metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

catena-Poly[[[tetraaquazinc(II)]- μ -1,4bis(1,2,4-triazol-1-yl)butane- $\kappa^2 N^4$: $N^{4'}$] biphenyl-4,4'-dicarboxylate]

Chang-Mei Jiao

Department of Chemistry, Yancheng Teachers' College, Yancheng 224002, People's Republic of China

Correspondence e-mail: wjndyc@gmail.com

Received 25 September 2010; accepted 4 October 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; *R* factor = 0.040; *wR* factor = 0.080; data-to-parameter ratio = 13.2.

The asymmetric unit of the polymeric title compound, $\{[Zn(C_8H_{12}N_6)(H_2O)_4](C_{14}H_8O_4)\}_n$ or $\{[Zn(BTB)(H_2O)_4]$ - $(BPDC)\}_n$ [BTB is 1,4-bis(1,2,4-triazol-1-yl)butane and H_2BPDC is biphenyl-4,4'-dicarboxylic acid], contains half a $[Zn(BTB)(H_2O)_4]^{2+}$ cation and half a BPDC anion, both ions lying about a crystallographic inversion centre. The crystal structure consists of zigzag polymeric cationic chains parallel to the *c* axis and uncoordinated anions linked into a threedimensional supramolecular architecture by $O-H\cdots O$, $C-H\cdots O$ hydrogen bonds and $C-H\cdots \pi$ interactions.

Related literature

For general background to the structures and applications of supramolecular compounds, see: Kitagawa *et al.* (2004); Ferey *et al.* (2005); Roy *et al.* (2009); Zhang *et al.* (2009). For related compounds based on 1,4-bis(1,2,4-triazol-1-yl)butane, see: Liu *et al.* (2008); Gu *et al.* (2008); Wang *et al.* (2008); Zhu *et al.* (2009).

Experimental

Crystal data $[Zn(C_8H_{12}N_6)(H_2O)_4](C_{14}H_8O_4)$ $M_r = 569.89$

Triclinic, $P\overline{1}$ a = 6.4344 (15) Å

b = 7.1490 (18) A	
c = 13.539 (3) Å	
$\alpha = 89.250 \ (4)^{\circ}$	
$\beta = 81.348 \ (4)^{\circ}$	
$\gamma = 72.620 \ (3)^{\circ}$	
V = 587.3 (2) Å ³	

Data collection

Bruker SMART APEX CCD	3162 measured reflections
diffractometer	2299 independent reflections
Absorption correction: multi-scan	1788 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2000)	$R_{\rm int} = 0.032$
$T_{\min} = 0.792, \ T_{\max} = 0.828$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.040$	169 parameters
$wR(F^2) = 0.080$	H-atom parameters constrained
S = 0.92	$\Delta \rho_{\rm max} = 0.47 \ {\rm e} \ {\rm \AA}^{-3}$
2237 reflections	$\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$

Z = 1

Mo $K\alpha$ radiation

 $0.21 \times 0.19 \times 0.17~\mathrm{mm}$

 $\mu = 1.11 \text{ mm}^-$

T = 293 K

Table 1

Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C6-C11 benzene ring.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C2-H2A\cdots O4^{i}$	0.93	2.50	3.342 (3)	150
$O1 - H1D \cdots O3^{ii}$	0.85	2.07	2.825 (3)	148
$O1 - H1C \cdot \cdot \cdot O3$	0.85	1.95	2.783 (2)	167
$O2-H2C\cdots O4^{iii}$	0.85	1.85	2.642 (3)	155
$O2 - H2D \cdots O3$	0.85	2.06	2.839 (3)	151
$C3-H3B\cdots Cg$	0.97	2.82	3.552 (3)	133

Symmetry codes: (i) x + 1, y - 1, z; (ii) -x + 1, -y + 1, -z; (iii) -x, -y + 1, -z.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 1999); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2494).

