

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Tripropylammonium trithiocyanurate

Yunxia Yang

Key Laboratory of Eco-environment-related Polymer Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, Gansu, People's Republic of China Correspondence e-mail: yangyx80@nwnu.edu.cn

Received 20 September 2010; accepted 29 September 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.004 Å; R factor = 0.035; wR factor = 0.097; data-to-parameter ratio = 20.3.

In the title compound (systematic name: tripropylazanium 2,4,6-trisulfanylidenecyclohexan-1-ide), $(C_3H_7)_3HN^+\cdot C_3H_2$ - $N_3S_3^-$, one H atom of trithiocyanuric acid is accepted by tripropylamine to form the ammonium ion. Coplanar trithiocyanurate and tripropylammonium ions [dihedral angle = 82.33 (8)°] form the salt, which is stabilised by various N-H···S and N-H···N contacts.

Related literature

For the crystal structures of tetraphenylphosphonium salts of trithiocyanuric acid, see: Dean *et al.* (2004).

Experimental

Crystal data

$C_9H_{22}N^+ \cdot C_3H_2N_3S_3^-$
$M_r = 320.53$
Orthorhombic, P212121
a = 8.3677 (5) Å
b = 12.8827 (8) Å
c = 16.5339 (10) Å

 $V = 1782.33 (19) \text{ Å}^{3}$ Z = 4Mo K\alpha radiation $\mu = 0.41 \text{ mm}^{-1}$ T = 296 K $0.61 \times 0.27 \times 0.21 \text{ mm}$

Data collection

Bruker APEXII CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.788, T_{\max} = 0.919$

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.035 \\ wR(F^2) &= 0.097 \\ S &= 1.03 \\ 3675 \text{ reflections} \\ 181 \text{ parameters} \\ 3 \text{ restraints} \\ \text{H} \text{ atoms treated by a mixture of} \\ \text{independent and constrained} \\ \text{refinement} \end{split}$$

5690 measured reflections 3675 independent reflections 3232 reflections with $I > 2\sigma(I)$ $R_{int} = 0.013$

 $\begin{array}{l} \Delta \rho_{\rm max} = 0.24 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta \rho_{\rm min} = -0.20 \ {\rm e} \ {\rm \AA}^{-3} \\ {\rm Absolute \ structure: \ Flack \ \&} \\ {\rm Bernardinelli \ (2000), \ 1316 \ Friedel} \\ {\rm pairs} \\ {\rm Flack \ parameter: \ -0.04 \ (8)} \end{array}$

Table 1			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N4-H4···N3	0.93 (1)	1.95 (1)	2.867 (2)	172 (3)
$N1 - H1 \cdot \cdot \cdot S2^i$	0.92(1)	2.51 (1)	3.4037 (17)	167 (2)
$N2-H2\cdots S1^{ii}$	0.91 (1)	2.39 (1)	3.2911 (17)	170 (2)
Summatry and as (i	- x + 1 + 1	- 1 ³ . (ii) x 1	1 + 1 = -3	

Symmetry codes: (i) -x + 1, $y - \frac{1}{2}$, $-z + \frac{3}{2}$; (ii) -x + 1, $y + \frac{1}{2}$, $-z + \frac{3}{2}$.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97* and *publCIF* (Westrip, 2010).

The author thanks the Key Laboratory of Eco-environment-related Polymer Materials of Northwest Normal University for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RN2070).

References

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconson, USA.

Dean, P. A. W., Jennings, M., Houle, T. M., Craig, D. C., Dance, I. G., Hook, J. M. & Scudder, M. L. (2004). *CrystEngComm*, 6, 543–548.

- Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2010). E66, o2793 [https://doi.org/10.1107/S1600536810038924]

Tripropylammonium trithiocyanurate

Yunxia Yang

S1. Comment

Trithiocyanuric acid, which can be regarded as the polymer of three thiourea molecules, tends to form various hydrogen bonds with its hydrogen-bond donor and acceptor (Dean *et al.* 2004). Here we reported the cocrystal of the tripropylammonium cation and trithiocyanurate with a molar ratio of 1:1, $(C_3H_7)_3HN^+.C_3H_2N_3S_3^-$. In this structure, the independent planar trithiocyanurate anion only form a pair of N—H···S hydrogen bonds, of which N···S distances are 3.404 (2) Å and 3.291 (2) Å and the corresponding angles 166.6° and 169.7°, to generate the hydrogen-bonded ribbons along the *b* axis, and these ribbons which are translated by 2₁ rotation axis are orderly arranged almost along the (101) and (101)directions. Subsequently, the central N—H group of the ammonium cation can form an N—H···N donor hydrogen bond (N···N distance is 2.867 (2) Å and the related angle is 172.5°) with one of the nitrogen atom located in the trithiocyanurate to generate the final stable cocrystal.

