Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Dichlorido{2-morpholino-N-[1-(2-pyridyl)ethylidene]ethanamine- $\kappa^3 N, N', N''$ }cadmium

Nurulazimah Ikmal Hisham, Nura Suleiman Gwaram, Hamid Khaledi* and Hapipah Mohd Ali

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: khaledi@siswa.um.edu.my

Received 21 October 2010; accepted 22 October 2010

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.008 Å; R factor = 0.038; wR factor = 0.117; data-to-parameter ratio = 18.9.

In the title compound, $[CdCl_2(C_{13}H_{19}N_3O)]$, the Cd^{II} ion is five-coordinate, with the N,N',N''-tridentate Schiff base ligand 2-morpholino-N-[1-(2-pyridyl)ethylidene]ethanamine and two Cl atoms in a distorted square-pyramidal geometry. In the crystal structure, $C-H \cdots Cl$ hydrogen-bonding interactions connect the molecules into a three-dimensional network.

Related literature

For the crystal structures of similar compounds, see: Ikmal Hisham *et al.* (2009); Cai (2009).

V = 1574.5 (4) Å³

Mo $K\alpha$ radiation

 $0.23 \times 0.10 \times 0.04 \text{ mm}$

9407 measured reflections

3437 independent reflections

2646 reflections with $I > 2\sigma(I)$

 $\mu = 1.73 \text{ mm}^-$

T = 100 K

 $R_{\rm int} = 0.043$

Z = 4

Experimental

Crystal data

 $\begin{bmatrix} CdCl_2(C_{13}H_{19}N_3O) \end{bmatrix} \\ M_r = 416.61 \\ Monoclinic, P2_1/n \\ a = 9.6357 (12) \text{ Å} \\ b = 13.9300 (18) \text{ Å} \\ c = 12.2514 (17) \text{ Å} \\ \beta = 106.776 (2)^{\circ} \end{bmatrix}$

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\rm min} = 0.692, T_{\rm max} = 0.934$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.038$ 182 parameters $wR(F^2) = 0.117$ H-atom parameters constrainedS = 1.08 $\Delta \rho_{max} = 0.81$ e Å $^{-3}$ 3437 reflections $\Delta \rho_{min} = -1.16$ e Å $^{-3}$

 Table 1

 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C4-H4\cdots Cl1^{i}$	0.95	2.69	3.603 (6)	161
$C7 - H7C \cdots Cl2^{ii}$	0.98	2.73	3.607 (6)	149
C8−H8A···Cl2 ⁱⁱⁱ	0.99	2.82	3.730 (6)	153
$C11 - H11B \cdots Cl1$	0.99	2.80	3.654 (6)	144
Symmetry codes: $-x + \frac{3}{2}, y - \frac{1}{2}, -z + \frac{1}{2}.$	(i) $-x+1$,	-y, -z + 1;	(ii) $-x + 2, -y$, -z + 1; (iii)

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *SHELXL97* and *publCIF* (Westrip, 2010).

The authors thank the University of Malaya for funding this study (UMRG grant RG024/09BIO).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2344).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Cai, B.-H. (2009). Acta Cryst. E65, m142.

- Ikmal Hisham, N. A., Ali, H. M. & Ng, S. W. (2009). Acta Cryst. E65, m870.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Acta Cryst. (2010). E66, m1471 [https://doi.org/10.1107/S1600536810043163] Dichlorido{2-morpholino-N-[1-(2-pyridyl)ethylidene]ethanamine- $\kappa^3 N, N', N''$ }cadmium

Nurulazimah Ikmal Hisham, Nura Suleiman Gwaram, Hamid Khaledi and Hapipah Mohd Ali

S1. Comment

The title compound has been obtained *via* the complexation of cadmium(II) chloride by the *N*,*N*,*N*-tridentate ligand, 2-morpholino-*N*-[1-(2-pyridyl)ethylidene]ethanamine, which had itself been prepared from the condensation of 4-(2-amino-ethyl)morpholine and 2-acetylpyridine. The geometry of the complex can be defined as distorted square-pyramidal ($\tau = 0.18$) with one of the chloride ligands in the apical position. Like the similar structures reported in the literature [Ikmal Hisham *et al.*, 2009; Cai, 2009], the morpholine ring in the present complex adopts a chair conformation. In the crystal structure, the molecules are linked together through C—H···Cl interactions into a three dimensional network.

S2. Experimental

A mixture of 4-(2-aminoethyl)morpholine (0.65 g, 5 mmol) and 2-acetylpyridine (0.61 g, 5 mmol) in ethanol (50 ml) was refluxed for 2 h followed by addition of a solution of cadmium(II) chloride (0.92 g, 5 mmol) in a minimum amount of water. The resulting solution was refluxed for 30 min, then evaporated partially and set aside at room temperature. The crystals of the cadmium(II) complex were obtained after a week.