References

- Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Ferey, G., Mellot-Draznieks, C., Serre, C. & Millange, F. (2005). Acc. Chem. Res. 38, 217–225.
- Gu, Z.-G., Xu, Y.-F., Zhou, X.-H., Zuo, J.-L. & You, X.-Z. (2008). Cryst. Growth Des. 8, 1306–1312.
- Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334– 2375.
- Liu, X., Liu, K., Yang, Y. & Li, B. (2008). Inorg. Chem. Commun. 11, 1273– 1275.
- Roy, S., Mahata, G. & Biradha, K. (2009). Cryst. Growth Des. 9, 5006–5008. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Wang, L.-Y., Yang, Y., Liu, K., Li, B.-L. & Zhang, Y. (2008). Cryst. Growth Des. 8, 3902–3904.
- Zhang, Y. B., Zhang, W. X., Feng, F. Y., Zhang, J. P. & Chen, X. M. (2009). Angew. Chem. Int. Ed. 48, 5287–5290.
- Zhu, X., Liu, X.-G., Li, B.-L. & Zhang, Y. (2009). CrystEngComm, 11, 997– 1000.

supporting information

Acta Cryst. (2010). E66, m1404 [https://doi.org/10.1107/S160053681003970X]

catena-Poly[[[tetraaquazinc(II)]- μ -1,4-bis(1,2,4-triazol-1-yl)butane- $\kappa^2 N^4$: N^4 '] biphenyl-4,4'-dicarboxylate]

Chang-Mei Jiao

S1. Comment

Interest in crystal engineering and supramolecular chemistry is rapidly increasing not only because of their fascinating structures and topologies but also owing to their potential use in optical, electrical, catalytic and adsorptive applications (Kitagawa *et al.*, 2004; Ferey *et al.*, 2005; Roy *et al.*, 2009; Zhang *et al.*, 2009). The construction of such coordination polymers is highly influenced by several factors. However, the key factor in the manipulating coordination polymers is undoubtedly the selection of appropriate ligands. Comparing to rigid ligands, bifunctional flexible ligands can induce variability of the structure and may lead to the formation of supramolecular isomers because of their conformational flexibility. Recently, a series of transition metal coordination polymers based on the flexible ligand 1,4-bis(1,2,4-triazol-1-yl)butane have been reported (Liu *et al.*, 2008; Gu *et al.*, 2008; Wang *et al.*, 2008; Zhu *et al.*, 2009). In this paper, biphenyl-4,4'-dicarboxylic acid (H₂BPDC) and 1,4-bis(1,2,4-triazol-1-yl)butane (BTB) have been selected as organic linkers, generating the title new zinc(II) coordination polymer, (I), the crystal structure of which is reported herein.

Compound (I) crystallizes in the triclinic space group P -1, and the asymmetric unit contains half a $[Zn(C_8H_{12}N_6)$ $(H_2O)_4]^{2+}$ cation and half a uncoordinated BPDC anion. Each zinc(II) metal is located on an inversion centre and is sixcoordinated in a octahedron geometry by two triazole nitrogen atoms from two different BTB ligand in the axial positions, and four oxygen atom from coordinated water molecules at the equatorial plane (Figure 1). The Zn–N bond length is 2.096 (2) Å, while the Zn–O bond lengths are 2.1234 (18) Å, 2.1693 (19)Å respectively. The BTB ligand adopts a *trans–trans*-trans conformation and acts as a *N,N*-bidentate ligand linking centrosymmetrically-related zinc(II) cations into one-dimensional *zig-zag* cationic chains parallel to the *c* axis. The doubly deprotonated BPDC anion, which has crystallographically imposed centre of symmetry, does not coordinate to the zinc(II) centres and only acts as counter-ion. The anionic and cationic parts of (I) interact to form a three-dimensional network through intermolecular interactions such as conventional O—H···O hydrogen bonds, non-conventional C—H···O contacts and C—H··· π interactions (Table 1). The C—H··· π interaction is observed between the H3B atom and the centroid of the C6–C11 ring. As shown in Figure 2, interchain O1—H1C···O3, O1—H1D···O3, O2—H2D···O3 bonds between coordinated water molecules and the carboxylate anion are found to assemble the 1-D motifs into a 2-D layer parallel to the *bc* plane. These layers are further connected by interlayer O2—H2C···O4, C2—H2A···O4 hydrogen bonds, forming a 3-D supramolecular network (Figure 3).