S2. Experimental

Trithiocyanuric acid (0.044 g, 0.25 mmol) was dissolved in a water-ethanol (1:2 v/v) mixture and tripropylamine was added to neutralize the acid. Colorless block crystals formed after several weeks.

S3. Refinement

All hydrogen atoms bonded to carbon were introduced to idealized positions and allowed to ride on their parent atoms. Hydrogen atoms bonded to nitrogen were located in difference Fourier syntheses with N—H distance of 0.93 Å.

Thermal ellipsoid plot of the title compound at the 30% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

Figure 2

Hydrogen bond pattern in the crystal structure of the title compound; all hydrogen atoms bonded to carbon and carbon atoms of the tripropylammonium cation are omitted for clarity and the cations are represented with the hatched spheres.

Tripropylazanium 2,4,6-trisulfanylidenecyclohexan-1-ide

Crystal data

 $C_{9}H_{22}N^{+} \cdot C_{3}H_{2}N_{3}S_{3}^{-}$ $M_{r} = 320.53$ Orthorhombic, $P2_{1}2_{1}2_{1}$ a = 8.3677 (5) Å b = 12.8827 (8) Å c = 16.5339 (10) Å V = 1782.33 (19) Å³ Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator F(000) = 688 $D_x = 1.195 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ $\mu = 0.41 \text{ mm}^{-1}$ T = 296 KBlock, colorless $0.61 \times 0.27 \times 0.21 \text{ mm}$

phi and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.788, T_{\max} = 0.919$

5690 measured reflections
3675 independent reflections
3232 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.013$

Refiner

Refinement	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.035$	H atoms treated by a mixture of independent
$wR(F^2) = 0.097$	and constrained refinement
<i>S</i> = 1.03	$w = 1/[\sigma^2(F_o^2) + (0.057P)^2 + 0.1498P]$
3675 reflections	where $P = (F_o^2 + 2F_c^2)/3$
181 parameters	$(\Delta/\sigma)_{\rm max} < 0.001$
3 restraints	$\Delta \rho_{\rm max} = 0.24 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$
direct methods	Absolute structure: Flack & Bernardinelli
Secondary atom site location: difference Fourier	(2000), 1316 Friedel pairs
map	Absolute structure parameter: -0.04 (8)