S3. Refinement

The hydrogen atoms were placed at calculated positions (C—H 0.95 - 0.99 Å) and were treated as riding on their parent atoms with U(H) set to 1.2–1.5 Ueq(C).

Thermal ellipsoid plot of the title compound at the 50% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.

Dichlorido{2-morpholino-*N*-[1-(2-pyridyl)ethylidene]ethanamine- $\kappa^3 N, N', N''$ }cadmium(II)

Crystal data

 $[CdCl_2(C_{13}H_{19}N_3O)]$ $M_r = 416.61$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 9.6357 (12) Å b = 13.9300 (18) Å c = 12.2514 (17) Å $\beta = 106.776$ (2)° V = 1574.5 (4) Å³ Z = 4

Data collection

Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.692, T_{\max} = 0.934$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.117$ S = 1.08 F(000) = 832 $D_x = 1.758 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2378 reflections $\theta = 2.3-27.3^{\circ}$ $\mu = 1.73 \text{ mm}^{-1}$ T = 100 KLath, colorless $0.23 \times 0.10 \times 0.04 \text{ mm}$

9407 measured reflections 3437 independent reflections 2646 reflections with $I > 2\sigma(I)$ $R_{int} = 0.043$ $\theta_{max} = 27.0^{\circ}, \theta_{min} = 2.3^{\circ}$ $h = -8 \rightarrow 12$ $k = -10 \rightarrow 17$ $l = -15 \rightarrow 15$