S2. Experimental

A mixture of $Zn(NO_3)_2.6H_2O$ (29.7 mg, 0.1 mmol), biphenyl-4,4'-dicarboxylic acid (H₂BPDC) (24.2 mg, 0.1 mmol), 1,4bis(1,2,4-triazol-1-yl)butane (BTB) (19.2 mg, 0.1 mmol), and KOH (11.2 mg, 0.2 mmol) in H₂O (10 ml) was sealed in a 16 ml Teflon-lined stainless steel container and heated at 180°C for 72 h. After cooling to room temperature, white block crystals of the title compound were collected by filtration and washed with water and ethanol several times (yield 51.3%, based on H₂BPDC). Elemental analysis for $C_{22}H_{28}ZnN_6O_8$ (Mr = 569.87): C 46.37, H 4.95, N 14.75%; found: 46.46, H 4.98, N 14.79%.

S3. Refinement

The water H atoms were located in a difference Fourier map and fixed in the refinement, with $U_{iso}(H)=1.2U_{eq}(O)$. All C-bound H atoms were placed in calculated positions and refined using a riding model, with C—H = 0.93 (triazole, aromatic) or 0.97 Å(methylene) and $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

A view of the structure of the title compound, showing the atom-numbering scheme and the coordination geometry around the zinc(II) centre. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. [Symmetry codes: (A) 1-x, 1-y, 1-z; (B) 1-x, -y, -z; (C) 1-x, -y, 1-z]

Figure 2

A perspective view of the two-dimensional supramolecular sheet of the title compound along the *a* axis, showing intermolecular O—H···O hydrogen bonds and C—H··· π interactions (dashed lines).

Figure 3

The three-dimensional network of the title compound. Dashed lines indicate hydrogen bonds.

catena-Poly[[[tetraaquazinc(II)]- μ -1,4-bis(1,2,4-triazol-1-yl)butane- $\kappa^2 N^4$: N^4] biphenyl-4,4'-dicarboxylate]

Crystal data	
$[Zn(C_8H_{12}N_6)(H_2O)_4](C_{14}H_8O_4)$	Z = 1
$M_r = 569.89$	F(000) = 296
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.611 { m Mg m^{-3}}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 6.4344 (15) Å	Cell parameters from 1152 reflections
b = 7.1490 (18) Å	$\theta = 3.0 - 25.0^{\circ}$
c = 13.539(3) Å	$\mu = 1.11 \text{ mm}^{-1}$
$\alpha = 89.250 \ (4)^{\circ}$	T = 293 K
$\beta = 81.348 \ (4)^{\circ}$	Block, white
$\gamma = 72.620 \ (3)^{\circ}$	$0.21 \times 0.19 \times 0.17 \text{ mm}$
V = 587.3 (2) Å ³	

Data collection

Bruker SMART APEX CCD	3162 measured reflections
diffractometer	2299 independent reflections
Radiation source: fine-focus sealed tube	1788 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{int} = 0.032$
phi and ω scans	$\theta_{max} = 26.0^{\circ}, \ \theta_{min} = 3.0^{\circ}$
Absorption correction: multi-scan	$h = -6 \rightarrow 7$
(<i>SADABS</i> ; Bruker, 2000)	$k = -6 \rightarrow 8$
$T_{\min} = 0.792, T_{\max} = 0.828$	$l = -16 \rightarrow 16$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.040$	Hydrogen site location: inferred from
$wR(F^2) = 0.080$	neighbouring sites
S = 0.92	H-atom parameters constrained
2237 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0317P)^2]$
169 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{max} < 0.001$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 0.47$ e Å ⁻³
direct methods	$\Delta\rho_{min} = -0.31$ e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used

conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.1236 (5)	0.0898 (4)	0.1819 (2)	0.0408 (7)	
H1A	0.0180	0.1181	0.1395	0.049*	
C2	0.4301 (4)	-0.0006 (4)	0.23078 (18)	0.0323 (6)	
H2A	0.5802	-0.0473	0.2337	0.039*	
C3	0.2822 (4)	0.0747 (4)	0.41485 (17)	0.0347 (7)	
H3A	0.1835	0.0101	0.4519	0.042*	
H3B	0.2282	0.2125	0.4350	0.042*	
C4	0.5070 (4)	-0.0100 (4)	0.44352 (17)	0.0311 (6)	
H4A	0.6059	0.0584	0.4103	0.037*	
H4B	0.5653	-0.1473	0.4224	0.037*	
C5	0.1402 (5)	0.5973 (4)	0.18630 (19)	0.0319 (6)	
C6	0.2502 (4)	0.5703 (4)	0.27840 (17)	0.0275 (6)	
C7	0.1272 (4)	0.6255 (4)	0.37179 (19)	0.0375 (7)	
H7	-0.0245	0.6825	0.3773	0.045*	
C8	0.2241 (4)	0.5981 (4)	0.45708 (19)	0.0367 (7)	
H8	0.1358	0.6366	0.5187	0.044*	