 $\theta_{\rm max} = 27.6^{\circ}, \ \theta_{\rm min} = 2.7^{\circ}$

 $h = -4 \rightarrow 10$ $k = -16 \rightarrow 16$ $l = -17 \rightarrow 19$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
0.25770 (18)	0.02494 (16)	0.48456 (11)	0.0513 (4)	
0.307 (3)	0.020 (2)	0.5345 (9)	0.077*	
0.3656 (3)	0.0945 (2)	0.43528 (14)	0.0603 (6)	
0.3771	0.1602	0.4634	0.072*	
0.4706	0.0629	0.4324	0.072*	
0.3087 (3)	0.1159 (2)	0.35052 (17)	0.0726 (7)	
0.2116	0.1570	0.3525	0.087*	
0.2843	0.0509	0.3237	0.087*	
0.2386 (3)	-0.0818 (2)	0.44928 (15)	0.0596 (5)	
0.1680	-0.0775	0.4029	0.072*	
0.1872	-0.1259	0.4891	0.072*	
0.3920 (3)	-0.1327 (2)	0.42319 (19)	0.0756 (7)	
0.4343	-0.0967	0.3763	0.091*	
0.4700	-0.1275	0.4664	0.091*	
0.3658 (6)	-0.2448 (3)	0.4026 (3)	0.1228 (14)	
0.4652	-0.2754	0.3862	0.184*	
0.2899	-0.2500	0.3593	0.184*	
0.3255	-0.2807	0.4492	0.184*	
0.0991 (2)	0.0762 (2)	0.50164 (16)	0.0605 (5)	
	x 0.25770 (18) 0.307 (3) 0.3656 (3) 0.3771 0.4706 0.3087 (3) 0.2116 0.2843 0.2386 (3) 0.1680 0.1872 0.3920 (3) 0.4343 0.4700 0.3658 (6) 0.4652 0.2899 0.3255 0.0991 (2)	xy $0.25770 (18)$ $0.02494 (16)$ $0.307 (3)$ $0.020 (2)$ $0.3656 (3)$ $0.0945 (2)$ 0.3771 0.1602 0.4706 0.0629 $0.3087 (3)$ $0.1159 (2)$ 0.2116 0.1570 0.2843 0.0509 $0.2386 (3)$ $-0.0818 (2)$ 0.1680 -0.0775 0.1872 -0.1259 $0.3920 (3)$ $-0.1327 (2)$ 0.4343 -0.0967 0.4700 -0.2754 0.2899 -0.2500 0.3255 -0.2807 $0.0991 (2)$ $0.0762 (2)$	xyz $0.25770 (18)$ $0.02494 (16)$ $0.48456 (11)$ $0.307 (3)$ $0.020 (2)$ $0.5345 (9)$ $0.3656 (3)$ $0.0945 (2)$ $0.43528 (14)$ 0.3771 0.1602 0.4634 0.4706 0.0629 0.4324 $0.3087 (3)$ $0.1159 (2)$ $0.35052 (17)$ 0.2116 0.1570 0.3525 0.2843 0.0509 0.3237 $0.2386 (3)$ $-0.0818 (2)$ $0.44928 (15)$ 0.1680 -0.0775 0.4029 0.1872 $-0.1327 (2)$ $0.42319 (19)$ 0.4343 -0.0967 0.3763 0.4700 -0.1275 0.4664 $0.3658 (6)$ -0.2754 0.3862 0.2899 -0.2500 0.3593 0.3255 -0.2807 0.4492 $0.0991 (2)$ $0.0762 (2)$ $0.50164 (16)$	xyz $U_{iso}*/U_{eq}$ 0.25770 (18)0.02494 (16)0.48456 (11)0.0513 (4)0.307 (3)0.020 (2)0.5345 (9)0.077*0.3656 (3)0.0945 (2)0.43528 (14)0.0603 (6)0.37710.16020.46340.072*0.47060.06290.43240.072*0.3087 (3)0.1159 (2)0.35052 (17)0.0726 (7)0.21160.15700.35250.087*0.28430.05090.32370.087*0.2386 (3)-0.0818 (2)0.44928 (15)0.0596 (5)0.1680-0.07750.40290.072*0.1872-0.12590.48910.072*0.3920 (3)-0.1327 (2)0.42319 (19)0.0756 (7)0.4343-0.09670.37630.091*0.4700-0.12750.46640.091*0.3658 (6)-0.2448 (3)0.4026 (3)0.1228 (14)0.4652-0.27540.38620.184*0.2899-0.25000.35930.184*0.3255-0.28070.44920.184*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H10A	0.1181	0.1469	0.5194	0.073*