3437 reflections182 parameters0 restraintsPrimary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier	$w = 1/[\sigma^2(F_o^2) + (0.0488P)^2 + 6.1933P]$
map	where $P = (F_o^2 + 2F_c^2)/3$
Hydrogen site location: inferred from	$(\Delta/\sigma)_{\rm max} < 0.001$
neighbouring sites	$\Delta \rho_{\rm max} = 0.81 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	$\Delta \rho_{\rm min} = -1.16 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cd1	0.77057 (4)	0.09902 (3)	0.33319(3)	0.01533 (13)
Cl1	0.52520 (14)	0.14366 (10)	0.21865 (11)	0.0195 (3)
Cl2	0.96418 (15)	0.21768 (10)	0.36618 (11)	0.0210 (3)
O1	0.8174 (4)	0.0583 (3)	-0.0120 (3)	0.0235 (9)
N1	0.7320 (5)	0.1178 (3)	0.5165 (4)	0.0180 (10)
N2	0.7579 (5)	-0.0471 (3)	0.4170 (4)	0.0173 (10)
N3	0.8461 (5)	-0.0170 (3)	0.2128 (4)	0.0177 (10)
C1	0.7366 (6)	0.2002 (4)	0.5727 (4)	0.0194 (11)
H1	0.7649	0.2567	0.5413	0.023*
C2	0.7020 (6)	0.2073 (4)	0.6749 (4)	0.0205 (12)
H2	0.7079	0.2672	0.7131	0.025*
C3	0.6588 (7)	0.1252 (5)	0.7199 (4)	0.0261 (14)
Н3	0.6321	0.1281	0.7886	0.031*
C4	0.6552 (6)	0.0378 (4)	0.6629 (5)	0.0214 (12)
H4	0.6271	-0.0195	0.6927	0.026*
C5	0.6932 (6)	0.0363 (4)	0.5621 (4)	0.0153 (11)
C6	0.7049 (6)	-0.0549 (4)	0.4993 (4)	0.0154 (11)
C7	0.6593 (6)	-0.1485 (4)	0.5389 (5)	0.0225 (12)
H7A	0.6077	-0.1870	0.4726	0.034*
H7B	0.5951	-0.1362	0.5866	0.034*
H7C	0.7452	-0.1836	0.5834	0.034*
C8	0.7876 (6)	-0.1294 (4)	0.3538 (4)	0.0200 (12)
H8A	0.6972	-0.1515	0.2978	0.024*
H8B	0.8274	-0.1830	0.4067	0.024*
C9	0.8969 (6)	-0.0984 (4)	0.2929 (5)	0.0204 (12)
H9A	0.9881	-0.0795	0.3504	0.024*
H9B	0.9188	-0.1538	0.2499	0.024*
C10	0.7321 (6)	-0.0497 (4)	0.1112 (4)	0.0210 (12)
H10A	0.6446	-0.0677	0.1334	0.025*
H10B	0.7662	-0.1074	0.0794	0.025*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C11	0.6935 (6)	0.0277 (4)	0.0212 (5)	0.0209 (12)	
H11A	0.6187	0.0031	-0.0465	0.025*	
H11B	0.6521	0.0834	0.0511	0.025*	
C12	0.9219 (6)	0.0938 (4)	0.0846 (5)	0.0228 (12)	
H12A	0.8806	0.1489	0.1158	0.027*	
H12B	1.0065	0.1174	0.0619	0.027*	
C13	0.9722 (6)	0.0184 (4)	0.1767 (5)	0.0234 (13)	
H13A	1.0175	-0.0357	0.1473	0.028*	
H13B	1.0456	0.0464	0.2430	0.028*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cd1	0.0202 (2)	0.0147 (2)	0.01291 (19)	0.00042 (16)	0.00765 (14)	0.00102 (15)
Cl1	0.0196 (6)	0.0200 (7)	0.0194 (6)	0.0030 (5)	0.0065 (5)	0.0031 (5)
Cl2	0.0217 (7)	0.0215 (7)	0.0208 (6)	-0.0038 (5)	0.0076 (5)	0.0009 (5)
01	0.028 (2)	0.029 (2)	0.0161 (18)	-0.0047 (19)	0.0109 (17)	-0.0021 (17)
N1	0.020(2)	0.023 (3)	0.011 (2)	0.0020 (19)	0.0050 (18)	0.0010 (18)
N2	0.023 (2)	0.015 (2)	0.014 (2)	0.0009 (19)	0.0050 (18)	0.0000 (18)
N3	0.018 (2)	0.023 (3)	0.013 (2)	0.0012 (19)	0.0057 (18)	-0.0006 (18)
C1	0.025 (3)	0.017 (3)	0.016 (2)	-0.004(2)	0.005 (2)	0.001 (2)
C2	0.026 (3)	0.016 (3)	0.018 (3)	0.006 (2)	0.004 (2)	-0.004 (2)
C3	0.029 (3)	0.039 (4)	0.010 (2)	0.007 (3)	0.006 (2)	0.002 (2)
C4	0.025 (3)	0.025 (3)	0.017 (3)	0.000 (2)	0.011 (2)	0.003 (2)
C5	0.015 (3)	0.017 (3)	0.013 (2)	0.001 (2)	0.003 (2)	0.004 (2)
C6	0.013 (2)	0.018 (3)	0.015 (2)	0.002 (2)	0.003 (2)	0.003 (2)
C7	0.025 (3)	0.021 (3)	0.021 (3)	-0.002 (2)	0.007 (2)	0.005 (2)
C8	0.032 (3)	0.010 (3)	0.019 (3)	0.006 (2)	0.008 (2)	0.001 (2)
C9	0.029 (3)	0.012 (3)	0.021 (3)	0.009 (2)	0.009 (2)	0.001 (2)
C10	0.026 (3)	0.022 (3)	0.015 (2)	0.000 (2)	0.006 (2)	-0.004 (2)
C11	0.024 (3)	0.024 (3)	0.017 (3)	-0.003 (2)	0.008 (2)	-0.001 (2)
C12	0.026 (3)	0.024 (3)	0.023 (3)	-0.012 (3)	0.014 (2)	-0.008(2)
C13	0.022 (3)	0.031 (4)	0.021 (3)	0.002 (3)	0.012 (2)	-0.006 (2)

Geometric parameters (Å, °)

Cd1—N2	2.298 (5)	C4—H4	0.9500
Cd1—N1	2.394 (4)	C5—C6	1.506 (8)
Cd1—N3	2.437 (4)	C6—C7	1.501 (8)
Cd1—Cl2	2.4374 (14)	C7—H7A	0.9800
Cd1—Cl1	2.4557 (14)	С7—Н7В	0.9800
O1—C12	1.404 (7)	C7—H7C	0.9800
O1—C11	1.432 (6)	C8—C9	1.519 (8)
N1—C1	1.332 (7)	C8—H8A	0.9900
N1—C5	1.364 (7)	C8—H8B	0.9900
N2—C6	1.261 (7)	С9—Н9А	0.9900
N2—C8	1.458 (7)	С9—Н9В	0.9900
N3—C10	1.474 (7)	C10—C11	1.510 (8)