supporting information

C9	0.4489 (4)	0.5149 (3)	0.45388 (17)	0.0262 (6)	
C10	0.5721 (4)	0.4649 (4)	0.35941 (19)	0.0389 (7)	
H10	0.7243	0.4120	0.3534	0.047*	
C11	0.4747 (5)	0.4915 (4)	0.27460 (19)	0.0393 (7)	
H11	0.5629	0.4552	0.2128	0.047*	
N1	0.3416 (3)	0.0186 (3)	0.14818 (15)	0.0333 (6)	
N2	0.0731 (4)	0.1156 (3)	0.27853 (16)	0.0416 (6)	
N3	0.2730 (4)	0.0566 (3)	0.30894 (15)	0.0299 (5)	
01	0.6429 (3)	0.2192 (3)	0.04395 (12)	0.0405 (5)	
H1C	0.5383	0.3192	0.0681	0.049*	
H1D	0.7103	0.2541	-0.0085	0.049*	
O2	0.2224 (3)	0.2334 (3)	-0.02699 (13)	0.0459 (5)	
H2C	0.2093	0.2385	-0.0886	0.055*	
H2D	0.2284	0.3433	-0.0065	0.055*	
03	0.2593 (3)	0.5246 (3)	0.10408 (13)	0.0407 (5)	
O4	-0.0583 (3)	0.6896 (3)	0.19568 (13)	0.0484 (6)	
Zn1	0.5000	0.0000	0.0000	0.03341 (17)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0328 (18)	0.0533 (19)	0.0323 (16)	-0.0054 (14)	-0.0083 (13)	0.0027 (13)
C2	0.0283 (15)	0.0366 (16)	0.0266 (14)	-0.0028 (13)	-0.0014 (12)	0.0002 (12)
C3	0.0380 (17)	0.0397 (16)	0.0211 (14)	-0.0057 (13)	0.0000 (12)	-0.0039 (12)
C4	0.0349 (16)	0.0298 (15)	0.0243 (14)	-0.0051 (12)	-0.0007 (12)	-0.0001 (11)
C5	0.0369 (18)	0.0294 (15)	0.0293 (15)	-0.0086 (13)	-0.0078 (13)	0.0016 (11)
C6	0.0302 (15)	0.0275 (14)	0.0246 (13)	-0.0069 (12)	-0.0072 (11)	0.0009 (11)
C7	0.0236 (15)	0.0506 (18)	0.0302 (15)	0.0012 (13)	-0.0049 (12)	0.0033 (13)
C8	0.0284 (16)	0.0504 (18)	0.0238 (14)	-0.0026 (13)	0.0000 (12)	0.0025 (12)
C9	0.0246 (15)	0.0250 (14)	0.0285 (14)	-0.0058 (11)	-0.0057 (11)	0.0005 (11)
C10	0.0222 (15)	0.0561 (19)	0.0311 (15)	-0.0005 (13)	-0.0045 (12)	-0.0085 (13)
C11	0.0314 (17)	0.0554 (19)	0.0238 (14)	-0.0041 (14)	0.0008 (12)	-0.0086 (12)
N1	0.0317 (14)	0.0398 (14)	0.0238 (12)	-0.0028 (11)	-0.0058 (10)	0.0009 (10)
N2	0.0296 (14)	0.0589 (16)	0.0300 (13)	-0.0044 (12)	-0.0035 (11)	0.0003 (11)
N3	0.0286 (13)	0.0324 (13)	0.0247 (11)	-0.0038 (10)	-0.0027 (10)	-0.0013 (9)
01	0.0406 (12)	0.0466 (12)	0.0289 (10)	-0.0073 (10)	0.0000 (9)	-0.0030 (9)
02	0.0524 (13)	0.0422 (12)	0.0344 (11)	0.0043 (10)	-0.0178 (9)	-0.0028 (9)
O3	0.0408 (12)	0.0480 (12)	0.0257 (10)	-0.0010 (10)	-0.0059 (9)	-0.0036 (9)
O4	0.0322 (12)	0.0707 (15)	0.0306 (11)	0.0062 (11)	-0.0125 (9)	-0.0015 (10)
Znl	0.0329 (3)	0.0407 (3)	0.0206 (2)	-0.0017 (2)	-0.00443 (19)	-0.00010 (19)