H10B	0.0380	0.0794	0.4518	0.073*
C11	0.0026 (4)	0.0216 (3)	0.5642 (2)	0.0995 (11)
H11A	-0.0111	-0.0501	0.5476	0.119*
H11B	0.0620	0.0215	0.6145	0.119*
C12	-0.1564 (4)	0.0668 (4)	0.5792 (3)	0.1253 (15)
H12A	-0.2104	0.0272	0.6201	0.188*
H12B	-0.2178	0.0655	0.5302	0.188*
H12C	-0.1446	0.1373	0.5972	0.188*
C6	0.4346 (4)	0.1736 (3)	0.3029 (2)	0.1079 (12)
H6A	0.3962	0.1865	0.2492	0.162*
H6B	0.5302	0.1325	0.3003	0.162*
H6C	0.4576	0.2385	0.3291	0.162*
N1	0.5530(2)	-0.05504 (13)	0.74298 (10)	0.0468 (4)
H1	0.579 (3)	-0.1170 (12)	0.7667 (15)	0.070*
N2	0.5353 (2)	0.12080 (13)	0.74422 (11)	0.0456 (4)
H2	0.556 (3)	0.1813 (12)	0.7704 (14)	0.068*
N3	0.40788 (18)	0.02890 (11)	0.64040 (10)	0.0449 (3)
S1	0.40179 (9)	-0.17606 (4)	0.63935 (4)	0.06707 (19)
C1	0.4565 (2)	-0.05976 (15)	0.67496 (12)	0.0451 (4)
S2	0.37526 (8)	0.23360 (4)	0.63897 (4)	0.06029 (17)
C2	0.5970(2)	0.03521 (15)	0.77943 (11)	0.0433 (4)
S3	0.71163 (7)	0.03940 (5)	0.86074 (4)	0.06204 (17)
C3	0.4425 (2)	0.12015 (15)	0.67552 (13)	0.0433 (4)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N4	0.0444 (8)	0.0640 (11)	0.0455 (10)	-0.0042 (8)	-0.0042 (7)	0.0042 (9)
C4	0.0544 (12)	0.0713 (15)	0.0551 (14)	-0.0120 (11)	-0.0025 (10)	0.0083 (11)
C5	0.0656 (15)	0.0872 (18)	0.0652 (17)	-0.0049 (12)	-0.0052 (13)	0.0186 (14)
C7	0.0542 (12)	0.0604 (14)	0.0644 (14)	-0.0008 (10)	-0.0020 (10)	0.0050 (12)
C8	0.0701 (16)	0.0829 (19)	0.0738 (18)	0.0131 (14)	0.0119 (14)	0.0102 (14)
C9	0.135 (3)	0.081 (2)	0.153 (4)	0.027 (2)	0.041 (3)	-0.012 (2)
C10	0.0527 (11)	0.0668 (14)	0.0620 (14)	0.0011 (11)	0.0006 (10)	-0.0056 (12)
C11	0.0817 (19)	0.111 (3)	0.106 (2)	0.0086 (19)	0.0401 (18)	0.022 (2)
C12	0.090 (2)	0.151 (4)	0.135 (3)	0.003 (2)	0.051 (2)	-0.023 (3)
C6	0.101 (2)	0.139 (3)	0.085 (2)	-0.013 (2)	0.012 (2)	0.042 (2)
N1	0.0544 (9)	0.0391 (9)	0.0470 (10)	0.0028 (7)	-0.0065 (7)	0.0042 (7)
N2	0.0514 (9)	0.0403 (9)	0.0452 (10)	-0.0020 (7)	-0.0070 (7)	-0.0003 (7)
N3	0.0556 (8)	0.0365 (7)	0.0425 (8)	-0.0003 (7)	-0.0068 (7)	0.0030 (8)
S1	0.1045 (5)	0.0372 (3)	0.0596 (4)	-0.0009(3)	-0.0251 (4)	-0.0006 (3)
C1	0.0522 (10)	0.0395 (10)	0.0435 (11)	0.0010 (8)	-0.0003 (8)	0.0020 (8)
S2	0.0818 (4)	0.0363 (2)	0.0627 (4)	0.0006 (2)	-0.0236 (3)	0.0047 (2)
C2	0.0377 (8)	0.0468 (10)	0.0454 (11)	-0.0006 (8)	0.0006 (7)	0.0032 (9)
S3	0.0603 (3)	0.0634 (3)	0.0624 (4)	0.0002 (3)	-0.0234 (3)	0.0022 (3)
C3	0.0455 (10)	0.0404 (9)	0.0441 (11)	-0.0015 (7)	-0.0009 (9)	0.0029 (8)

