2—O16—C48	-112.64 (14)
O10—Nd2—C40—C39	-166 (4)	O14—Nd2—O16—C48	18.09 (16)
O11—Nd2—C40—C39	-117 (4)	O13—Nd2—O16—C48	-44.57 (15)
N3—Nd2—C40—C39	-42 (4)	O2W-Nd2-O16-C48	167.03 (15)
C48—Nd2—C40—C39	34 (4)	O17—Nd2—O16—C48	-5.44 (13)
C32—Nd2—C40—C39	-142 (4)	O10-Nd2-O16-C48	-148.19 (13)
C46—C41—C42—C43	-0.8 (4)	O11—Nd2—O16—C48	127.69 (14)
C47—C41—C42—C43	177.0 (2)	N3—Nd2—O16—C48	79.15 (14)
C41—C42—C43—C44	-0.5 (4)	C40—Nd2—O16—C48	-14.55 (17)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-178.5 (2)	C32—Nd2—O16—C48	168.54 (13)
	1.5 (4)	O16—C48—O17—Nd2	-9.7 (2)
	178.7 (3)	C47—C48—O17—Nd2	169.2 (2)
	-1.3 (4)	O8—Nd2—O17—C48	78.08 (15)
	0.0 (4)	O14—Nd2—O17—C48	-155.48 (15)
	1.0 (4)	O13—Nd2—O17—C48	150.43 (15)
	-176.8 (2)	O2W—Nd2—O17—C48	-3.80 (17)
	107.6 (3)	O16—Nd2—O17—C48	5.36 (13)
	-70.1 (3)	O10—Nd2—O17—C48	135.10 (14)
	57.1 (3)	O11—Nd2—O17—C48	-119.06 (15)
	-121.8 (3)	N3—Nd2—O17—C48	-77.75 (15)
	-23.1 (13)	C40—Nd2—O17—C48	177.76 (16)
C41—C47—C48—Nd2	-23.1 (13)	C40—Nd2—O17—C48	177.76 (16)
O8—Nd2—C48—O16	66.10 (14)	C32—Nd2—O17—C48	-163.57 (18)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H··· <i>A</i>
O3—H3 <i>B</i> …O12 ⁱ	0.82	1.94	2.751 (3)	170
$O6-H6B\cdots O3W^{ii}$	0.82	1.86	2.647 (3)	160
O9—H9A…O17 ⁱⁱⁱ	0.82	1.86	2.676 (3)	173
O12—H12A···O11 ^{iv}	0.82	1.94	2.746 (2)	167
O15—H15C···O6 ^v	0.82	1.91	2.725 (3)	173
O18—H18 <i>B</i> ···O9 ⁱⁱ	0.82	1.95	2.763 (3)	173
O2 <i>W</i> —H2 <i>WA</i> ···O5	0.82 (2)	2.02 (2)	2.772 (2)	153 (3)
$O2W$ — $H2WB$ ··· $N2^{ii}$	0.81 (2)	2.04 (2)	2.840 (3)	170 (3)
O3 <i>W</i> —H3 <i>WB</i> ···O3	0.82 (2)	2.02 (2)	2.811 (3)	162 (3)
O1 <i>W</i> —H1 <i>WA</i> ···O13	0.81 (2)	1.98 (2)	2.764 (2)	161 (3)
O1W—H1 WB ···N4 ⁱ	0.82 (2)	1.99 (2)	2.775 (3)	161 (3)
O3 <i>W</i> —H3 <i>W</i> A···O1 ^{vi}	0.82 (2)	1.95 (2)	2.770 (3)	175 (4)
C6—H6A····O2 ^{vii}	0.93	2.49	3.283 (3)	144
C31—H31A···O1	0.97	2.58	3.338 (3)	135
C49—H49A····O2	0.93	2.42	3.038 (3)	124
C59—H59A…O16	0.93	2.57	3.191 (3)	125
С63—Н63А…О14	0.93	2.45	3.095 (3)	126

Symmetry codes: (i) x, y+1, z; (ii) x, y-1, z; (iii) -x, -y+1, -z; (iv) -x, -y, -z+1; (v) x-1, y+1, z; (vi) -x+1, -y+1, -z+1; (vii) -x, -y+1, -z+1.