Geometric parameters (Å, °)

C1—N2	1.301 (3)	С7—Н7	0.9300	
C1—N1	1.350 (3)	C8—C9	1.384 (4)	
C1—H1A	0.9300	C8—H8	0.9300	
C2—N1	1.317 (3)	C9—C10	1.389 (3)	
C2—N3	1.323 (3)	С9—С9 ^{іі}	1.481 (5)	

supporting information

C2—H2A	0.9300	C10—C11	1.374 (4)
C3—N3	1.453 (3)	C10—H10	0.9300
C3—C4	1.500 (4)	C11—H11	0.9300
С3—НЗА	0 9700	N1—Zn1	2,096 (2)
C3—H3B	0.9700	N2N3	1.354(3)
	1.524 (5)	$\begin{array}{c} 112 - 113 \\ 01 - 7n1 \end{array}$	1.354(5)
$C_4 - C_4$	1.524(5)	O1 - ZIII	2.1093 (19)
C4—H4A	0.9700		0.8300
C4—H4B	0.9700	OI—HID	0.8499
C5—04	1.238 (3)	02—Znl	2.1234 (18)
C5—O3	1.272 (3)	O2—H2C	0.8500
C5—C6	1.507 (4)	O2—H2D	0.8500
C6—C11	1.378 (4)	Zn1—N1 ⁱⁱⁱ	2.096 (2)
C6—C7	1.381 (3)	Zn1—O2 ⁱⁱⁱ	2.1234 (18)
С7—С8	1.378 (4)	Zn1—O1 ⁱⁱⁱ	2.1693 (19)
NO C1 N1	114 ((2)		110.2
N2—CI—NI	114.6 (3)	C11—C10—H10	119.2
N2—C1—H1A	122.7	С9—С10—Н10	119.2
N1—C1—H1A	122.7	C10—C11—C6	122.0 (2)
N1—C2—N3	109.7 (2)	C10—C11—H11	119.0
N1—C2—H2A	125.1	C6—C11—H11	119.0
N3—C2—H2A	125.1	C2—N1—C1	103.1 (2)
N3—C3—C4	114.8 (2)	C2—N1—Zn1	128.25 (18)
N3—C3—H3A	108.6	C1—N1—Zn1	127.55 (18)
С4—С3—НЗА	108.6	C1—N2—N3	102.5 (2)
N3—C3—H3B	108.6	C2—N3—N2	110.0 (2)
C4—C3—H3B	108.6	C2—N3—C3	131.7 (2)
H3A—C3—H3B	107.5	N2—N3—C3	118.2 (2)
$C3 - C4 - C4^{i}$	109.7 (3)	$Z_n 1 - O_1 - H_1 C$	108.1
C3-C4-H4A	109.7	Zn1-O1-H1D	107.9
C_{4i} C_{4} H_{4A}	109.7	$H1C_01-H1D$	107.9
C^{2} C^{4} $H^{4}P$	109.7	7n1 O2 H2C	107.4
C_{4i} C_{4} H_{4} H_{4}	109.7	7n1 O2 H2D	111.0
	109.7		111.7
$\Pi 4A = C4 = \Pi 4B$	108.2	$H_2C - O_2 - H_2D$	109.0
04-05-03	124.7(2)	NI^{m} ZnI NI	180.00 (5)
04-05-06	118.0 (2)	$N1^{m}$ Zn1 $O2$	93.74 (8)
03	117.3 (2)	N1— $Zn1$ — $O2$	86.26 (8)
C11—C6—C7	116.7 (2)	$N1^{m}$ — $Zn1$ — $O2^{m}$	86.26 (8)
C11—C6—C5	122.7 (2)	$N1$ — $Zn1$ — $O2^{iii}$	93.74 (8)
C7—C6—C5	120.6 (2)	$O2$ —Zn1— $O2^{iii}$	180.00 (9)
C8—C7—C6	121.5 (2)	N1 ⁱⁱⁱ —Zn1—O1	93.19 (8)
С8—С7—Н7	119.3	N1—Zn1—O1	86.81 (8)
С6—С7—Н7	119.3	O2—Zn1—O1	87.85 (8)
С7—С8—С9	122.0 (2)	O2 ⁱⁱⁱ —Zn1—O1	92.15 (8)
С7—С8—Н8	119.0	N1 ⁱⁱⁱ —Zn1—O1 ⁱⁱⁱ	86.81 (8)
С9—С8—Н8	119.0	N1—Zn1—O1 ⁱⁱⁱ	93.19 (8)
C8—C9—C10	116.1 (2)	O2—Zn1—O1 ⁱⁱⁱ	92.15 (8)
C8—C9—C9 ⁱⁱ	121.5 (3)	O2 ⁱⁱⁱ —Zn1—O1 ⁱⁱⁱ	87.85 (8)
C10—C9—C9 ⁱⁱ	122.4 (3)	O1—Zn1—O1 ⁱⁱⁱ	180.00 (10)
	× /		