N3—C9	1.487 (7)	C10—H10A	0.9900
N3—C13	1.492 (7)	C10—H10B	0.9900
C1—C2	1.390 (7)	C11—H11A	0.9900
C1—H1	0.9500	C11—H11B	0.9900
C2—C3	1.385 (8)	C12—C13	1.515 (8)
С2—Н2	0.9500	C12—H12A	0.9900
C3—C4	1.398 (8)	C12—H12B	0.9900
С3—Н3	0.9500	С13—Н13А	0.9900
C4—C5	1.385 (7)	С13—Н13В	0.9900
N2—Cd1—N1	68.60 (16)	С6—С7—Н7В	109.5
N2—Cd1—N3	75.33 (15)	H7A—C7—H7B	109.5
N1—Cd1—N3	142.63 (15)	С6—С7—Н7С	109.5
N2—Cd1—Cl2	131.54 (12)	H7A—C7—H7C	109.5
N1—Cd1—Cl2	95.10 (12)	H7B—C7—H7C	109.5
N3—Cd1—Cl2	101.67 (11)	N2—C8—C9	107.9 (5)
N2—Cd1—Cl1	108.24 (12)	N2—C8—H8A	110.1
N1—Cd1—Cl1	97.11 (11)	С9—С8—Н8А	110.1
N3—Cd1—Cl1	103.21 (11)	N2—C8—H8B	110.1
Cl2— $Cd1$ — $Cl1$	119.18 (5)	C9—C8—H8B	110.1
C12-01-C11	108.6 (4)	H8A—C8—H8B	108.4
C1—N1—C5	118.5 (4)	N3-C9-C8	113.5 (4)
C1-N1-Cd1	126.0 (4)	N3—C9—H9A	108.9
C_{5} N1—Cd1	1154(3)	C8—C9—H9A	108.9
C6-N2-C8	123.0(5)	N3—C9—H9B	108.9
C6-N2-Cd1	123.0(3) 1213(4)	C8 - C9 - H9B	108.9
C8 - N2 - Cd1	1121.5(4)	$H_{0}A = C_{0} = H_{0}B$	107.7
C10 N3 C9	114.0(3) 110.2(4)	N3C10C11	107.7 111.2(5)
C10 N3 C13	108.9(4)	N3C10H10A	109.4
$C_{10} = N_{3} = C_{13}$	107.8(4)	C_{11} C_{10} H_{10A}	109.4
C_{10} N3 C_{11}	107.0(4) 115.0(3)	N3 C10 H10B	109.4
C_{0} N3 Cd1	113.9(3)	C_{11} C_{10} H_{10B}	109.4
C_{13} N3 C_{13}	101.9(3) 111.8(3)	$H_{10A} = C_{10} = H_{10B}$	109.4
N1 C1 C2	111.0(5)	$\begin{array}{ccc} 1110 \\ 01 \\ 01 \\ 01 \\ 01 \\ 01 \\ 01 \\ 0$	100.0 111.7(5)
N1 = C1 = C2	123.1 (3)	01 - 01 - 010	111.7(3)
$N_{1} = C_{1} = M_{1}$	110.4	C_{10} C_{11} H_{11A}	109.5
$C_2 = C_1 = H_1$	110.4	C10 $C11$ $H11P$	109.5
$C_{3} = C_{2} = C_{1}$	118.0 (3)	C_{10} C_{11} H_{11}	109.5
$C_3 = C_2 = H_2$	120.7		109.5
$C_1 = C_2 = C_1$	120.7	$\begin{array}{ccc} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & &$	107.9 112.4(5)
$C_2 = C_3 = C_4$	119.1 (5)	01 - C12 - C13	112.4 (3)
$C_2 = C_3 = H_3$	120.5	C_{12} C_{12} H_{12A}	109.1
C4 - C3 - H3	120.5	C13 - C12 - H12A	109.1
C_{3}	110.9 (J) 120.5	$C_{12} = C_{12} = H_{12} B$	109.1
$C_{2} = C_{4} = H_{4}$	120.5	$U_{13} - U_{12} - H_{12}B$	109.1
U3-U4-H4	120.3	H12A - U12 - H12B	107.9
N1	121.8 (3)	$N_{2} = C_{12} = U_{12} + U_{24}$	109.7 (5)
NI-C5-C6	115.0 (4)	N3-C13-H13A	109.7
C4—C5—C6	123.1 (5)	C12—C13—H13A	109.7

N2—C6—C7	123.9 (5)	N3—C13—H13B	109.7
N2—C6—C5	116.3 (5)	C12—C13—H13B	109.7
C7—C6—C5	119.8 (4)	H13A—C13—H13B	108.2
С6—С7—Н7А	109.5		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
C4—H4···Cl1 ⁱ	0.95	2.69	3.603 (6)	161
C7—H7 <i>C</i> ···Cl2 ⁱⁱ	0.98	2.73	3.607 (6)	149
C8—H8A····Cl2 ⁱⁱⁱ	0.99	2.82	3.730 (6)	153
C11—H11 <i>B</i> ···Cl1	0.99	2.80	3.654 (6)	144

Symmetry codes: (i) -*x*+1, -*y*, -*z*+1; (ii) -*x*+2, -*y*, -*z*+1; (iii) -*x*+3/2, *y*-1/2, -*z*+1/2.