Geometric parameters (Å, °)

N4—C7	1.503 (3)	C10—H10B	0.9700	
N4—C10	1.509 (3)	C11—C12	1.474 (5)	
N4—C4	1.511 (3)	C11—H11A	0.9700	
N4—H4	0.925 (10)	C11—H11B	0.9700	
C4—C5	1.506 (4)	C12—H12A	0.9600	
C4—H4A	0.9700	C12—H12B	0.9600	
C4—H4B	0.9700	C12—H12C	0.9600	
C5—C6	1.510 (4)	С6—Н6А	0.9600	
С5—Н5А	0.9700	С6—Н6В	0.9600	
С5—Н5В	0.9700	С6—Н6С	0.9600	
C7—C8	1.504 (3)	N1—C2	1.360 (3)	
C7—H7A	0.9700	N1—C1	1.386 (3)	
С7—Н7В	0.9700	N1—H1	0.915 (10)	
C8—C9	1.499 (5)	N2—C2	1.350 (2)	
C8—H8A	0.9700	N2—C3	1.376 (3)	
C8—H8B	0.9700	N2—H2	0.908 (10)	
С9—Н9А	0.9600	N3—C1	1.341 (2)	
С9—Н9В	0.9600	N3—C3	1.343 (2)	
С9—Н9С	0.9600	S1—C1	1.674 (2)	
C10—C11	1.489 (4)	S2—C3	1.679 (2)	
C10—H10A	0.9700	C2—S3	1.6525 (19)	
C7—N4—C10	112.32 (16)	N4	108.9	
C7—N4—C4	113.42 (18)	C11—C10—H10B	108.9	
C10—N4—C4	111.51 (19)	N4—C10—H10B	108.9	
C7—N4—H4	109.2 (19)	H10A—C10—H10B	107.7	
C10—N4—H4	104.8 (17)	C12-C11-C10	114.8 (3)	
C4—N4—H4	104.9 (17)	C12—C11—H11A	108.6	
C5—C4—N4	114.92 (18)	C10-C11-H11A	108.6	
С5—С4—Н4А	108.5	C12—C11—H11B	108.6	
N4—C4—H4A	108.5	C10-C11-H11B	108.6	
C5—C4—H4B	108.5	H11A—C11—H11B	107.5	
N4—C4—H4B	108.5	C11—C12—H12A	109.5	
H4A—C4—H4B	107.5	C11—C12—H12B	109.5	
C4—C5—C6	110.7 (2)	H12A—C12—H12B	109.5	
С4—С5—Н5А	109.5	C11—C12—H12C	109.5	
С6—С5—Н5А	109.5	H12A—C12—H12C	109.5	
C4—C5—H5B	109.5	H12B-C12-H12C	109.5	
С6—С5—Н5В	109.5	С5—С6—Н6А	109.5	
H5A—C5—H5B	108.1	С5—С6—Н6В	109.5	
N4—C7—C8	114.8 (2)	H6A—C6—H6B	109.5	
N4—C7—H7A	108.6	C5—C6—H6C	109.5	
С8—С7—Н7А	108.6	H6A—C6—H6C	109.5	
N4—C7—H7B	108.6	H6B—C6—H6C	109.5	
С8—С7—Н7В	108.6	C2—N1—C1	123.70 (17)	
H7A—C7—H7B	107.5	C2—N1—H1	119.4 (17)	

supporting information

C9—C8—C7	111.1 (3)	C1—N1—H1	116.6 (17)
С9—С8—Н8А	109.4	C2—N2—C3	124.54 (17)
С7—С8—Н8А	109.4	C2—N2—H2	115.0 (17)
С9—С8—Н8В	109.4	C3—N2—H2	120.4 (17)
С7—С8—Н8В	109.4	C1—N3—C3	119.75 (16)
H8A—C8—H8B	108.0	N3—C1—N1	119.04 (17)
С8—С9—Н9А	109.5	N3—C1—S1	121.99 (15)
С8—С9—Н9В	109.5	N1—C1—S1	118.96 (15)
H9A—C9—H9B	109.5	N2—C2—N1	113.81 (16)
С8—С9—Н9С	109.5	N2—C2—S3	123.12 (15)
Н9А—С9—Н9С	109.5	N1—C2—S3	123.06 (15)
Н9В—С9—Н9С	109.5	N3—C3—N2	118.95 (17)
C11—C10—N4	113.6 (2)	N3—C3—S2	122.30 (15)
C11—C10—H10A	108.9	N2—C3—S2	118.75 (15)
C7—N4—C4—C5	61.7 (3)	C2—N1—C1—N3	2.8 (3)
C10—N4—C4—C5	-66.3 (3)	C2—N1—C1—S1	-176.22 (15)
N4—C4—C5—C6	-172.3 (3)	C3—N2—C2—N1	-3.0 (3)
C10—N4—C7—C8	174.1 (2)	C3—N2—C2—S3	178.48 (15)
C4—N4—C7—C8	46.6 (3)	C1—N1—C2—N2	1.3 (3)
N4—C7—C8—C9	170.0 (3)	C1—N1—C2—S3	179.77 (16)
C7—N4—C10—C11	63.9 (3)	C1—N3—C3—N2	3.6 (3)
C4—N4—C10—C11	-167.5 (2)	C1—N3—C3—S2	-175.92 (16)
N4—C10—C11—C12	-177.1 (3)	C2—N2—C3—N3	0.7 (3)
C3—N3—C1—N1	-5.2 (3)	C2—N2—C3—S2	-179.76 (16)
C3—N3—C1—S1	173.75 (16)		

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	H···A	D···A	D—H··· A
N4—H4…N3	0.93 (1)	1.95 (1)	2.867 (2)	172 (3)
$N1$ — $H1$ ··· $S2^{i}$	0.92 (1)	2.51 (1)	3.4037 (17)	167 (2)
N2—H2…S1 ⁱⁱ	0.91 (1)	2.39 (1)	3.2911 (17)	170 (2)

Symmetry codes: (i) -x+1, y-1/2, -z+3/2; (ii) -x+1, y+1/2, -z+3/2.