С11—С10—С9	121.7 (2)		
N3-C3-C4-C4 ⁱ	-177.5 (3)	N2-C1-N1-C2	0.1 (3)
O4—C5—C6—C11	-171.9 (3)	N2—C1—N1—Zn1	-168.61 (19)
O3—C5—C6—C11	7.6 (4)	N1—C1—N2—N3	0.0 (3)
O4—C5—C6—C7	7.9 (4)	N1—C2—N3—N2	0.2 (3)
O3—C5—C6—C7	-172.7 (2)	N1—C2—N3—C3	-176.2 (2)
C11—C6—C7—C8	-1.7 (4)	C1—N2—N3—C2	-0.1 (3)
C5—C6—C7—C8	178.6 (2)	C1—N2—N3—C3	176.9 (2)
C6—C7—C8—C9	0.3 (4)	C4—C3—N3—C2	-9.0 (4)
C7—C8—C9—C10	1.5 (4)	C4—C3—N3—N2	174.8 (2)
C7—C8—C9—C9 ⁱⁱ	-179.6 (3)	C2—N1—Zn1—O2	-141.6 (2)
C8—C9—C10—C11	-1.8 (4)	C1—N1—Zn1—O2	24.4 (2)
C9 ⁱⁱ —C9—C10—C11	179.3 (3)	C2—N1—Zn1—O2 ⁱⁱⁱ	38.4 (2)
C9—C10—C11—C6	0.4 (5)	C1—N1—Zn1—O2 ⁱⁱⁱ	-155.6 (2)
C7—C6—C11—C10	1.3 (4)	C2—N1—Zn1—O1	-53.5 (2)
C5-C6-C11-C10	-178.9 (3)	C1—N1—Zn1—O1	112.5 (2)
N3—C2—N1—C1	-0.2 (3)	C2—N1—Zn1—O1 ⁱⁱⁱ	126.5 (2)
N3—C2—N1—Zn1	168.47 (17)	C1—N1—Zn1—O1 ⁱⁱⁱ	-67.5 (2)

Symmetry codes: (i) -*x*+1, -*y*, -*z*+1; (ii) -*x*+1, -*y*+1, -*z*+1; (iii) -*x*+1, -*y*, -*z*.

Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C6–C11 benzene ring.

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
C2—H2A····O4 ^{iv}	0.93	2.50	3.342 (3)	150
O1—H1 <i>D</i> ···O3 ^v	0.85	2.07	2.825 (3)	148
O1—H1C···O3	0.85	1.95	2.783 (2)	167
O2—H2 <i>C</i> ···O4 ^{vi}	0.85	1.85	2.642 (3)	155
O2—H2 <i>D</i> ···O3	0.85	2.06	2.839 (3)	151
C3—H3 <i>B</i> … <i>Cg</i>	0.97	2.82	3.552 (3)	133

Symmetry codes: (iv) *x*+1, *y*-1, *z*; (v) -*x*+1, -*y*+1, -*z*; (vi) -*x*, -*y*+1, -*z*.